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Abstract- A new full wave theory for scattering by one 
dimensional perfectly conducting rough surface has been 
formulated recently. It provides enhanced physical insights 
into rough surface scattering processes, includes multiple 
scattering effects, quantifies field errors and furnishes a 
quantitative measure of the method’s accuracy, permits a 
systematic procedure for obtaining higher-order terms in the 
iterative solution of the scatter problem, and satisfies 
reciprocity using only the first-order solution. The first- order 
solution of this new full wave method has been shown to 
reduce to the small perturbation and the Kirchhoff 
approximation in their regions of validity. It has also been 
numerically applied to surfaces with Gaussian height and 
slope variations and shown to be more accurate than the 
small-perturbation and the Kirchhoff methods in regions where 
neither are considered valid. This paper extend the theory to 
the more general and important case of scattering by a 
dielectric interface, where one of the two halfspaces is lossy. 

I. Formulation of Problem by use of        
CC-Method 

ubject of this paper is a new theory of scattering 
from rough dielectric surfaces of the type shown in 
Fig 1. The interface between an air halfspace and 

a dielectric halfspace is rough over a length 2L and 
planar beyond this region. The roughness profile is one-
dimensional, i.e. the local height D varies with z but is 
constant with y. 

A  plane  wave  is  incident  under  the  angle  ϕ0  
upon the interface; it may be incident from above or 
below. This incident wave and the resulting scattering 
field are TE- polarized, i.e. these fields consist of 
components Ey, Hx and Hz.  

The technique used in this paper to formulate 
the problem is the Correction Current (CC) method, a 
new full wave method which has recently been 
established for plane wave scattering from metal 
surfaces [1] and subsequently extended to dielectric 
surfaces, with the lower halfspace at first assumed to be 
lossless but in the work presented here allowed to be 
lossy1. 
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Fig. 1: Scatter Problem Geometry 

The CC-method defines a primary field and a 
complete system of scatter fields, called radiation 
modes. Each of these fields consists of an incident, 
reflected and transmitted plane wave. These component 
waves, however, are modified such that each of the 
radiation modes as well as the primary field satisfies the 
boundary conditions at the interface, individually and 
rigorously. Since these fields are simple in structure (i.e. 
consisting of suitably modified plane waves) and 
comply with the boundary conditions at the rough 
interface, they will no longer satisfy Maxwell’s 
equations 1 . This is remedied by introducing fictitious 
current distributions, called passive currents that are 
assumed to be associated with each of these fields and 
chosen such that they exactly cancel the field errors of 
these fields; the passive current distribution of course 
varies from mode to mode. Thus, while not being 
solutions of Maxwell’s source free equations, the 
primary field and radiation modes are solutions of 
Maxwell’s equations with sources2

 
 

 
 

 

. The passive currents 
exist only in the corrugation region |Z| ≤ L; outside this 
region, where the interface is planar, the primary field 
and radiation modes are exact solutions of Maxwell’s 
source free equations and no correction is needed. 
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New Full Wave Theory for Plane Wave 
Scattering by a Rough Dielectric Suface – The 

Correction Current Method

                                                          
1 For a review of established theoretical methods for the analysis of 
rough surface scattering see [2]-[4].
2 Alternatively, the passive currents may be interpreted as quantifying 
the field errors.



In addition, it is assumed that each radiation 
mode is generated by an “active” sheet current 
distribution residing in a plane z =  termed the reference 
plane of this mode. These reference planes exist in the 
corrugation region |Z| ≤ L only, and all active currents of 
the mode system are limited to the same region as the 
passive currents. An important feature of these active 
currents is that taken together they form a complete 
orthogonal system so that any (passive) current 
distribution in the region |Z| ≤ L can be expanded into, or 
nullified by the active currents. 

The total field is then written as a superposition 
of the primary field and the radiation modes. This 
combined field, of course, is not allowed to contain any 
active or passive current distribution, and this “zero-
current” condition is then used to determine the 
unknown amplitudes of the radiation modes by an 
iterative procedure which in, a step-by-step fashion, 
eliminates the passive currents of the primary field and 
the radiation modes by the active currents of the 
radiation modes. The completeness, mentioned above, 
of the active currents allows us to do this consistently. 
The resulting combined field will satisfy the boundary 
conditions at the interface and the radiation condition at 
infinity while all active and passive currents are 
eliminated by mutual compensation. Thus the combined 
field is the solution of the scatter problem. For numerical 
efficiency, the iterative process is typically cut-off after 
the first iteration. 

Using this approach the dielectric surface 
scatter problem has recently been solved for the case 
that the dielectric halfspace is loss free. Scattering 
patterns have been obtained in the form of single 
integrals over elementary functions which are easily 
evaluated numerically. The patterns have been 
computed for both deterministic and random rough 
surfaces. Comparison with the corresponding patterns 
obtained by a Method of Moments (MoM) procedure 
has shown that the first order iteration theory is of good 
accuracy over a wide parameter region. A paper 
reporting on this study, which was conducted at 
CERDEC and NJIT, is close to completion and will be 
submitted for publication in the near future. 

The extension of the theory to lossy dielectrics 
is currently pursued under the 2007 In-house Laboratory 
Independent Research (ILIR) program. This extension is 
not straight forward, however. The problem geometry 
consists of two halfspaces; and two groups of radiation 
modes are required for full characterization of the 
problem. This holds for the lossy as well as for the 
lossless case. But when these two mode groups for the 
lossy case are defined in direct analogy to the two mode 
groups for the lossless case one of the groups diverges, 
i.e. increases exponentially with |x|, which is 
unacceptable. Hence the radiation modes need to be 
redefined, which has a significant effect on the theory. In 

the development of this theory it is consistently assumed 
that [ε r ] is finite; it may be small, but is not allowed to 
be arbitrarily small. Comparison to the results of the 
lossless theory will be made only after all formulas for 
fields and radiation patterns have been fully established. 

II. Analytical Results and Discussion 

In the following it is assumed that the incident 
plane wave is situated in the upper (air) halfspace. If it is 
located in the lower halfspace, the expressions obtained 
for fields and patterns will be different, of course. But the 
overall trends observed are similar. 

It is interesting to note that the scatter fields 
associated with the two locations of the incident wave 
are related by a simple symmetry relation. Assume that 
a plane wave of amplitude 𝐸𝐸0 and phase constant (in the 
z-direction) incident in the air halfspace – generates a 
scatter field β0 – 𝐸𝐸s(x,z;k0,kε, D(z)). Assume, furthermore, 
that a plane wave of amplitude Eε and phase constant βε 
– incident in the dielectric halfspace – creates a scatter 
field  𝐸𝐸�y

s(x,z;k0,kε, D(z)). Then these two scatter fields are 
related by the condition. 

 
 
 

for βε = β0
 

with kε = k0
 √ε 𝑟𝑟

 

This relation holds for all x and z, i.e. in both 
halfspaces. Thus, if 𝐸𝐸y

s has been determined
 
𝐸𝐸�y

s, follows 
by a simple substitution of coordinates and 
parameters3

 
   

   
 

  

; and vice versa.
 

Symmetry relation (1) must be satisfied for the 
exact scatter fields. But it is satisfied already for the first 
order iteration approximation used in this paper which 
may be taken as an indication that the first order method 
is of good accuracy.

 

In this first order approximation the CC-theory 
leads to the following expression for the scatter field in 
the upper (air) halfspace x >

 
D:
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3 Note that since ερ = (κε /κ0)2 the parameter substitution replaces εr by

1/ ε r.
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Where E0 is the amplitude of the incident plane wave 𝐷𝐷�
stands for D(�̃�𝑧) and k0 is the free-space wave number; 
furthermore

The path of the u-integration runs along the 
positive real axis4. The propagation constants v0, v1, β1
and β2 are positive real and/or negative imaginary while 
is positive real and positive imaginary.

The first double integral in (2a) represents the 
contribution of the first mode group to the scatter field 
and the second double integral shows the contribution 
of the second mode group. A formally similar 
representation is obtained for the scatter field in the 
lower (lossy dielectric) halfspace but for brevity is not 
spelled out here.
In the far field region, where

eq. (2) can be simplified by substituting

where the scatter angle 𝜑𝜑 is in the region

The formula may then be evaluated 
asymptotically for k0ρ→∞ using the method of stationary 
phase which eliminates the u-integration. Only the first 
double integral in (2a) contributes to the far field and 
one obtains

where the scatter pattern S0(𝜑𝜑, 𝜑𝜑 0) takes the form
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4 Except when a (u-u’)-1 singularity occurs on the real u-axis. In this 
case the u-integration bypasses the singularity by a local deformation 
of the integration path into the positive imaginary u-halfspace.



 
 
 
 
 

This expression for the scatter pattern in the air 
halfspace

 
x>D

 
is identical to the one obtained by the 

previously developed theory for εr
 
=real, but it is now 

confirmed to be valid for complex εr
 
as well. Eq. (3b) 

also shows that S0
 

vanishes, as required, in the no-
contrast case that

 εr
 →1, and that it satisfies the 

reciprocity relation
 
S0(𝜑𝜑, 𝜑𝜑 

0) = S0(-𝜑𝜑 
0,-

 𝜑𝜑). 

Similar to expression (2) for the scatter field in 
the upper halfspace, the formula obtained for the lower 
halfspace (not shown here) consists of two double 
integrals representing the contributions of the two mode 
groups. However, due to the lossy nature of the 
dielectric halfspace, the scatter field will decrease here 

exponentially away from the corrugated interface, and 
the two double integrals in general cannot be simplified. 
Simplification is possible only if Im[εr]

 
is either very 

small, so that a far field of reasonable magnitude exists, 
or if Im[εr]

 
is rather large, so that the scatter field in the 

lower halfspace is in effect confined to a neighborhood 
of the scatter surface.

 

In the case that |Im[εr]|is very small, the scatter 
field in the region far away from the corrugated section 
of the interface can be obtained by the method of 
steepest descent, which eliminates the integration over . 
One finds that Ey

(1) in the lower halfspace
 
x<D

 
is of the 

form
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The scatter field in this case consists of two 
parts which may be interpreted in the following way. In 
contrast to the scatter field in the upper halfspace, the 
scatter pattern in the lower halfspace is generated by 
two different mechanisms which are illustrated by Fig. 2. 
The first mechanism, as in the case of the lossless 
upper halfspace, is simply the scattering of the incident 
plane wave at the corrugated part of the interface. The 
second mechanism comes about because the scatter 
field in the lower, lossy halfspace decreases with ρ
exponentially, i.e. much faster than the scatter field in 
the upper halfspace. But the scatter field must be 
continuous at the interface. As a consequence there is a 
continuous leakage of energy from the upper halfspace 
into the lower halfspace, which constitutes the second 
mechanism generating the scatter field in the lower 
halfspace5. The first mechanism causes a conventional 
scatter field where in the far zone the ρ− and 𝜑𝜑 −

dependence are separated, but with the ρ−
dependence in this case decreasing exponentially; see 
eq.(4a). This field will dominate at scatter angle 𝜑𝜑 close 
to ±180o. In the asymptotic field caused by the second 
mechanism, on the other hand, the ρ− and 𝜑𝜑 −
dependence  remain coupled also in the asymptotic 
region. This part of the field will be dominant near the 
interface, i.e. for 𝜑𝜑 near ±90 o.
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5 No such energy transfer occurs when εr is real, since the energy 
density in both half spaces decreases with ρ-1.



 

Fig. 2: Scatter field in lower (lossy) halfspaceis generated by two mechanisms
 

(1) Scattering of primary field at corrugated section of interface
 

(2) Energy transfer from scatter field in upper halfspace
 
to asymptotic scatter field in lower half space

 
 

A possible problem is the following. If |Im[εr]|
 
is 

very small then the denominator of
 
Fε

 
in (4b) will have a 

near-zero at sin
 𝜑𝜑=|

 εr
 
|-1/2 resulting in a sharp peak of

 

Fε
 
. The authors are not sure that this is correct and eq. 

(4b) will require further study. 
 

As mentioned above, if Im[εr]
 
is sizeable then 

eq. (4), even if mathematically correct, will lose its 
physical meaning. The equation holds in the far zone, 
i.e. at large distances from the corrugated part of the 
interface, and if Im[εr]

 
is significant then the scatter field 

at such
 

distances will be exceedingly small and 
undetectable for all practical purpose. 

 

Conceptually it is obvious that, in the case of 
large Im[εr], the scatter field in the lower halfspace will 
be of significant magnitude only in a narrow region 
adjacent to the interface, while this field, whether 
generated by the first or the second mechanism 
mentioned above, will decrease rapidly with increasing 
distance from the interface. The general representation 
of the scatter fields in terms of two double integrals (i.e. 
a representation akin to eq. (2a)) allows to quantify this, 
but the analytical procedure is rather lengthy and 
tedious, and not included in this paper.

 

One last remark: The scatter pattern (3b) in the 
upper halfspace includes a factor cos

 𝜑𝜑 
and will be zero 

for ±90
 
o, i.e. at the interface, indicating that Ey along
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The formula shows that Ey near the interface 

decrease with
          

,  i.e. the energy density will 

decrease here with ρ-3 rather than with ρ-1, the rate of 
decrease for |𝜑𝜑 |<90 o. With x, the field below the 
surface decreases exponentially, indicating a 
transmitted wave while above the surface it varies 
linearly with x indicating the interaction between an 
incident and a reflected wave. All this is consistent with a 
continuous leakage of energy from the air halfspace into 
the lossy dielectric halfspace, i.e. with the second 
mechanism mentioned above for generating the scatter 
field in the lower halfspace.

As mentioned earlier, the discussion and 
formulas presented in this paper apply to the case that 
the primary wave is incident in the upper (air) halfspace. 
If the antenna generating the incident wave is situated in 
the lower (dielectric) halfspace, the symmetry relation (1) 
applies; the formulas are analogous; and similar overall 
trends are observed.

The theory for the lossy dielectric case 
summarized in this paper has been developed under 
the 2007 CERDEC ILIR program in cooperation with 
NJIT and is near completion, though some points need 
further investigation. Final results will be tested by 
comparison to data obtained by a MoM technique. This 
work is schedule for 2008.

Numerical Techniques such as the MoM and 
FDTD methods can be relied on to provide very 
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e zjk−

© 2021 Global Journals

  
  
 

  

13

Y
e
a
r

20
21

Vo
lu
m
e 

 X
xX
I 
 I
ss
ue

 I
 V
 e

rs
io
n 

I 
 

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
I

New Full Wave Theory for Plane Wave Scattering by a Rough Dielectric Suface – The Correction Current 
Method



 
 

 
 

 
 
 
 
 
 
 
 
 
 

accurate results. Analytical methods as the one 
presented in this paper, even though approximate, have 
the advantage of showing parameter dependencies 
explicitly, thus providing physical insight. In addition, the 
field and pattern formulas – often obtained in the form of 
single integrals over elementary functions – are 
amenable to efficient computer evaluation and may be 
useful for real-time modeling. 
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