Discovering Thoughts, Inventing Future

Tubular Ridge Convectors
Experimental Research Agency

Highlights

Impact of 5s in the Academic
Tuyamuyun Hydraulic Engineering
GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: G
INDUSTRIAL ENGINEERING

VOLUME 21 ISSUE 2 (VER. 1.0)
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Ren-Jye Dzeng</td>
<td>Professor Civil Engineering, National Chiao-Tung University, Taiwan University of Michigan United States</td>
</tr>
<tr>
<td>Dr. Ephraim Suhir</td>
<td>Ph.D., Dept. of Mechanics and Mathematics, Moscow University Moscow, Russia Bell Laboratories Physical Sciences and Engineering Research Division United States</td>
</tr>
<tr>
<td>Dr. Iman Hajirasouliha</td>
<td>Ph.D. in Structural Engineering, Associate Professor, Department of Civil and Structural Engineering, University of Sheffield, United Kingdom</td>
</tr>
<tr>
<td>Dr. Pangil Choi</td>
<td>Ph.D. Department of Civil, Environmental, and Construction Engineering, Texas Tech University, United States</td>
</tr>
<tr>
<td>Dr. Ye Tian</td>
<td>Ph.D. Electrical Engineering The Pennsylvania State University 121 Electrical, Engineering East University Park, PA 16802, United States</td>
</tr>
<tr>
<td>Dr. Xianbo Zhao</td>
<td>Ph.D. Department of Building, National University of Singapore, Singapore, Senior Lecturer, Central Queensland University, Australia</td>
</tr>
<tr>
<td>Dr. Eric M. Lui</td>
<td>Ph.D., Structural Engineering, Department of Civil & Environmental Engineering, Syracuse University United States</td>
</tr>
<tr>
<td>Dr. Tianbo Zhao</td>
<td>Ph.D. Mechanical Engineering & Materials Science, Duke University, US Assistant Professor College of Engineering, Nanyang Technological University, Singapore</td>
</tr>
<tr>
<td>Dr. Zi Chen</td>
<td>Ph.D. Department of Mechanical & Aerospace Engineering, Princeton University, US Assistant Professor, Thayer School of Engineering, Dartmouth College, Hanover, United States</td>
</tr>
<tr>
<td>Dr. Zhou Yufeng</td>
<td>Ph.D. Mechanical Engineering & Materials Science, Duke University, US Assistant Professor College of Engineering, Nanyang Technological University, Singapore</td>
</tr>
<tr>
<td>Dr. T.S. Jang</td>
<td>Ph.D. Naval Architecture and Ocean Engineering, Seoul National University, Korea Director, Arctic Engineering Research Center, The Korea Ship and Offshore Research Institute, Pusan National University, South Korea</td>
</tr>
<tr>
<td>Dr. Pallav Purohit</td>
<td>Ph.D. Energy Policy and Planning, Indian Institute of Technology (IIT), Delhi Research Scientist, International Institute for Applied Systems Analysis (IIASA), Austria</td>
</tr>
<tr>
<td>Dr. Balasubramani R</td>
<td>Ph.D., (IT) in Faculty of Engg. & Tech. Professor & Head, Dept. of ISE at NMAM Institute of Technology</td>
</tr>
<tr>
<td>Name</td>
<td>Position, University, Country</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Sofoklis S. Makridis</td>
<td>B.Sc(Hons), M.Eng, Ph.D. Professor Department of Mechanical Engineering University of Western Macedonia, Greece</td>
</tr>
<tr>
<td>Dr. Haijian Shi</td>
<td>Ph.D. Civil Engineering Structural Engineering Oakland, CA, United States</td>
</tr>
<tr>
<td>Dr. Steffen Lehmann</td>
<td>Faculty of Creative and Cultural Industries Ph.D., AA Dip University of Portsmouth United Kingdom</td>
</tr>
<tr>
<td>Dr. Chao Wang</td>
<td>Ph.D. in Computational Mechanics Rosharon, TX, United States</td>
</tr>
<tr>
<td>Dr. Wenfang Xie</td>
<td>Ph.D., Department of Electrical Engineering, Hong Kong Polytechnic University, Department of Automatic Control, Beijing University of Aeronautics and Astronautics China</td>
</tr>
<tr>
<td>Dr. Joaquim Carneiro</td>
<td>Ph.D. in Mechanical Engineering, Faculty of Engineering, University of Porto (FEUP), University of Minho, Department of Physics Portugal</td>
</tr>
<tr>
<td>Dr. Hai-Wen Li</td>
<td>Ph.D., Materials Engineering, Kyushu University, Fukuoka, Guest Professor at Aarhus University, Japan</td>
</tr>
<tr>
<td>Dr. Wei-Hsin Chen</td>
<td>Ph.D., National Cheng Kung University, Department of Aeronautics, and Astronautics, Taiwan</td>
</tr>
<tr>
<td>Dr. Saeed Chehreh Chelgani</td>
<td>Ph.D. in Mineral Processing University of Western Ontario, Adjunct professor, Mining engineering and Mineral processing, University of Michigan United States</td>
</tr>
<tr>
<td>Dr. Bin Chen</td>
<td>B.Sc., M.Sc., Ph.D., Xian Jiaotong University, China. State Key Laboratory of Multiphase Flow in Power Engineering Xi?an Jiaotong University, China</td>
</tr>
<tr>
<td>Dr. Charles-Darwin Annan</td>
<td>Ph.D., Professor Civil and Water Engineering University Laval, Canada</td>
</tr>
<tr>
<td>Belen Riveiro</td>
<td>Ph.D., School of Industrial Engineering, University of Vigo Spain</td>
</tr>
<tr>
<td>Dr. Adel Al Jumaily</td>
<td>Ph.D. Electrical Engineering (AI), Faculty of Engineering and IT, University of Technology, Sydney</td>
</tr>
<tr>
<td>Dr. Jalal Kafashan</td>
<td>Mechanical Engineering Division of Mechatronics KU Leuven, Belgium</td>
</tr>
<tr>
<td>Dr. Maciej Gucma</td>
<td>Assistant Professor, Maritime University of Szczecin Szczecin, Ph.D., Eng. Master Mariner, Poland</td>
</tr>
<tr>
<td>Dr. Alex W. Dawotola</td>
<td>Hydraulic Engineering Section, Delft University of Technology, Stevinweg, Delft, Netherlands</td>
</tr>
<tr>
<td>Dr. M. Meguellati</td>
<td>Department of Electronics, University of Batna, Batna 05000, Algeria</td>
</tr>
<tr>
<td>Dr. Shun-Chung Lee</td>
<td>Department of Resources Engineering, National Cheng Kung University, Taiwan</td>
</tr>
<tr>
<td>Dr. Gordana Colovic</td>
<td>Dr. Philip T Moore</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>B.Sc Textile Technology, M.Sc. Technical Science Ph.D. in Industrial Management. The College of Textile Design, Technology and Management, Belgrade, Serbia</td>
<td>Ph.D., Graduate Master Supervisor School of Information Science and engineering Lanzhou University China</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Giacomo Risitano</th>
<th>Dr. Cesar M. A. Vasques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D., Industrial Engineering at University of Perugia (Italy) "Automotive Design" at Engineering Department of Messina University (Messina) Italy</td>
<td>Ph.D., Mechanical Engineering, Department of Mechanical Engineering, School of Engineering, Polytechnic of Porto Porto, Portugal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Maurizio Palesi</th>
<th>Dr. Jun Wang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D. in Computer Engineering, University of Catania, Faculty of Engineering and Architecture Italy</td>
<td>Ph.D. in Architecture, University of Hong Kong, China Urban Studies City University of Hong Kong, China</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Salvatore Brischetto</th>
<th>Dr. Stefano Invernizzi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D. in Aerospace Engineering, Polytechnic University of Turin and in Mechanics, Paris West University Nanterre La D?fense Department of Mechanical and Aerospace Engineering, Polytechnic University of Turin, Italy</td>
<td>Ph.D. in Structural Engineering Technical University of Turin, Department of Structural, Geotechnical and Building Engineering, Italy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Wesam S. Alaloul</th>
<th>Dr. Togay Ozbakkaloglu</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc., M.Sc., Ph.D. in Civil and Environmental Engineering, University Technology Petronas, Malaysia</td>
<td>B.Sc. in Civil Engineering, Ph.D. in Structural Engineering, University of Ottawa, Canada Senior Lecturer University of Adelaide, Australia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Ananda Kumar Palaniappan</th>
<th>Dr. Zhen Yuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc., MBA, MED, Ph.D. in Civil and Environmental Engineering, Ph.D. University of Malaya, Malaysia, University of Malaya, Malaysia</td>
<td>B.E., Ph.D. in Mechanical Engineering University of Sciences and Technology of China, China Professor, Faculty of Health Sciences, University of Macau, China</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Hugo Silva</th>
<th>Dr. Jui-Sheng Chou</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor, University of Minho, Department of Civil Engineering, Ph.D., Civil Engineering, University of Minho Portugal</td>
<td>Ph.D. University of Texas at Austin, U.S.A. Department of Civil and Construction Engineering National Taiwan University of Science and Technology (Taiwan Tech)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Fausto Gallucci</th>
<th>Dr. Houfa Shen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor, Chemical Process Intensification (SPI), Faculty of Chemical Engineering and Chemistry Assistant Editor, International J. Hydrogen Energy, Netherlands</td>
<td>Ph.D. Manufacturing Engineering, Mechanical Engineering, Structural Engineering, Department of Mechanical Engineering, Tsinghua University, China</td>
</tr>
<tr>
<td>Name</td>
<td>Title and Affiliation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Prof. (LU), (UoS) Dr. Miklas Scholz</td>
<td>Cand Ing, BEng (equiv), PgC, MSc, Ph.D., CWEM, CEnv, CSci, CEng, FHEA, FIEMA, FCWIEM, FICE, Fellow of IWA, VINNOVA Fellow, Marie Curie Senior, Fellow, Chair in Civil Engineering (UoS) Wetland Systems, Sustainable Drainage, and Water Quality</td>
</tr>
<tr>
<td>Dr. Kitipong Jaojaruek</td>
<td>B. Eng, M. Eng, D. Eng (Energy Technology, Asian Institute of Technology), Kasetsart University Kamphaeng Saen (KPS) Campus Energy Research Laboratory of Mechanical Engineering</td>
</tr>
<tr>
<td>Dr. Yudong Zhang</td>
<td>B.S., M.S., Ph.D. Signal and Information Processing, Southeast University Professor School of Information Science and Technology at Nanjing Normal University, China</td>
</tr>
<tr>
<td>Dr. Burcin Becerik-Gerber</td>
<td>University of Southern Californi Ph.D. in Civil Engineering Ddes, from Harvard University M.S. from University of California, Berkeley M.S. from Istanbul, Technical University</td>
</tr>
<tr>
<td>Dr. Minghua He</td>
<td>Department of Civil Engineering Tsinghua University Beijing, 100084, China</td>
</tr>
<tr>
<td>Dr. Hiroshi Sekimoto</td>
<td>Professor Emeritus Tokyo Institute of Technology Japan Ph.D., University of California Berkeley</td>
</tr>
<tr>
<td>Dr. Philip G. Moscoso</td>
<td>Technology and Operations Management IESE Business School, University of Navarra Ph.D. in Industrial Engineering and Management, ETH Zurich M.Sc. in Chemical Engineering, ETH Zurich, Spain</td>
</tr>
<tr>
<td>Dr. Shaoping Xiao</td>
<td>BS, MS Ph.D. Mechanical Engineering, Northwestern University The University of Iowa, Department of Mechanical and Industrial Engineering Center for Computer-Aided Design</td>
</tr>
<tr>
<td>Dr. Stefano Mariani</td>
<td>Associate Professor, Structural Mechanics, Department of Civil and Environmental Engineering, Ph.D., in Structural Engineering Politecnico University of Milan Italy</td>
</tr>
<tr>
<td>Dr. A. Stegou-Sagia</td>
<td>Ph.D., Mechanical Engineering, Environmental Engineering School of Mechanical Engineering, National Technical University of Athens, Greece</td>
</tr>
<tr>
<td>Dr. Ciprian Lapusan</td>
<td>Ph. D in Mechanical Engineering Technical University of Cluj-Napoca Cluj-Napoca (Romania)</td>
</tr>
<tr>
<td>Diego Gonzalez-Aguilera</td>
<td>Ph.D. Dep. Cartographic and Land Engineering, University of Salamanca, Avilla, Spain</td>
</tr>
<tr>
<td>Dr. Francesco Tornabene</td>
<td>Ph.D. in Structural Mechanics, University of Bologna Professor Department of Civil, Chemical, Environmental and Materials Engineering University of Bologna, Italy</td>
</tr>
<tr>
<td>Dr. Maria Daniela</td>
<td>Ph.D in Aerospace Science and Technologies Second University of Naples, Research Fellow University of Naples Federico II, Italy</td>
</tr>
<tr>
<td>Dr. Omid Gohardani</td>
<td>Dr. Paolo Veronesi</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Ph.D. Senior Aerospace/Mechanical/ Aeronautical, Engineering professional M.Sc. Mechanical Engineering, M.Sc. Aeronautical Engineering B.Sc. Vehicle Engineering</td>
<td>Ph.D., Materials Engineering, Institute of Electronics, Italy President of the master Degree in Materials Engineering Dept. of Engineering, Italy</td>
</tr>
</tbody>
</table>
CONTENTS OF THE ISSUE

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Contents of the Issue

1. Experimental Research Agency of Fouling on Heat Rating of the Tubular Ridge Convector. 1-6
2. Impact of 5s in the Academic Life of Undergraduate Students: A Case Study. 7-25

v. Fellows
vi. Auxiliary Memberships
vii. Preferred Author Guidelines
viii. Index
Experimental Research Agency of Fouling on Heat Rating of the Tubular Ridge Convector

By Sukhotski Albert
Belarussian State Technological University

Abstract- The experimental research of intensity of a thermal stream and distribution of temperatures on ribbed pure and low-purity surface of the tubular ridge convector with spiral aluminium ribs is spent at air free convection. Researches were spent by a method of full thermal model testing at specially developed experimental stand, and ring uniform pollution ribbed tubes was created by dense winding between ribs of a linen cord or wrapping of tube by an aluminium foil.

It is revealed that at a free convection in tubes with a close arrangement of ribs of pollution of intercostal space at the basis оребрения does not lead to essential decrease in a heat rating (less than 10 %), and the decline to give heat properties of a tube occurs only at pollution of cops ribbed (on 20,5 %). The temperature on altitude of a lateral surface of a rib decreases slightly (less than 2 %), and on a rib cop in relation to the basis - for 6-9 %. Hence, at maintenance of ridge convectors of systems of heating their frequent and careful clearing of pollution is not obligatory.

Keywords: bimetallic ribbed tube, convector, pollution, heat rating at air free convection.
GJRE-G Classification: FOR Code: 291899p

Strictly as per the compliance and regulations of:

© 2021. Sukhotski Albert. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Experimental Research Agency of Fouling on Heat Rating of the Tubular Ridge Convectors

Экспериментальное исследование влияние внешнего загрязнения на тепловую мощность трубчатого ребристого конвектора

Sukhotski Albert

Abstract- The experimental research of intensity of a thermal stream and distribution of temperatures on ribbed pure and low-purity surface of the tubular ridge convectors with spiral aluminium ribs is spent at air free convection. Researches were spent by a method of full thermal model testing at specially developed experimental stand, and ring uniform pollution ribbed tubes was created by dense winding between ribs of a linen cord or wrapping of tube by an aluminium foil.

It is revealed that at a free convection in tubes with a close arrangement of ribs of pollution of intercostal space at the basis обережения does not lead to essential decrease in a heat rating (less than 10 %), and the decline to give heat properties of a tube occurs only at pollution of cops ribbed (on 20,5 %). The temperature on altitude of a lateral surface of a rib decreases slightly (less than 2 %), and on a rib cop in relation to the basis - for 6-9 %. Hence, at maintenance of ridge convectors of systems of heating their frequent and careful clearing of pollution is not obligatory.

Keywords: bimetallic ribbed tube, convector, pollution, heat rating at air free convection.

Ключевые слова: биметаллическая ребристая труба, конвектор, загрязнение, тепловая мощность при естественной конвекции воздуха.

I. Введение

Во многих странах, в том числе и России, расширяется применение в системах отопления трубчато-ребристых нагревательных приборов – конвекторов, которые характеризуются малой инерционностью и металлоемкостью, простотой изготовления, возможностью механизировать и автоматизировать их производство [1, 2]. Одним из видов конструктивного исполнения конвектора является биметаллическая труба с круглыми алюминиевыми ребрами. Площадь внешней поверхности ребристой трубы во много раз больше, чем площадь поверхности гладкой трубы того же диаметра и длины, что придает отопительному прибору особую компактность. К недостаткам конвекторов относится трудоемкость очистки от пыли. При эксплуатации конвектора происходит снижение его тепловой мощности в результате загрязнения внутренней и наружной теплообменной поверхности.

© 2021 Global Journals

Цель работы — экспериментальное исследование интенсивности теплового потока и распределение температур на оребренной чистой и загрязненной поверхности круглоребристой трубы при свободной конвекции воздуха.

II. Основная Часть

Объектом исследования являлась биметаллическая ребристая труба со спиральными накатными ребрами. Материал ребристой оболочки — алюминиевый сплав АД1М, материал несущей трубы — углеродистая сталь Ст10. Диаметр несущей трубы \(d_n = 25 \text{ мм} \), толщина стенки \(\delta = 2 \text{ мм} \). Геометрические параметры оребрения, мм: наружный диаметр ребра \(d = 56 \text{ мм} \), высота ребра \(h = 14,6 \text{ мм} \); диаметр по основанию ребра \(d_0 = d - 2h = 26,8 \text{ мм} \); шаг ребра \(s = 2,5 \text{ мм} \); средняя толщина ребра \(\Delta = 0,5 \text{ мм} \); коэффициент оребрения трубы \(f = 19,26 \). Полная длина биметаллической трубы с торцевыми участками 330 мм, теплоотдающая длина \(-I = 300 \text{ мм} \).

Исследования проводились методом полного теплового моделирования на специально разработанном в [16] экспериментальном стенде для исследования свободно-конвективного теплообмена. В центре стендовой камеры размером 0,8×0,8×1 м размещалась исследуемая оребренная труба, которая являлась калориметром с установленными средствами измерения.

Конструкция опытной трубы-калориметра представлена на рис. 1. Внутри биметаллической ребристой трубы \(I \), указанной выше, установлен трубчатый электронагреватель (ТЭН) 2 со следующими параметрами: диаметр \(- 12,5 \text{ мм} \), длина 320 мм, мощность 320 Вт. Внутри оболочки ТЭНа, выполненного из углеродистой стали и, размещена спираль 3 из проволока с высоким омическим сопротивлением и наполнитель (электротехнический периклаз марки ППЭ). С помощью центровочного кольца 4 обеспечивалось центральное расположение ТЭНа в трубе. А с целью устранения внутренних конвективных токов воздуха и равномерного прогрева ребристой трубы между ТЭНом и стальной стенкой трубы, засыпался кварцевый песок 5 дисперсным составом 0,16–0,32 мм. Торцы трубок герметизировались высокотемпературной силиконовой замазкой 6.

Для измерения средней температуры поверхности калориметра у основания ребер \(t_{обн} \) зачеканивалось свинцом пять медно-константановых термопар 7 вдоль образующей трубы, сдвинутых относительно друг друга на угловое расстояние 45оБ. Термопары были заложены у основания ребер вдоль образующей трубы по винтовой линии на половине окружности трубы, считая, что вторая половина имеет симметричное поле температур. Также на поверхности ребра, размещенного в центре трубы, припаивались четыре медно-константановые термопары 8 (диаметр провода 0,2 мм) с шагом 3,65 мм от основания по высоте 3,65 мм и последней темпопарой размещенной на верхушке ребра (рис. 1, сечение 1). Предварительно термопары были протарированы с точностью 0,1°С. Торцевые участки оребренной трубы защищены фторопластовыми втулками 9 наружным диаметром \(d_{вт} = 45 \text{ мм} \), длиной \(l_{вт} = 35 \text{ мм} \), глубиной \(b_{вт} = 25 \text{ мм} \). С целью измерения торцевых потоков тепла на поверхности обеих втулок с противоположных сторон закреплялось по два слоя общей 4-слойной меди-константановой дифференциальной термобатареи.

© 2021 Global Journals
Рис. 1: Общий вид калориметрической трубы: 1 – биметаллическая ребристая труба; 2 – трубчатый электронагреватель (ТЭН); 3 – спираль ТЭНа; 4 – центровочное кольцо; 5 – кварцевый песок; 6 – выскокотемпературная силиконовая замазка; 7 – медь-константановые термопары у основания ребер; 8 – медь-константановые термопары по высоте ребра; 9 – фторопластовая втулка; 10 – льняной шнур

Показания медь-константановых термопар 7 и 8 фиксировались с помощью вольтметра (модель GDM-78341 класса точности 0,25), подключенного через переключатель. Холодный спай всех термопар помещался в сосуд Дьюара.

При исследовании кольцевого равномерного загрязнения оребренной трубы создавалось путем плотной намотки между ребрами льняного шнура 10 диаметром 1,7–2,3 мм, средней теплопроводностью λ₃ = 0,05 Вт / (м·К). Таким образом, в межреберном пространстве создавался слой высотой h₃ = 3,3; 6,3; 8,7; 11,4; 16,1 мм с неравномерностью ±0,4 мм (рис 2, а).

Рис. 2: Исследование кольцевого равномерного загрязнения оребренной трубы путем намотки льняного шнура а и обматыванием фольги б

Также, для обеспечения максимального термического сопротивления межреберного пространства, чистая оребренная труба герметично обматывалась алюминевой фольгой толщиной 0,3 мм (рис 2, б). Таким образом, достигалось заполнение межреберного пространства неподвижным воздухом и обеспечивалось максимальное снижение тепловой эффективности ребристой трубы.

Подвод теплового потока к оребренным поверхностям обеспечивался ТЭНом, который подключался к регулируемому масляному трансформатору (модель АОМН-40-220-75). Мощность, подводимая к оребренной трубе, измерялась ваттметром (модель К 505 класса точности 0,5). Температура воздуха t₀ внутри камеры измерялась двумя ртутными лабораторными термометрами со шкалой 0–50°C и
ценой деления 0, 1°C, расположенными в диагонально противоположных ее углах. Ртутные шарики термометров защищались от излучения пучка экранами из алюминиевой фольги.

Теплота от оребренной поверхности конвекцией и излучением передавалась атмосферному воздуху, который за счет разности плотностей нагретого и холодного воздуха поднимался вверх в окружающую среду. Во время экспериментального исследования оребренной трубы электрическая мощность, подводимая к трубе, поддерживалась постоянной для льняного шнура $W = 40 \pm 2$ Вт и изменялась для воздуха $W = 10,3–77,5$ Вт, температура стенки у основания ребер составляла $t_{\text{осн}} = 80–94^\circ$C, а температура окружающего воздуха в камере $t_0 = 18,4–20,1^\circ$C.

Удельный тепловой поток q, Вт/м, на 1 м погонной длины конвектора отведенный от трубы к воздуху конвекцией и излучением, рассчитывался из уравнения

$$ q = \left(W - Q_0 \right) / l, $$

где Q_0 – тепловые потери через торцы труб и токоподводы (рассчитывались через ранее полученную экспериментальную зависимость по средней температуре на поверхности втулок), Вт.

Результаты экспериментов представлены на рис. 3, 4. На рис. 3 показана зависимость относительной тепловой мощности трубы $q / \Delta t_{\text{осн}}$ от термического сопротивления загрязнения $R_3 = h_3 / \lambda_3$, где $\Delta t_{\text{осн}} = t_{\text{осн}} - t_0$ – среднее увеличение температуры у основания оребрения над температурой окружающей среды. При размещении в межреберном пространстве неподвижного воздуха $h_3 = h = 14,6$ мм, а коэффициент теплопроводности воздуха λ_3 определялся в зависимости от средней температуры по поверхности ребра.

Как видно, при высоте загрязнения меньше высоты ребра ($h_3 < h = 14,6$ мм), тепловая мощность трубы уменьшается незначительно (менее 10%). При полном закрытии оребрения слоем загрязнения из льняного шнура ($h_3 = 16,1$ мм) тепловая мощность уменьшается на 20,5%. По-видимому, это обусловлено тем, что при естественной конвекции в трубах с тесным расположением ребер в межреберном пространстве у основания ребер воздух остается практически неподвижным и является естественным изолятором, а основной отвод теплового потока осуществляется с верхушек оребрения. Поэтому загрязнения межреберного пространства у основания оребрения не приводит к существенному снижению тепловой мощности, а ухудшение теплоотдающих свойств трубы происходит только при загрязнении верхней части оребрения. При изоляции межреберного пространства неподвижным воздухом тепловая мощность снижается до 55%.

Это предположение косвенно подтверждается путем сравнения относительной тепловой мощности оребренной трубы с тепловой мощностью гладкой трубы диаметром равной $d = 56$ мм (на рис. 3 представлена в виде пунктирной линии), рассчитанной по [17]. Как видно, тепловые мощности чистой оребренной трубы и гладкой трубы сопоставимы, что подтверждает представление об интенсивном отводе тепла с верхушек ребер.
На рис. 4 представлены зависимости относительного перепада температуры \(\frac{(t_p - t_0)}{q} \) по высоте ребра \(h \) для чистой и загрязненной оребренной трубы, где \(t_p \) температура на поверхности ребра определеная термопарами 8 (рис. 1, сечение 1). Пунктирной линией на рисунке показана граница раздела чистой и загрязненных областей оребренной поверхности (выше пунктирной области температуры \(t_p \) определялись термопарами закрытыми загрязнением).

© 2021 Global Journals

Rис. 3: Зависимость относительной тепловой мощности трубы \(q / \Delta t_{осн} \), от термического сопротивления загрязнения \(R_z = h_z / \lambda_z \); ! — льняной шнур, — — воздух

Рис. 4: Зависимости относительного перепада температуры \((t_p - t_0) / q \) по высоте ребра \(h \) для чистой \((h_z = 0) \), загрязненной льняным шнуром и неподвижным воздухом оребренной трубы с высотой загрязнения \(h_z \) и тепловой мощностью \(W \): ! — \(h_z = 0 \) мм, — — \(h_z = 3,3 \) мм, 7 — \(h_z = 6,3 \) мм, \(\Omega - h_z = 8,7 \) мм, \(\Delta - h_z = 11,4 \) мм, \(\Omega - h_z = 16,1 \) мм; ! — \(W = 10,3 \) Вт, ! — \(W = 19,3 \) Вт, ! — \(W = 26,0 \) Вт, ! — \(W = 51,0 \) Вт, ! — \(W = 77,5 \) Вт
Как видно, температура по высоте боковой поверхности ребра уменьшается незначительно (менее 2%), а на верхушке ребра по отношению к основанию – на 6–9%.

III. Заключение

Проведено экспериментальное исследование интенсивности теплового потока и распределение температур на оребренной чистой и загрязненной поверхности трубной трубы при свободной конвекции воздуха.

При загрязнении оребренной поверхности только у основания ребер тепловая мощность теплообменной трубы уменьшается менее чем на 10%. Предельное загрязнение межреберного пространства неподвижным воздухом уменьшило тепловую мощность более чем в два раза. Следовательно, при эксплуатации трубчатых ребристых конвекторов не обязательна их чистка и тщательная очистка от глубоких межреберных плотных загрязнений.

Литература

3. Кунтыш, В. Б. Тепловой и аэродинамический расчеты оребренных теплообменников воздушного охлаждения / В. Б. Кунтыш, Н. М. Кузнецов. СПб.: Энергоатомиздат, 1992.
Impact of 5s in the Academic Life of Undergraduate Students: A Case Study

By Maliha Rajwana Haque & Sadia Tabassum

Rajshahi University of Engineering and Technology

Abstract - The aim of this paper is to determine the impact of the 5S tool on a student’s academic career. Some factors were considered from the 5S tool and the result of the students were considered to be dependent on these factors: Time maintenance, Competitiveness, Confidence, Other skills, Punctuality, Organizing skill, Comprehensiveness, Proactivity, Readiness. Based on this, some hypotheses were generated. Kruskal Wallis H test was done on the dataset along with Mann Whitney U test. As a result, the null hypotheses were rejected. The result showed that 5S had a significant impact on a student. The P-value was significantly less which assures that the result was as intended. The ‘satisfactory’ result group showed a difference with the ‘not satisfactory’ result group. Which confirms our objective. This research gives an idea of how a lean manufacturing tool can be used on subjects other than manufacturing organizations. However, the study was only done on students of Bangladesh. For more elaborate use of 5S, the worldwide population can be considered as the respondents of this study.

Keywords: 5S tool, undergrad students, academic career, kruskal wallis H test, mann whitney U test, significance level.

GJRE-G Classification: FOR Code: 291899

© 2021. Maliha Rajwana Haque & Sadia Tabassum. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Impact of 5s in the Academic Life of Undergraduate Students: A Case Study

Maliha Rajwana Haque & Sadia Tabassum

Abstract: The aim of this paper is to determine the impact of the 5S tool on a student’s academic career. Some factors were considered from the 5S tool and the result of the students were considered to be dependent on these factors: Time maintenance, Competitiveness, Confidence, Other skills, Punctuality, Organizing skill, Comprehensiveness, Proactivity, Readiness. Based on this, some hypotheses were generated. Kruskal Wallis H test was done on the dataset along with Mann Whitney U test. As a result, the null hypotheses were rejected. The result showed that 5S had a significant impact on a student. The P-value was significantly less which assures that the result was as intended. The ‘satisfactory’ result group showed a difference with the ‘not satisfactory’ result group. Which confirms our objective. This research gives an idea of how a lean manufacturing tool can be used on subjects other than manufacturing organizations. However, the study was only done on students of Bangladesh. For more elaborate use of 5S, the worldwide population can be considered as the respondents of this study.

Keywords: 5S tool, undergrad students, academic career, kruskal wallis H test, mann whitney U test, significance level.

I. Introduction

5S known as a lean tool that is used in a manufacturing environment system of an organization is used normally used to organize a workspace. It is a well-practiced systematic tool based on 5 pillars: Sort, Set in Order, Shine, Standardize, Sustain. These steps include going through everything in a space, rejecting the unnecessary and keeping the necessary things, arranging everything in order, cleaning, and setting up procedures for performing these tasks on a regular basis. From these components, we have considered some factors - Time maintenance, Competitiveness, Confidence, Other skills, Punctuality, Organizing skill, Comprehensiveness, Proactivity, Readiness. We have examined if these factors can impact a student’s academic career. This decision was made based on their result which we found through the survey. The survey was done through a five-point Likert chart questionnaire. We had generated some hypotheses after which we conducted statistical analysis on the data set. Based on the nature of the data, a non-parametric KruskalWallis H test was performed. The null hypothesis was rejected, and the alternative hypothesis was accepted through the process.

II. Literature Review

This chapter contains the significance of our study through the literature review of papers that we have followed. Findings, suggestions for future work and the limitations of the papers are mentioned in this chapter.

a) Review of Literature

Students of undergraduate level struggle from the beginning of their university journey to pull off a good result. But many factors prevent them from achieving that. For example, a journal of college students development suggested that Personal or career-related motivation to attend college in the fall was a positive
predictor for a good result and lack of peer support was a negative predictor for lower GPA (Dennis, Jessica M., Jean S. Phinney, and Lizette Ivy Chuateco, 2006). Bad results outcome impacts a student’s life in a way that sometimes they can become stressed and have mental instability. They are also seen having chronic anxiety disorders and a tendency of being suicidal. According to (Eisenberg, Daniel, et al, 2007) students with lower socioeconomic status are at higher risk of facing these problems. About 15.6% of undergraduate students were found to have depressive and anxiety disorders in the U.S.A. Then another study by (Zajacova, Anna, Scott M. Lynch, and Thomas J. Espenshade, 2005) estimated structural equation models to assess the relative importance of stress and self-efficacy in predicting three academic performance outcomes: first-year college GPA, the number of accumulated credits, and college retention after the first year. The results held academic self-efficacy to be a more robust and consistent predictor than stress in academic success. Academic goals, academic self-efficacy, and academic-related skills were shown to be the strongest factors that could give a student a tight grip on the maintenance of daily college activities and achieve a good result (Dennis, Jessica M., Jean S. Phinney, and Lizette Ivy Chuateco, 2005).

Application of the 5S tool can bring about good changes in an educational institution as well as in students. A study by (Abu Bakar, N., Uzaki, K., Mohamed Naim, A., and Abd Manaf, N. A, 2020) showed that implementing the 5S tool can improve quality management and it helps policymakers in university to develop a conducive environment for students. 5S application the higher education institute showed a method to rearrange the layout and improve the discipline and can also improve the productivity and quality (Chourasia, Ravi, and Archana Nema, 2019). Not only the performance of a system but 5S can also develop the relation among peers in an institution. (El-Sherbiny, Naglaa A., Eman H. Ibrahim, and Asmaa Younis, 2019) took an initiative on engaging the undergraduate medical students in implementing the 5S-KAIZEN at the Faculty of Medicine, Fayoum University and as a result, they found that 5S immensely improved the communication between medical students and the healthcare providers. This tool can also be used in the classroom where everyday cleaning and organizing the study area is hard. Implementing 5S in a classroom can improve and optimize the classroom environment. (Moreno López, Stephanie L, 2020).

Not only in a student’s life or educational institution but many organizations can benefit from the use of the 5S tool. This tool is a must in institutions where a safety issue is necessary. The 5S tool helps to improve the ergonomics of the surveying laboratory (Ebuetse, Mercy Akunna, 2018), helps make better use of the laboratory area (Sari, Amarria Dila, Fety Ilma Rahmillah, and Bagus Prabowo Aji, 2017), saves time when looking for tools and materials due to its location and gives good visual control. It also optimizes the work and safety of the university engineering laboratories (Mariano Jiménez Calzado, Luis Romero Manuel Dominguez, M.M Espinosa, 2015).

If proper steps of 5S are undertaken and can be executed properly it will emphasize the overall benefit of an organization (Kumar, Kaushik, and Sanjeev Kumar, 2012). According to (Gapp, Rod, Ron Fisher, and Kaoru Kobayashi) the 5S tool can be identified as the strategic platform for the managerial decisions required for the development of an integrated management system. It is necessary for the spontaneous and continuous improvement of the working environment and working conditions in an organization (Mahalik, Pradeep, 2016). 5S can organize a workplace for efficiency, it helps to decrease waste and optimize quality, productivity via monitoring (Saikh, Saad, 2015). It has an important role in the manufacturing industries. A study by (Veres, Cristina, et al, 2018) points out that 5S implementation increases the productivity of the automotive industry. (Kumar, Pavan, 2017) & (Roy Balinado, Justine Roy O., and Yogi Tri Prasetyo, 2020) both implemented 5S in the manufacturing industry and found it to have a significant impact on the company’s performance quality of employees, department operations’ productivity, and workplace safety. The 5S application makes a company more competitive and productive; furthermore, it does provide a solid foundation for achieving operational excellence.

All of these papers have mentioned the effective use of the 5S tool in educational institutions, manufacturing industries, and laboratories. However, the 5S tool can contribute to a student’s day-to-day life. We can see above that some papers have mentioned the bad effects a student faces due to the downfall of their academic result. After investigating the effects of the 5S tool we are hopeful that it will have a positive impact on improving a student’s academic career.

III. Methodology

This chapter contains the research methodology of our case study. It also mentions the significance of our research method and the solutions.

a) Research Methodology

Throughout this study, our prime focus was to observe the impact that 5S method has upon the academic life of undergraduate students. The data were analyzed by manipulating the variables. The whole study was carried out as quantitative research. Descriptive statistics were used to show students’ demographic characteristics. Five-point Likert chart was used to analyze the impact 5S tool has in the academic lives of undergraduate students.
b) **Alternatives**

The survey of our study was done with 5 point Likert chart questionnaire. After doing a normality test on our data set it showed that the data set was not normally distributed. But as we could not identify the exact distribution, it followed, the dataset was considered to be non-parametric. Then One-way ANOVA test was carried out on the dataset. In ANOVA test:
1. The dependent variable must be continuous.
2. There should be homogeneity of variance.
3. Independent variables have two or more categorical or independent groups.
4. The dependent variable must be approximately normally distributed for each level of the independent variable.

Our dataset accepted all of the above conditions except for the continuity of the dependent variable. So the one-way ANOVA could not be accepted. Instead, we selected the Kruskal-Wallis H test, the non-parametric equivalent of ANOVA. Kruskal-Wallis H test does not follow a distribution. So this method was well suited for our study.

c) **Proposed Solution**

Method of Analysis

Throughout the case study, a pre-test of the questionnaire, a survey, processing the data, analysis of the data, and lastly an interpretation of the data was carried out. The data were collected through the survey and then converted to an excel file. Then the excel file was imported into SPSS for further analysis.

Firstly, a normality test named the Shapiro-Wilk test was done on the data set. The collected data was found to be not normally distributed. Later on, a non-parametric test Kruskal-Wallis test was carried out. The Kruskal-Wallis H test was done on some independent and dependent factors that we had considered earlier for the convenience of our study. Here the dependent variable was nominal, and the independent variables were ranked. The level of significance was considered 95%. To identify the difference between the sub-groups of each independent variable, a Mann-Whitney U test was done on each of them.

Hypothesis Generation

5S tool has five components- Sort, Set in order, Shine, Standardize, and Sustain. Based on these components we have hypothetically considered some factors that might have an impact on a student’s academic life. After reviewing currently available papers, we generated the hypotheses and experimented on them for useful interpretations.

1. H1o: Time Management
2. H2o: Competitiveness
3. H3o: Confidence
4. H4o: Other Skills
5. H5o: Punctuality
6. H6o: Organizing Skill
7. H7o: Comprehensiveness
8. H8o: Proactivity
9. H9o: Readiness

These are the null hypotheses we have developed indicating that each of the factors does not help in developing a student’s academic life. On the other hand, the alternative hypotheses suggest that they do.

Data Analysis

Demographic Information

Demographics is the information of a population-based on factors such as age, gender, and race. Respondents for this study were mostly students from different universities of Bangladesh. Gender, the educational background was collected from the students to justify the conclusions of this study.

Gender of the Sample

Table 3.1 shows the gender distribution of the sample. From the table, it can be seen that the majority of respondents are male. Fig.3.1 is the Pie chart of the gender of the population.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Female</td>
<td>41</td>
<td>27.3</td>
<td>27.3</td>
<td>32.0</td>
</tr>
<tr>
<td>male</td>
<td>12</td>
<td>8.0</td>
<td>8.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Male</td>
<td>89</td>
<td>59.3</td>
<td>59.3</td>
<td>99.3</td>
</tr>
<tr>
<td>other</td>
<td>1</td>
<td>.7</td>
<td>.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3.1: Pie chart of gender of population

Fig. 3.2: Frequency chart of gender of population.

Education of the Sample

Table 3.2 shows the percentage of the field of study of the sample. From the table we can see that highest number of population are from B.Sc background. Fig.3.3 is the Pie chart of the Field of Study of the population.

Table 3.2: Frequency table of the Field of Study of the population

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.S.S</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>B.Sc</td>
<td>145</td>
<td>96.7</td>
<td>96.7</td>
<td>98.0</td>
</tr>
<tr>
<td>LL.B</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td>99.3</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>.7</td>
<td>.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3.3: Pie chart of the Field of Study of the population.

Fig. 3.4: Frequency chart for field of study of population.

Table 3.3: Frequency tables for the Factors

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc</td>
<td>17</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
</tr>
<tr>
<td>B.Com</td>
<td>33</td>
<td>22.0</td>
<td>22.0</td>
<td>33.3</td>
</tr>
<tr>
<td>LL.B</td>
<td>25</td>
<td>16.7</td>
<td>16.7</td>
<td>50.0</td>
</tr>
<tr>
<td>B.S.S</td>
<td>30</td>
<td>20.0</td>
<td>20.0</td>
<td>70.0</td>
</tr>
<tr>
<td>B.A</td>
<td>45</td>
<td>30.0</td>
<td>30.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Other</td>
<td>30</td>
<td>20.0</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Other Skills

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>most unlikely</td>
<td>25</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>somewhat unlikely</td>
<td>35</td>
<td>23.3</td>
<td>23.3</td>
</tr>
<tr>
<td>neutral</td>
<td>13</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>somewhat likely</td>
<td>41</td>
<td>27.3</td>
<td>27.3</td>
</tr>
<tr>
<td>most likely</td>
<td>36</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Punctuality

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>most unlikely</td>
<td>19</td>
<td>12.7</td>
<td>12.7</td>
</tr>
<tr>
<td>somewhat unlikely</td>
<td>47</td>
<td>31.3</td>
<td>31.3</td>
</tr>
<tr>
<td>neutral</td>
<td>16</td>
<td>10.7</td>
<td>10.7</td>
</tr>
<tr>
<td>somewhat likely</td>
<td>42</td>
<td>28.0</td>
<td>28.0</td>
</tr>
<tr>
<td>most likely</td>
<td>26</td>
<td>17.3</td>
<td>17.3</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Organizing Skill

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>most unlikely</td>
<td>26</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
</tr>
<tr>
<td>somewhat unlikely</td>
<td>30</td>
<td>20.0</td>
<td>20.0</td>
<td>37.3</td>
</tr>
<tr>
<td>neutral</td>
<td>29</td>
<td>19.3</td>
<td>19.3</td>
<td>56.7</td>
</tr>
<tr>
<td>somewhat likely</td>
<td>43</td>
<td>28.7</td>
<td>28.7</td>
<td>85.3</td>
</tr>
<tr>
<td>most likely</td>
<td>22</td>
<td>14.7</td>
<td>14.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Comprehensiveness

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>most unlikely</td>
<td>25</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>somewhat unlikely</td>
<td>30</td>
<td>20.0</td>
<td>20.0</td>
<td>36.7</td>
</tr>
<tr>
<td>neutral</td>
<td>28</td>
<td>18.7</td>
<td>18.7</td>
<td>55.3</td>
</tr>
<tr>
<td>somewhat likely</td>
<td>37</td>
<td>24.7</td>
<td>24.7</td>
<td>80.0</td>
</tr>
<tr>
<td>most likely</td>
<td>30</td>
<td>20.0</td>
<td>20.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Proactivity

<table>
<thead>
<tr>
<th>Valid</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>most unlikely</td>
<td>26</td>
<td>17.3</td>
<td>17.3</td>
<td>17.3</td>
</tr>
<tr>
<td>somewhat unlikely</td>
<td>36</td>
<td>24.0</td>
<td>24.0</td>
<td>41.3</td>
</tr>
<tr>
<td>neutral</td>
<td>16</td>
<td>10.7</td>
<td>10.7</td>
<td>52.0</td>
</tr>
<tr>
<td>somewhat likely</td>
<td>41</td>
<td>27.3</td>
<td>27.3</td>
<td>79.3</td>
</tr>
<tr>
<td>most likely</td>
<td>31</td>
<td>20.7</td>
<td>20.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Readiness

<table>
<thead>
<tr>
<th>Valid</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>very poor</td>
<td>23</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>poor</td>
<td>30</td>
<td>20.0</td>
<td>20.0</td>
<td>35.3</td>
</tr>
<tr>
<td>acceptable</td>
<td>22</td>
<td>14.7</td>
<td>14.7</td>
<td>50.0</td>
</tr>
<tr>
<td>good</td>
<td>49</td>
<td>32.7</td>
<td>32.7</td>
<td>82.7</td>
</tr>
<tr>
<td>very good</td>
<td>26</td>
<td>17.3</td>
<td>17.3</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Reliability of Survey Items

Our survey questionnaire had five-point Likert type questions. The survey had questions regarding factors of the 5S tool that could impact the academic lives of undergraduate students. Reliability refers to the consistency of a research study or measuring test. The reliability of our data set was measured using SPSS. The table below is the Reliability Statistics table. This gave us the Cronbach’s alpha coefficient. If the coefficient scores over 0.7, it refers to high internal consistency. In this case, \(\alpha = 0.961 \), which shows the questionnaire is reliable.

Normality Test:

The normality of data is a prerequisite for many statistical tests because normal data are an underlying assumption in parametric testing. There are two main methods of assessing normality: graphically and numerically. A normality test was done on our survey data to identify the right statistical method for our data set.

The above table presents the results from a well-known test of normality- the Shapiro-Wilk Test. The Shapiro-Wilk Test can handle both small and large sample sizes. For this reason, we used the Shapiro-Wilk test as our numerical means of assessing normality.

Table 3.4: Reliability statistics table of the questionnaire

<table>
<thead>
<tr>
<th>Reliability Statistics</th>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardized Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.961</td>
<td>.961</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 3.5: Normality test for factors

Time Management

<table>
<thead>
<tr>
<th>Time Management</th>
<th>Shapiro-Wilk</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGPA</td>
<td>Most Unlikely</td>
<td>.579</td>
<td>17</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Somewhat Unlikely</td>
<td>.446</td>
<td>33</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>.805</td>
<td>25</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Somewhat Likely</td>
<td>.774</td>
<td>30</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Most Likely</td>
<td>.618</td>
<td>45</td>
<td>.000</td>
</tr>
</tbody>
</table>

Competitiveness

<table>
<thead>
<tr>
<th>Competitiveness</th>
<th>Shapiro-Wilk</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGPA</td>
<td>Most Unlikely</td>
<td>.</td>
<td>17</td>
<td>.</td>
</tr>
<tr>
<td>Confidence</td>
<td>Shapiro-Wilk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
<td>Sig.</td>
<td></td>
</tr>
<tr>
<td>CGPA</td>
<td>Most Unlikely</td>
<td>.308</td>
<td>25</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Somewhat Unlikely</td>
<td>.502</td>
<td>38</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>.778</td>
<td>19</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>Somewhat Likely</td>
<td>.684</td>
<td>32</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Most Likely</td>
<td>.540</td>
<td>36</td>
<td>.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Skills</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
</tr>
<tr>
<td>CGPA</td>
<td>Most Unlikely</td>
</tr>
<tr>
<td></td>
<td>Somewhat Unlikely</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
</tr>
<tr>
<td></td>
<td>Somewhat Likely</td>
</tr>
<tr>
<td></td>
<td>Most Likely</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Punctuality</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
</tr>
<tr>
<td>CGPA</td>
<td>Most Unlikely</td>
</tr>
<tr>
<td></td>
<td>Somewhat Unlikely</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
</tr>
<tr>
<td></td>
<td>Somewhat Likely</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organizing Skill</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
</tr>
<tr>
<td>CGPA</td>
<td>Most Unlikely</td>
</tr>
<tr>
<td></td>
<td>Somewhat Unlikely</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
</tr>
<tr>
<td></td>
<td>Somewhat Likely</td>
</tr>
<tr>
<td></td>
<td>Most Likely</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comprehensiveness</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
</tr>
<tr>
<td>CGPA</td>
<td>Most Unlikely</td>
</tr>
<tr>
<td></td>
<td>Somewhat Unlikely</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
</tr>
<tr>
<td></td>
<td>Somewhat Likely</td>
</tr>
<tr>
<td></td>
<td>Most Likely</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proactivity</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
</tr>
</tbody>
</table>
As we can see the Sig. value of the Shapiro-Wilk Test is lesser than 0.05 for all factors, so the data is not normal. It significantly deviates from normal distribution.

Kruskal-Wallis H test using SPSS:

After doing a normality test the data showed non-normal distribution. So we have used nonparametric test the Kruskal Wallis H test for our data set. Here we have th dependent variable as 'Result' which had three levels – Not satisfactory, Moderate, Satisfactory. About nine factors were considered as the dependent variables. Each factor had 5 levels as we had done the questionnaire in a 5 point Likert chart. Both the independent and dependent variables were ordinal data. We have conducted the whole process in SPSS software. In this process, the grouping variable was considered as the result and the test variable was taken as Time Management, Competitiveness, Confidence, Other Skills, Punctuality, Organizing Skill, Comprehensiveness, Proactivity, and Readiness. After the Kruskal Wallis H test, Mann Whitney U test was done on the data set as a post hoc test.

Table 3.6: Kruskal Wallis H test and Mann Whitney U test for the factors

Time Management

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th>Time Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruskal-Wallis H</td>
<td>36.194</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>1.3825E-8</td>
</tr>
</tbody>
</table>

a. Kruskal Wallis Test

b. Grouping Variable: CGPA

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th>Time Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>800.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>3146.500</td>
</tr>
<tr>
<td>Z</td>
<td>-5.604</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>2.0928E-8</td>
</tr>
</tbody>
</table>

a. Grouping Variable: CGPA

Competitiveness

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th>Competitiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruskal-Wallis H</td>
<td>78.083</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>1.1079E-17</td>
</tr>
</tbody>
</table>

a. Kruskal Wallis Test

b. Grouping Variable: CGPA

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th>Time management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>303.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>2649.000</td>
</tr>
<tr>
<td>Z</td>
<td>-8.230</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>1.8644E-16</td>
</tr>
</tbody>
</table>

a. Grouping Variable: CGPA

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th>Time management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>537.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>2883.500</td>
</tr>
<tr>
<td>Z</td>
<td>-3.235</td>
</tr>
</tbody>
</table>

a. Grouping Variable: CGPA
Test Statistics

Time Management

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>Value</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>453.500</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>831.500</td>
<td>.003</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-3.017</td>
<td>.003</td>
<td></td>
</tr>
</tbody>
</table>

Confidence

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>Value</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>341.500</td>
<td>.003</td>
<td></td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>719.500</td>
<td>.003</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-4.182</td>
<td>.003</td>
<td></td>
</tr>
</tbody>
</table>

Other Skills

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>Value</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>232.500</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>2578.500</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-8.532</td>
<td>.001</td>
<td></td>
</tr>
</tbody>
</table>

Punctuality

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>Value</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>361.500</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>2707.500</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-8.888</td>
<td>.001</td>
<td></td>
</tr>
</tbody>
</table>

Impact of 5S in the Academic Life of Undergraduate Students: A Case Study
Impact of 5s in the Academic Life of Undergraduate Students: A Case Study

Test Statistics for Punctuality

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>Wilcoxon W</td>
<td>Z</td>
<td>Asymp. Sig. (2-tailed)</td>
<td>a. Grouping Variable: CGPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>330.500</td>
<td>708.500</td>
<td>4.354</td>
<td>8.184E-7</td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics for Organizing Skills

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>Wilcoxon W</td>
<td>Z</td>
<td>Asymp. Sig. (2-tailed)</td>
<td>a. Grouping Variable: CGPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>342.000</td>
<td>720.000</td>
<td>4.185</td>
<td>0.000029</td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics for Comprehensiveness

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>Wilcoxon W</td>
<td>Z</td>
<td>Asymp. Sig. (2-tailed)</td>
<td>a. Grouping Variable: CGPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>166.000</td>
<td>2512.000</td>
<td>-8.856</td>
<td>8.3042E-19</td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics for Proactivity

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>Wilcoxon W</td>
<td>Z</td>
<td>Asymp. Sig. (2-tailed)</td>
<td>a. Grouping Variable: CGPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>454.000</td>
<td>2800.000</td>
<td>-3.987</td>
<td>0.000067</td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics for Proactiveness

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>Wilcoxon W</td>
<td>Z</td>
<td>Asymp. Sig. (2-tailed)</td>
<td>a. Grouping Variable: CGPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>190.500</td>
<td>2536.500</td>
<td>-8.785</td>
<td>8.3042E-19</td>
<td></td>
</tr>
</tbody>
</table>

© 2021 Global Journals

Volume XXI, Issue II, Version I

Global Journal of Researches in Engineering (G)
IV. Result and Discussion

This chapter contains the data collection method, result analysis of our method. At the end the discussion part covers the findings and limitation of our study.

a) Data Collection

Selection of Samples

Students from different universities from all over Bangladesh were considered as the population for this study. About 150 respondents were part of this study. The survey was carried out online and in-person through simple random sampling.

Collection of Data

Data were collected through primary sources. Students from different universities were approached directly. A survey was done with a five-point Likert chart type questionnaire with about 150 respondents with the majority of students from engineering universities.

b) Result Analysis

Here Kruskal-Wallis H test is used to identify the impact 5S has on the academic career or students. The significance level for the test was considered 95% for a given factor. Based on Kruskal-Wallis score a conclusion is drawn on Null Hypothesis.

The Kruskal-Wallis test score had shown a significant difference in the levels of independent variables. To identify where the difference is we have done Mann Whitney test as post hoc test. The dependent variable Result had three levels –Not satisfactory, Moderate, satisfactory. The significance level divided by three is 0.015. So the Mann Whitney test score was compared with 0.015. If Asymp. Sig. is more than 0.015 we can conclude that the levels have a statistically significant difference. This is what we expected from the study, for 5S tool to make statistical difference between the groups.

For 95% significance level we have seen that the P-value for the factor Time Management is 1.3825E-8 which is significantly lesser than α-value (0.05). In this case, we reject the null hypothesis. So time management factor of 5S has a good impact on student’s academic life. In the same way P-value for Competitiveness, Confidence, Other skills, Punctuality, Organizing skills, Comprehensiveness, Proactivity, Readiness is 1.1079E-17, 1.1267E-17, 3.7992E-16, 8.5566E-20, 2.4994E-19, 4.9295E-19, 5.1716E-21. P-value for each of the factors has been lesser than α-value(0.05). In this case, we can reject the null hypothesis for all of the considered factors and conclude that each factor of 5S has a significant impact on improving a student’s academic career.

c) Discussion

The method of our research gave us the result we had anticipated. The P-value of Kruskal-Wallis test was significantly low than the confidence level that we considered. As a result we had to reject the null hypothesis. The null hypothesis was taken negatively. The alternative hypothesis proved that 5S has a deep impact on changing a student’s academic career. All of the independent variables that we had considered of 5S tool and examined with respect to the student’s result had shown a significant difference among the groups. Improvement of the nine factors - Time maintenance, Competitiveness, Confidence, Other skills, Punctuality, Organizing skill, Comprehensiveness, Proactivity, Readiness will help to change the academic result of a student.

However, we think the result was too obvious for we had lesser respondents for the survey due to the pandemic situation. If there could be a diversity in the respondents, the study can be more uniform regardless of the geographic location.
V. Conclusion and Future Work

a) Conclusion
The main objective of our study was to see if the 5S tool could impact a student in his academics. The academic progress of the students was measured through their results and how much satisfied they were with them. The methodology and result of this study suggested that there was a good level of impact that 5S can have in a student’s academic career. A student’s success depends on the encouragement he gets while being in his academic life. A bad grade can put a negative impact on his mental stability and makes it harder to reach goals. So it is very important to identify the reasons why a student faces these issues and solve them with effective methods. This research proved that the 5S tool can help a student improve time management, competitiveness, comprehensiveness, readiness, other skills. It also enhances confidence, proactivity, and punctuality.

b) Future Work
More lean manufacturing tools can be used to solve the challenges that students face in their undergrad life. Students from all over the world pursuing higher education could be held as subjects. A better statistical tool could give more insightful results.

References Références Referencias

2. Bakar, Nashirah Abu and Uzaki, Kiyotaka and Naim, Asmadi Mohamed and Abdul Manaf, Nor Aziah, title=Intention to Implement 5S Management Among Students in Higher Education Institutions., 2020.
10. Title=5s Techniques to Optimize Classroom Organization., Publisher = {Polytechnic University of Puerto Rico}, 2020.
19. Valenzuela, Sebasti \'{a}, “title=Is there social capital in a social network site?: Facebook use and college students’ life satisfaction, trust, and participation,” journal = {Journal of computer-mediated

APPENDIX

Survey Questionnaire

1. 1. Gender *

 Mark only one oval.

 - Female
 - Male
 - Other

2. 2. Education *

 Mark only one oval.

 - B.A
 - B.Sc
 - B.S.S
 - B.Com
 - LL.B
 - Other

Likert Scale

Questions:

You need to answer the questions in this section according to a scale counting 1 to 5. Where 1 represents most unlikely, 2 represents somewhat unlikely, 3 represents neutral, 4 represents somewhat likely and 5 represents most likely.
3. According to you under which category does your academic result (CGPA) fall? *

Mark only one oval.

☐ not satisfactory
☐ Moderate
☐ Satisfactory

4. According to you, do you procrastinate while studying? *

Mark only one oval.

1 2 3 4 5

Most unlikely ☐ ☐ ☐ ☐ ☐ Most likely

5. Do you think you are competitive? *

Mark only one oval.

1 2 3 4 5

Most unlikely ☐ ☐ ☐ ☐ ☐ Most likely

6. Do you feel confident of yourself? *

Mark only one oval.

1 2 3 4 5

Most unlikely ☐ ☐ ☐ ☐ ☐ Most likely

7. Do you engage in activities that may develop your skills beyond textbook knowledge? *

Mark only one oval.

1 2 3 4 5

Most unlikely ☐ ☐ ☐ ☐ ☐ Most likely
8. Do you consider yourself punctual in academic activities? *

Mark only one oval.

1 2 3 4 5

Most unlikely ☐ ☐ ☐ ☐ ☐ Most likely

9. How organized are you in terms of academic activities? *

Mark only one oval.

1 2 3 4 5

Most unlikely ☐ ☐ ☐ ☐ ☐ Most likely

10. Can you comprehend your related subject matters easily? *

Mark only one oval.

1 2 3 4 5

Most unlikely ☐ ☐ ☐ ☐ ☐ Most likely

11. Are you able to take full marks preparation before going to the exam hall? *

Mark only one oval.

1 2 3 4 5

Most unlikely ☐ ☐ ☐ ☐ ☐ Most likely

12. Out of 5 what will you rate your readiness for assignments, lab reports, projects and other curriculums? *

Mark only one oval.

1 2 3 4 5

lowest ☐ ☐ ☐ ☐ ☐ highest
This page is intentionally left blank
Field Studies of the Bottom Sediments Movement in the Tuyamuyun Hydraulic Engineering Complex Lower Reaches of the Amu Darya River

By T Majidov & N Ikramov

Abstract- The study of sediment flow rates in eroded riverbeds has great practical importance, especially when solving a number of water management problems involving various hydraulic structures. It is important to take quantitative account of sediments in calculating the siltation of reservoirs, when solving issues of rational placement and design of water intake structures and channels that divert water from the river for irrigation and water supply needs. In the channels of watercourses, sediments are transported in a suspended state, distributed throughout the living cross-section of the stream and bottom sediments, moved in the bottom layer. Measuring the flow rate of bottom sediments in nature is much more difficult than measuring the flow rate of suspended sediments. Therefore, measurements of the flow rate of bottom sediments related to the geometric dimensions and dynamic characteristics of ridges are mainly studied in the laboratory. The article presents the object of research, the method of research and the results obtained for determining the flow rate of bottom sediments. Full-scale observations to determine the bottom, suspended and total sediment discharge were carried out in the lower reaches of the Tuyamuyun hydraulic engineering complex on the Amu Darya River, which flows through the territory of the Central Asian states.

Keywords: eroded riverbed, bottom sediments, suspended sediments, ridge movement, water turbidity, sediment consumption.

GJRE-G Classification: FOR Code: 091599

Strictly as per the compliance and regulations of:

© 2021. T Majidov & N Ikramov. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Abstract- The study of sediment flow rates in eroded riverbeds has great practical importance, especially when solving a number of water management problems involving various hydraulic structures. It is important to take quantitative account of sediments in calculating the siltation of reservoirs, when solving issues of rational placement and design of water intake structures and channels that divert water from the river for irrigation and water supply needs. In the channels of watercourses, sediments are transported in a suspended state, distributed throughout the living cross-section of the stream and bottom sediments, moved in the bottom layer. Measuring the flow rate of bottom sediments in nature is much more difficult than measuring the flow rate of suspended sediments. Therefore, measurements of the flow rate of bottom sediments related to the geometric dimensions and dynamic characteristics of ridges are mainly studied in the laboratory. The article presents the object of research, the method of research and the results obtained for determining the flow rate of bottom sediments. Full-scale observations to determine the bottom, suspended and total sediment discharge were carried out in the lower reaches of the Tuyamuyun hydraulic engineering complex on the Amu Darya River, which flows through the territory of the Central Asian states.

Keywords: eroded riverbed, bottom sediments, suspended sediments, ridge movement, water turbidity, sediment consumption.

I. Introduction

There are 56 reservoirs in the Republic of Uzbekistan with the volume of about 20 billion m3 of water filled from the Amu Darya, Syr Darya, Zeravshan, Chirchik, Surkhandarya, Naryn, Karadarya rivers and 28 large irrigation channels with flow rates of more than 100 m3/s diverting water from these rivers. In this regard, it is very important to determine the amount of sediment in water sources to calculate the volume of channel cleaning from sediment, as well as to calculate the volume of filling the reservoir with sediment, i.e. the useful volume.

In the channels of watercourses, sediments are transported in a suspended state, distributed throughout the living cross-section of the stream and bottom sediments, moved in the bottom layer [1-10]. To determine the amount of suspended sediment in the stream, samples are taken at hydrometric stations, and their concentration is determined in the laboratory by various methods [11-19]. Measuring the flow rate of bottom sediments in nature is much more difficult than measuring the flow rate of suspended sediments.

Due to the complexity of direct measurement, many researchers propose to determine the flow rate of bottom sediments by a very approximate ratio between suspended and bottom sediments. For example, S.T. Altunin [20] recommends taking the flow rate of bottom sediments of the rivers of Central Asia based on the following percentages of the flow rate of suspended sediments: in mountainous areas - 15-23%, in foothill-5-15% and on the plains-1-3%. A. G. Khachatryan [21] and H. S. Shapiro [22] suggest that for the conditions of the Amu Darya, the flow of bottom sediments is equal to 10-11% of the flow of suspended sediments. V.E. Tuzov [23] expresses the opinion that the share of bottom sediment runoff varies both along the length of the river and in each section, depending on the water content of the year. For a high-water year, the flow rate of bottom sediments in the Tuyamuyun formation is recommended to be equal to 18% of the flow rate of suspended sediments, and for a low-water year, even 33%. This approach to determining the flow rate of bottom sediments is very approximate and uncertain.

A.I. Turaev and other researchers [24] determined the flow rate of bottom sediments of the Amu Darya by the volume of deformations or by the movement velocity of bottom sand ridges. Based on the data obtained, they established the percentage ratio of bottom and suspended sediment discharge for different sections of the Amu Darya River in different periods of the year. For example, for the target at the beginning of the water intake section of the Amu Bukhara Machine Canal (ABMC), the flow rate of bottom sediments is: when the flood rises (April-May) - from 3.5 to 75% of the suspended flow rate; in the flood (June-July) - from 2.0
to 19%, when the flood falls (August - September) - from 3.7 to 32.5%. For the lines located below the ABMC, the bottom sediment consumption is 2.5-21.4% of the corresponding suspended sediment consumption. Repeated measurement work on the Amu Darya with the calculation of the volume of channel deformations allowed V.E. Tuzov to derive a formula for calculating the flow rate of bottom sediments, which has become generally accepted:

II. Materials and Methods

The construction of water intake and reservoir nodes on rivers with an eroded channel violates the natural regime of their liquid and solid runoff. As a result of the backwater created by the nodes, a significant part of the river sediments is retained in their upper stream, and the clarified stream discharged through the culverts of the dam into the lower stream is gradually saturated with sediments due to deep and planned deformations.

The purpose of field studies is a preliminary forecast of the solid runoff flow rate, taking into account the moving ridge forms and changes in the turbidity of the Amu Darya River. The object of research is the alluvial regime and riverbed processes in the section of the Amu Darya riverbed with the length of 20 km below the Tuyamuyun hydraulic engineering complex. The beginning of the section was section 2, located 900 m below the spillway dam of the hydraulic engineering complex, and the end was section 64, located 4 km below the Tashsakadamless spillway node.

The channel of the Amu Darya River at the research site is composed of disjointed fine-sanded soils, the products of erosion of which in the form of bottom sediments are moved by a stream in the form of sand ridges. The movement of ridge forms was studied by visual observations. During the observations, the planned movements of the skewed ridge located in the section 64 were recorded. The ridge velocity was 18.3 m/day. This velocity should be considered overestimated, since the natural movement of the ridge was disrupted by the dredging operations carried out: a hole was dug in the riverbed to artificially change the direction of the current, the head of which was located at the distance of 200-250m from the crest of the observed ridge. The sharp increase in the slope of the water surface caused by digging led to an increase in the ridge movement velocity. In addition, since the section 64 is located at the distance of 3-4 km below the head regulator of the Tashsaka, as a result of water intake into the channel, the water consumption in the section 64 decreased, and the average size of sediment in it increased due to the intensive entrainment of the smallest particles of sediment into the regulator. For these reasons, the ridge formed in the section 64 did not correspond to the hydraulic regime of the flowing flow.

Similar observations were made for a skewed ridge in section 40, located 9.3 km downstream of the dam. The flow rate of water in the line is equal to the flow rate of releases to the lower stream. The horseshoe-shaped crest of the skewed ridge occupied the entire width of the riverbed. The tongue of the ridge was located at a distance of 1/38 from the left bank. The small turbidity of the water in the river made it possible to clearly distinguish the position of the ridge crest on the bottom up to a certain depth of the stream. At great depths of the stream, the outline of the ridge crest was traced by the pronounced difference in the free surface of the water, which was distinguished on this surface by an oblique dark line.

In the course of visual observations from the boat, not only the planned position of the ridge crest in the riverbed was determined, but also the ridge height was measured at 11 characteristic points. To determine the ridge movement velocity at these points of its crest, metal pegs with the length of 80 cm were fixed or a heavy load was placed. Then two floats were attached to the fixed points, connected by the 20 m long cord, one of which showed the position of the ridge at the initial moment of time, and the other - the direction of ridge movement and the water flow. The figure 1 shows the schematic plan for placing floats on the ridge crest under study. After fixing the time of setting the floats exactly after 1-3 days, the position of the ridge crest was measured in relation to the floats showing the initial position of the ridge crest, and the other - the direction of ridge movement and the water flow. The described procedure was repeated until the crest of the studied ridge was reached.
Fig. 1: Schematic layout of the floats in determining the ridge movement velocity:
1 - pegs or bottom cargo; 2-floats above the pegs; 3-floats to determine the direction of the flow of the stream.

III. RESULTS AND DISCUSSION

The observations showed that the movement of the skewed ridge movement occurs mainly as a result of the movement of secondary smaller ridges on its surface, along the body of which, in turn, even smaller dune ridge forms move. Table 1 shows the average hydraulic characteristics of the flow and soil, as well as the parameters of the main and secondary ridges determined by field studies.

To determine the flow rate of bottom sediments, various measuring devices, calculation dependencies and methods are used. However, to date, there is no generally accepted method.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Flow, sediment, and ridge characteristics</th>
<th>Dimension</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water consumption at the time of observations</td>
<td>m³/s</td>
<td>1380</td>
</tr>
<tr>
<td>2</td>
<td>Streamwidth</td>
<td>m</td>
<td>542</td>
</tr>
<tr>
<td>3</td>
<td>Average flow depth</td>
<td>m</td>
<td>2.45</td>
</tr>
<tr>
<td>4</td>
<td>Average flow rate</td>
<td>m/s</td>
<td>1.02</td>
</tr>
</tbody>
</table>
Since the bottom sediments movement occurs in the form of ridge forms in eroded channels, it is easy to calculate the amount of bottom sediment consumption by measuring the parameters of these forms and their movement velocity. The method of measuring ridges parameters was described in the works of a number of researchers [25-30]. One of the first analytical expressions of the elementary flow rate of bottom sediments in the ridge form belongs to M.A.Velikanov [31]:

\[q_{bot} = \alpha \cdot h_r \cdot C_r \cdot \gamma \cdot B \]

Here: \(\alpha \) - dimensionless coefficient, depending on the ridge shape and equal to 0.5-0.6;

\(h_r \) and \(C_r \) - height and movement velocity of the ridge.

To determine the flow rate of bottom sediments at one of the studied sub-sites, the parameters and ridges velocity were measured using a very unconventional method of visual observations. A small number of measurements did not allow us to establish the connection between the ridges parameters and the flow characteristics. It was difficult to use the existing formulas for calculating the ridges parameters due to the special conditions in the lower reaches of the Tuyamuyun hydraulic engineering complex. Therefore, the preliminary calculation of the flow rate of bottom sediments was carried out on the basis of the initial data of Table 1 according to the formula (1), which was supplemented with the measured values of the ridge height and its movement velocity.

There are three permanent hydrological posts at the research site, where samples are taken to determine the different characteristics of liquid and solid runoff. Data on the amount of suspended sediments were taken from the post "OGMS Tuyamuyun", located 9.3 km below (section 40) of the dam.

Calculation Example

1. Consumption of bottom sediments in the ridge form of movement.

Data for the calculation:
- Stream width, \(B = 542 \) m;
- Soil density, \(\gamma = 1610 \) kg/m³;
- Ridge height, \(h_r = 1.66 \) m;
- Ridge movement velocity, \(C_r = 0.0000162 \) m/s;
- Ridge shape coefficient, \(\alpha = 0.55 \).

\[P_{bot} = \alpha \cdot h_r \cdot C_r \cdot \gamma \cdot B = 0.55 \cdot 1.66 \cdot 0.0000162 \cdot 1610 \cdot 542 = 12.91 \text{ kg/s} \]

\[P_{bot\text{. day}} = 12.91 \cdot 86400 = 1115.5 t/day \]

2. Suspended sediment consumption

Data for the calculation:
- Water consumption - \(Q = 1380 \) m³/s;
- The turbidity of the flow is - \(p = 0.048 \) kg/m³.

\[P_{sus} = Q \cdot p = 1380 \cdot 0.048 = 66.24 \text{ kg/s} \]

\[P_{sus\text{. day}} = P_{sus} \cdot T_{day} = 66.24 \cdot 86400 = 723.14 \text{ t/day} \]

3. Total sediment consumption

\[P_t = P_{bot} + P_{sus} = 1115.4 + 5723.1 = 6838.6 \text{ t/day} \]

4. The proportion of bottom sediments from suspended sediments:

\[P\% = \frac{P_{bot\text{. day}}}{100 / P_{sus\text{. day}}} \cdot 1115.4 \cdot 100 / 5723.1 = 19.5\% \]

Thus, during the observed period, the flow rate of bottom sediments moving in the form of bottom ridges was 19.5 % of the flow rate of suspended sediments.
IV. Conclusions

1. In the lower reaches of the Tuyamuyun hydraulic engineering complex, the bottom sediments movement occurs in the ridge form.
2. With clarified water in the lower reaches of hydraulic engineering units, the geometric and dynamic characteristics and ridges shapes, as well as the process of ridge formation, can be studied by direct observations and measurements.
3. In the riverbed at the research site, the bottom sediments movement occurs in the form of movement of skewed large ridges (mesoforms), along the body of which secondary ridges (riffles) move, in turn, covered with moving dune forms of ridges.
4. The calculation of the solid flow rate, based on the data of direct measurements of the geometric and dynamic parameters of the ridges, and the water turbidity, showed that for the moment of measurement, the flow rate of bottom sediments was 19.5% of the flow rate of suspended sediments.

References Références Referencias

equipment for the study of channel processes. Moscow. pp. 60-62. (In Russian)

24. Turaev A.I., Kuchkarov M.M., Sheremetovsky A.A. (1984) Results of research on determining the flow rate of entrained sediments in the middle course of the Amu Darya. Development of research in the field of channel hydraulic engineering in Central Asia: Collection of scientific papers / SANIIRI. Tashkent. pp. 96-100. (In Russian)

MEMBERSHIPS
FELLOWS/ASSOCIATES OF ENGINEERING RESEARCH COUNCIL
FERC/AERC MEMBERSHIPS

INTRODUCTION

FERC/AERC is the most prestigious membership of Global Journals accredited by Open Association of Research Society, U.S.A (OARS). The credentials of Fellow and Associate designations signify that the researcher has gained the knowledge of the fundamental and high-level concepts, and is a subject matter expert, proficient in an expertise course covering the professional code of conduct, and follows recognized standards of practice. The credentials are designated only to the researchers, scientists, and professionals that have been selected by a rigorous process by our Editorial Board and Management Board.

Associates of FERC/AERC are scientists and researchers from around the world are working on projects/researches that have huge potentials. Members support Global Journals’ mission to advance technology for humanity and the profession.

FERC
FELLOW OF ENGINEERING RESEARCH COUNCIL

FELLOW OF ENGINEERING RESEARCH COUNCIL is the most prestigious membership of Global Journals. It is an award and membership granted to individuals that the Open Association of Research Society judges to have made a 'substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Fellows are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Fellow Members.
Benefit

To the Institution

Get Letter of Appreciation
Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

Exclusive Network

Get Access to a Closed Network
A FERC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Fellows can reach out to other members or researchers directly. They should also be open to reaching out by other.

Certificate

Certificate, LoR and Laser-Memento
Fellows receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member's university.

Designation

Get Honored Title of Membership
Fellows can use the honored title of membership. The "FERC" is an honored title which is accorded to a person’s name viz. Dr. John E. Hall, Ph.D., FERC or William Waldroff, M.S., FERC.

Recognition on the Platform

Better Visibility and Citation
All the Fellow members of FERC get a badge of "Leading Member of Global Journals" on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All fellows get a dedicated page on the website with their biography.
FUTURE WORK

GET DISCOUNTS ON THE FUTURE PUBLICATIONS

Fellows receive discounts on the future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

GJ ACCOUNT

UNLIMITED FORWARD OF EMAILS

Fellows get secure and fast GJ work emails with unlimited storage of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

PREMIUM TOOLS

ACCESS TO ALL THE PREMIUM TOOLS

To take future researches to the zenith, fellows receive access to all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

CONFERENCES & EVENTS

ORGANIZE SEMINAR/CONFERENCE

Fellows are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

EARLY INVITATIONS

EARLY INVITATIONS TO ALL THE SYMPOSIUMS, SEMINARS, CONFERENCES

All fellows receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.

© Copyright by Global Journals | Guidelines Handbook
PUBLISHING ARTICLES & BOOKS

EARN 60% OF SALES PROCEEDS
Fellows can publish articles (limited) without any fees. Also, they can earn up to 70% of sales proceeds from the sale of reference/review books/literature/publishing of research paper. The FERC member can decide its price and we can help in making the right decision.

REVIEWERS

GET A REMUNERATION OF 15% OF AUTHOR FEES
Fellow members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

ACCESS TO EDITORIAL BOARD

BECOME A MEMBER OF THE EDITORIAL BOARD
Fellows may join as a member of the Editorial Board of Global Journals Incorporation (USA) after successful completion of three years as Fellow and as Peer Reviewer. Additionally, Fellows get a chance to nominate other members for Editorial Board.

AND MUCH MORE

GET ACCESS TO SCIENTIFIC MUSEUMS AND OBSERVATORIES ACROSS THE GLOBE
All members get access to 5 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 10 GB free secure cloud access for storing research files.
ASSOCIATE OF ENGINEERING RESEARCH COUNCIL

ASSOCIATE OF ENGINEERING RESEARCH COUNCIL is the membership of Global Journals awarded to individuals that the Open Association of Research Society judges to have made a substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Associate membership can later be promoted to Fellow Membership. Associates are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Associate Members.
Benefit

To the Institution

Get Letter of Appreciation
Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

Exclusive Network
Get access to a closed network
A AERC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Associates can reach out to other members or researchers directly. They should also be open to reaching out by other.

Certificate
Certificate, LoR and Laser-Momento
Associates receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member's university.

Designation
Get honored title of membership
Associates can use the honored title of membership. The “AERC” is an honored title which is accorded to a person’s name viz. Dr. John E. Hall, Ph.D., AERC or William Waldroff, M.S., AERC.

Recognition on the Platform
Better visibility and citation
All the Associate members of AERC get a badge of ‘Leading Member of Global Journals’ on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All associates get a dedicated page on the website with their biography.
FUTURE WORK
GET DISCOUNTS ON THE FUTURE PUBLICATIONS
Associates receive discounts on the future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

GJ ACCOUNT
UNLIMITED FORWARD OF EMAILS
Associates get secure and fast GJ work emails with unlimited storage of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org..

PREMIUM TOOLS
ACCESS TO ALL THE PREMIUM TOOLS
To take future researches to the zenith, associates receive access to all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

CONFERENCES & EVENTS
ORGANIZE SEMINAR/CONFERENCE
Associates are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

EARLY INVITATIONS
EARLY INVITATIONS TO ALL THE SYMPOSIUMS, SEMINARS, CONFERENCES
All associates receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.
Publishing Articles & Books

Earn 30-40% of Sales Proceeds

Associates can publish articles (limited) without any fees. Also, they can earn up to 30-40% of sales proceeds from the sale of reference/review books/literature/publishing of research paper.

Reviewers

Get a Remuneration of 15% of Author Fees

Associate members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

And Much More

Get Access to Scientific Museums and Observatories Across the Globe

All members get access to 2 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 5 GB free secure cloud access for storing research files.
<table>
<thead>
<tr>
<th>ASSOCIATE</th>
<th>FELLOW</th>
<th>RESEARCH GROUP</th>
<th>BASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4800 lifetime designation</td>
<td>$6800 lifetime designation</td>
<td>$12500.00 organizational</td>
<td>APC per article</td>
</tr>
<tr>
<td>Certificate, LoR and Momento</td>
<td>Certificate, LoR and Momento</td>
<td>Certificates, LoRs and Momentos</td>
<td>GJ Community Access</td>
</tr>
<tr>
<td>2 discounted publishing/year</td>
<td>Unlimited discounted publishing/year</td>
<td>Unlimited free publishing/year</td>
<td></td>
</tr>
<tr>
<td>Gradation of Research</td>
<td>Gradation of Research</td>
<td>Gradation of Research</td>
<td></td>
</tr>
<tr>
<td>10 research contacts/day</td>
<td>Unlimited research contacts/day</td>
<td>Unlimited research contacts/day</td>
<td></td>
</tr>
<tr>
<td>1 GB Cloud Storage</td>
<td>5 GB Cloud Storage</td>
<td>Unlimited Cloud Storage</td>
<td></td>
</tr>
<tr>
<td>GJ Community Access</td>
<td>Online Presence Assistance</td>
<td>Online Presence Assistance</td>
<td></td>
</tr>
<tr>
<td>GJ Community Access</td>
<td>GJ Community Access</td>
<td>GJ Community Access</td>
<td></td>
</tr>
</tbody>
</table>
Preferred Author Guidelines

We accept the manuscript submissions in any standard (generic) format.

We typeset manuscripts using advanced typesetting tools like Adobe In Design, CorelDraw, TeXnicCenter, and TeXStudio. We usually recommend authors submit their research using any standard format they are comfortable with, and let Global Journals do the rest.

Alternatively, you can download our basic template from https://globaljournals.org/Template.zip

Authors should submit their complete paper/article, including text illustrations, graphics, conclusions, artwork, and tables. Authors who are not able to submit manuscript using the form above can email the manuscript department at submit@globaljournals.org or get in touch with chiefeditor@globaljournals.org if they wish to send the abstract before submission.

Before and During Submission

Authors must ensure the information provided during the submission of a paper is authentic. Please go through the following checklist before submitting:

1. Authors must go through the complete author guideline and understand and agree to Global Journals’ ethics and code of conduct, along with author responsibilities.
2. Authors must accept the privacy policy, terms, and conditions of Global Journals.
3. Ensure corresponding author’s email address and postal address are accurate and reachable.
4. Manuscript to be submitted must include keywords, an abstract, a paper title, co-author(s’) names and details (email address, name, phone number, and institution), figures and illustrations in vector format including appropriate captions, tables, including titles and footnotes, a conclusion, results, acknowledgments and references.
5. Authors should submit paper in a ZIP archive if any supplementary files are required along with the paper.
6. Proper permissions must be acquired for the use of any copyrighted material.
7. Manuscript submitted must not have been submitted or published elsewhere and all authors must be aware of the submission.

Declaration of Conflicts of Interest

It is required for authors to declare all financial, institutional, and personal relationships with other individuals and organizations that could influence (bias) their research.

Policy on Plagiarism

Plagiarism is not acceptable in Global Journals submissions at all.

Plagiarized content will not be considered for publication. We reserve the right to inform authors’ institutions about plagiarism detected either before or after publication. If plagiarism is identified, we will follow COPE guidelines:

Authors are solely responsible for all the plagiarism that is found. The author must not fabricate, falsify or plagiarize existing research data. The following, if copied, will be considered plagiarism:

- Words (language)
- Ideas
- Findings
- Writings
- Diagrams
- Graphs
- Illustrations
- Lectures

© Copyright by Global Journals | Guidelines Handbook
Authorship Policies

Global Journals follows the definition of authorship set up by the Open Association of Research Society, USA. According to its guidelines, authorship criteria must be based on:

1. Substantial contributions to the conception and acquisition of data, analysis, and interpretation of findings.
2. Drafting the paper and revising it critically regarding important academic content.
3. Final approval of the version of the paper to be published.

Changes in Authorship

The corresponding author should mention the name and complete details of all co-authors during submission and in manuscript. We support addition, rearrangement, manipulation, and deletions in authors list till the early view publication of the journal. We expect that corresponding author will notify all co-authors of submission. We follow COPE guidelines for changes in authorship.

Copyright

During submission of the manuscript, the author is confirming an exclusive license agreement with Global Journals which gives Global Journals the authority to reproduce, reuse, and republish authors’ research. We also believe in flexible copyright terms where copyright may remain with authors/employers/institutions as well. Contact your editor after acceptance to choose your copyright policy. You may follow this form for copyright transfers.

Appealing Decisions

Unless specified in the notification, the Editorial Board’s decision on publication of the paper is final and cannot be appealed before making the major change in the manuscript.

Acknowledgments

Contributors to the research other than authors credited should be mentioned in Acknowledgments. The source of funding for the research can be included. Suppliers of resources may be mentioned along with their addresses.

Declaration of funding sources

Global Journals is in partnership with various universities, laboratories, and other institutions worldwide in the research domain. Authors are requested to disclose their source of funding during every stage of their research, such as making analysis, performing laboratory operations, computing data, and using institutional resources, from writing an article to its submission. This will also help authors to get reimbursements by requesting an open access publication letter from Global Journals and submitting to the respective funding source.

Preparing your Manuscript

Authors can submit papers and articles in an acceptable file format: MS Word (doc, docx), LaTeX (.tex, .zip or .rar including all of your files), Adobe PDF (.pdf), rich text format (.rtf), simple text document (.txt), Open Document Text (.odt), and Apple Pages (.pages). Our professional layout editors will format the entire paper according to our official guidelines. This is one of the highlights of publishing with Global Journals—authors should not be concerned about the formatting of their paper. Global Journals accepts articles and manuscripts in every major language, be it Spanish, Chinese, Japanese, Portuguese, Russian, French, German, Dutch, Italian, Greek, or any other national language, but the title, subtitle, and abstract should be in English. This will facilitate indexing and the pre-peer review process.

The following is the official style and template developed for publication of a research paper. Authors are not required to follow this style during the submission of the paper. It is just for reference purposes.
Manuscript Style Instruction (Optional)

- Microsoft Word Document Setting Instructions.
- Font type of all text should be Swis721 Lt BT.
- Page size: 8.27” x 11””, left margin: 0.65, right margin: 0.65, bottom margin: 0.75.
- Paper title should be in one column of font size 24.
- Author name in font size of 11 in one column.
- Abstract: font size 9 with the word “Abstract” in bold italics.
- Main text: font size 10 with two justified columns.
- Two columns with equal column width of 3.38 and spacing of 0.2.
- First character must be three lines drop-capped.
- The paragraph before spacing of 1 pt and after of 0 pt.
- Line spacing of 1 pt.
- Large images must be in one column.
- The names of first main headings (Heading 1) must be in Roman font, capital letters, and font size of 10.
- The names of second main headings (Heading 2) must not include numbers and must be in italics with a font size of 10.

Structure and Format of Manuscript

The recommended size of an original research paper is under 15,000 words and review papers under 7,000 words. Research articles should be less than 10,000 words. Research papers are usually longer than review papers. Review papers are reports of significant research (typically less than 7,000 words, including tables, figures, and references).

A research paper must include:

a) A title which should be relevant to the theme of the paper.
b) A summary, known as an abstract (less than 150 words), containing the major results and conclusions.
c) Up to 10 keywords that precisely identify the paper’s subject, purpose, and focus.
d) An introduction, giving fundamental background objectives.
e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition, sources of information must be given, and numerical methods must be specified by reference.
f) Results which should be presented concisely by well-designed tables and figures.
g) Suitable statistical data should also be given.
h) All data must have been gathered with attention to numerical detail in the planning stage.

Design has been recognized to be essential to experiments for a considerable time, and the editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned unrefereed.

i) Discussion should cover implications and consequences and not just recapitulate the results; conclusions should also be summarized.
j) There should be brief acknowledgments.
k) There ought to be references in the conventional format. Global Journals recommends APA format.

Authors should carefully consider the preparation of papers to ensure that they communicate effectively. Papers are much more likely to be accepted if they are carefully designed and laid out, contain few or no errors, are summarizing, and follow instructions. They will also be published with much fewer delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and suggestions to improve brevity.
It is necessary that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

All manuscripts submitted to Global Journals should include:

Title

The title page must carry an informative title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) where the work was carried out.

Author details

The full postal address of any related author(s) must be specified.

Abstract

The abstract is the foundation of the research paper. It should be clear and concise and must contain the objective of the paper and inferences drawn. It is advised to not include big mathematical equations or complicated jargon.

Many researchers searching for information online will use search engines such as Google, Yahoo or others. By optimizing your paper for search engines, you will amplify the chance of someone finding it. In turn, this will make it more likely to be viewed and cited in further works. Global Journals has compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Keywords

A major lynchpin of research work for the writing of research papers is the keyword search, which one will employ to find both library and internet resources. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining, and indexing.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy: planning of a list of possible keywords and phrases to try.

Choice of the main keywords is the first tool of writing a research paper. Research paper writing is an art. Keyword search should be as strategic as possible.

One should start brainstorming lists of potential keywords before even beginning searching. Think about the most important concepts related to research work. Ask, “What words would a source have to include to be truly valuable in a research paper?” Then consider synonyms for the important words.

It may take the discovery of only one important paper to steer in the right keyword direction because, in most databases, the keywords under which a research paper is abstracted are listed with the paper.

Numerical Methods

Numerical methods used should be transparent and, where appropriate, supported by references.

Abbreviations

Authors must list all the abbreviations used in the paper at the end of the paper or in a separate table before using them.

Formulas and equations

Authors are advised to submit any mathematical equation using either MathJax, KaTeX, or LaTeX, or in a very high-quality image.

Tables, Figures, and Figure Legends

Tables: Tables should be cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g., Table 4, a self-explanatory caption, and be on a separate sheet. Authors must submit tables in an editable format and not as images. References to these tables (if any) must be mentioned accurately.
Figures

Figures are supposed to be submitted as separate files. Always include a citation in the text for each figure using Arabic numbers, e.g., Fig. 4. Artwork must be submitted online in vector electronic form or by emailing it.

Preparation of Eletronic Figures for Publication

Although low-quality images are sufficient for review purposes, print publication requires high-quality images to prevent the final product being blurred or fuzzy. Submit (possibly by e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Avoid using pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings). Please give the data for figures in black and white or submit a Color Work Agreement form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution at final image size ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs): >350 dpi; figures containing both halftone and line images: >650 dpi.

Color charges: Authors are advised to pay the full cost for the reproduction of their color artwork. Hence, please note that if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a Color Work Agreement form before your paper can be published. Also, you can email your editor to remove the color fee after acceptance of the paper.

Tips for Writing a Good Quality Engineering Research Paper

Techniques for writing a good quality engineering research paper:

1. **Choosing the topic:** In most cases, the topic is selected by the interests of the author, but it can also be suggested by the guides. You can have several topics, and then judge which you are most comfortable with. This may be done by asking several questions of yourself, like "Will I be able to carry out a search in this area? Will I find all necessary resources to accomplish the search? Will I be able to find all information in this field area?" If the answer to this type of question is "yes," then you ought to choose that topic. In most cases, you may have to conduct surveys and visit several places. Also, you might have to do a lot of work to find all the rises and falls of the various data on that subject. Sometimes, detailed information plays a vital role, instead of short information. Evaluators are human: The first thing to remember is that evaluators are also human beings. They are not only meant for rejecting a paper. They are here to evaluate your paper. So present your best aspect.

2. **Think like evaluators:** If you are in confusion or getting demotivated because your paper may not be accepted by the evaluators, then think, and try to evaluate your paper like an evaluator. Try to understand what an evaluator wants in your research paper, and you will automatically have your answer. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

3. **Ask your guides:** If you are having any difficulty with your research, then do not hesitate to share your difficulty with your guide (if you have one). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work, then ask your supervisor to help you with an alternative. He or she might also provide you with a list of essential readings.

4. **Use of computer is recommended:** As you are doing research in the field of research engineering then this point is quite obvious. Use right software: Always use good quality software packages. If you are not capable of judging good software, then you can lose the quality of your paper unknowingly. There are various programs available to help you which you can get through the internet.

5. **Use the internet for help:** An excellent start for your paper is using Google. It is a wondrous search engine, where you can have your doubts resolved. You may also read some answers for the frequent question of how to write your research paper or find a model research paper. You can download books from the internet. If you have all the required books, place importance on reading, selecting, and analyzing the specified information. Then sketch out your research paper. Use big pictures: You may use encyclopedias like Wikipedia to get pictures with the best resolution. At Global Journals, you should strictly follow here.
6. **Bookmarks are useful**: When you read any book or magazine, you generally use bookmarks, right? It is a good habit which helps to not lose your continuity. You should always use bookmarks while searching on the internet also, which will make your search easier.

7. **Revise what you wrote**: When you write anything, always read it, summarize it, and then finalize it.

8. **Make every effort**: Make every effort to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in the introduction—what is the need for a particular research paper. Polish your work with good writing skills and always give an evaluator what he wants. Make backups: When you are going to do any important thing like making a research paper, you should always have backup copies of it either on your computer or on paper. This protects you from losing any portion of your important data.

9. **Produce good diagrams of your own**: Always try to include good charts or diagrams in your paper to improve quality. Using several unnecessary diagrams will degrade the quality of your paper by creating a hodgepodge. So always try to include diagrams which were made by you to improve the readability of your paper. Use of direct quotes: When you do research relevant to literature, history, or current affairs, then use of quotes becomes essential, but if the study is relevant to science, use of quotes is not preferable.

10. **Use proper verb tense**: Use proper verb tenses in your paper. Use past tense to present those events that have happened. Use present tense to indicate events that are going on. Use future tense to indicate events that will happen in the future. Use of wrong tenses will confuse the evaluator. Avoid sentences that are incomplete.

11. **Pick a good study spot**: Always try to pick a spot for your research which is quiet. Not every spot is good for studying.

12. **Know what you know**: Always try to know what you know by making objectives, otherwise you will be confused and unable to achieve your target.

13. **Use good grammar**: Always use good grammar and words that will have a positive impact on the evaluator; use of good vocabulary does not mean using tough words which the evaluator has to find in a dictionary. Do not fragment sentences. Eliminate one-word sentences. Do not ever use a big word when a smaller one would suffice.

Verbs have to be in agreement with their subjects. In a research paper, do not start sentences with conjunctions or finish them with prepositions. When writing formally, it is advisable to never split an infinitive because someone will (wrongly) complain. Avoid clichés like a disease. Always shun irritating alliteration. Use language which is simple and straightforward. Put together a neat summary.

14. **Arrangement of information**: Each section of the main body should start with an opening sentence, and there should be a changeover at the end of the section. Give only valid and powerful arguments for your topic. You may also maintain your arguments with records.

15. **Never start at the last minute**: Always allow enough time for research work. Leaving everything to the last minute will degrade your paper and spoil your work.

16. **Multitasking in research is not good**: Doing several things at the same time is a bad habit in the case of research activity. Research is an area where everything has a particular time slot. Divide your research work into parts, and do a particular part in a particular time slot.

17. **Never copy others' work**: Never copy others' work and give it your name because if the evaluator has seen it anywhere, you will be in trouble. Take proper rest and food: No matter how many hours you spend on your research activity, if you are not taking care of your health, then all your efforts will have been in vain. For quality research, take proper rest and food.

18. **Go to seminars**: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

19. **Refresh your mind after intervals**: Try to give your mind a rest by listening to soft music or sleeping in intervals. This will also improve your memory. Acquire colleagues: Always try to acquire colleagues. No matter how sharp you are, if you acquire colleagues, they can give you ideas which will be helpful to your research.

20. **Think technically**: Always think technically. If anything happens, search for its reasons, benefits, and demerits. Think and then print: When you go to print your paper, check that tables are not split, headings are not detached from their descriptions, and page sequence is maintained.

© Copyright by Global Journals | Guidelines Handbook
21. **Adding unnecessary information**: Do not add unnecessary information like "I have used MS Excel to draw graphs." Irrelevant and inappropriate material is superfluous. Foreign terminology and phrases are not apropos. One should never take a broad view. Analogy is like feathers on a snake. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Never oversimplify: When adding material to your research paper, never go for oversimplification; this will definitely irritate the evaluator. Be specific. Never use rhythmic redundancies. Contractions shouldn't be used in a research paper. Comparisons are as terrible as clichés. Give up ampersands, abbreviations, and so on. Remove commas that are not necessary. Parenthetical words should be between brackets or commas. Understatement is always the best way to put forward earth-shaking thoughts. Give a detailed literary review.

22. **Report concluded results**: Use concluded results. From raw data, filter the results, and then conclude your studies based on measurements and observations taken. An appropriate number of decimal places should be used. Parenthetical remarks are prohibited here. Proofread carefully at the final stage. At the end, give an outline to your arguments. Spot perspectives of further study of the subject. Justify your conclusion at the bottom sufficiently, which will probably include examples.

23. **Upon conclusion**: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print for the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects of your research.

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form which is presented in the guidelines using the template.
- Please note the criteria peer reviewers will use for grading the final paper.

Final points:

One purpose of organizing a research paper is to let people interpret your efforts selectively. The journal requires the following sections, submitted in the order listed, with each section starting on a new page:

The introduction: This will be compiled from reference matter and reflect the design processes or outline of basis that directed you to make a study. As you carry out the process of study, the method and process section will be constructed like that. The results segment will show related statistics in nearly sequential order and direct reviewers to similar intellectual paths throughout the data that you gathered to carry out your study.

The discussion section: This will provide understanding of the data and projections as to the implications of the results. The use of good quality references throughout the paper will give the effort trustworthiness by representing an alertness to prior workings.

Writing a research paper is not an easy job, no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record-keeping are the only means to make straightforward progression.

General style: Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear: Adhere to recommended page limits.

Mistakes to avoid:

- Insertion of a title at the foot of a page with subsequent text on the next page.
- Separating a table, chart, or figure—confine each to a single page.
- Submitting a manuscript with pages out of sequence.
- In every section of your document, use standard writing style, including articles ("a" and "the").
- Keep paying attention to the topic of the paper.

© Copyright by Global Journals | Guidelines Handbook
Use paragraphs to split each significant point (excluding the abstract).
Align the primary line of each section.
Present your points in sound order.
Use present tense to report well-accepted matters.
Use past tense to describe specific results.
Do not use familiar wording; don't address the reviewer directly. Don't use slang or superlatives.
Avoid use of extra pictures—including only those figures essential to presenting results.

Title page:

Choose a revealing title. It should be short and include the name(s) and address(es) of all authors. It should not have acronyms or abbreviations or exceed two printed lines.

Abstract: This summary should be two hundred words or less. It should clearly and briefly explain the key findings reported in the manuscript and must have precise statistics. It should not have acronyms or abbreviations. It should be logical in itself. Do not cite references at this point.

An abstract is a brief, distinct paragraph summary of finished work or work in development. In a minute or less, a reviewer can be taught the foundation behind the study, common approaches to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Use comprehensive sentences, and do not sacrifice readability for brevity; you can maintain it succinctly by phrasing sentences so that they provide more than a lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study with the subsequent elements in any summary. Try to limit the initial two items to no more than one line each.

Reason for writing the article—theory, overall issue, purpose.

• Fundamental goal.
• To-the-point depiction of the research.
• Consequences, including definite statistics—if the consequences are quantitative in nature, account for this; results of any numerical analysis should be reported. Significant conclusions or questions that emerge from the research.

Approach:

• Single section and succinct.
• An outline of the job done is always written in past tense.
• Concentrate on shortening results—limit background information to a verdict or two.
• Exact spelling, clarity of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else.

Introduction:

The introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable of comprehending and calculating the purpose of your study without having to refer to other works. The basis for the study should be offered. Give the most important references, but avoid making a comprehensive appraisal of the topic. Describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will give no attention to your results. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here.

The following approach can create a valuable beginning:

• Explain the value (significance) of the study.
• Defend the model—why did you employ this particular system or method? What is its compensation? Remark upon its appropriateness from an abstract point of view as well as pointing out sensible reasons for using it.
• Present a justification. State your particular theory(-ies) or aim(s), and describe the logic that led you to choose them.
• Briefly explain the study's tentative purpose and how it meets the declared objectives.
Approach:

Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done. Sort out your thoughts; manufacture one key point for every section. If you make the four points listed above, you will need at least four paragraphs. Present surrounding information only when it is necessary to support a situation. The reviewer does not desire to read everything you know about a topic. Shape the theory specifically—do not take a broad view.

As always, give awareness to spelling, simplicity, and correctness of sentences and phrases.

Procedures (methods and materials):

This part is supposed to be the easiest to carve if you have good skills. A soundly written procedures segment allows a capable scientist to replicate your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order, but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt to give the least amount of information that would permit another capable scientist to replicate your outcome, but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section.

When a technique is used that has been well-described in another section, mention the specific item describing the way, but draw the basic principle while stating the situation. The purpose is to show all particular resources and broad procedures so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step-by-step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

Materials may be reported in part of a section or else they may be recognized along with your measures.

Methods:

- Report the method and not the particulars of each process that engaged the same methodology.
- Describe the method entirely.
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures.
- Simplify—detail how procedures were completed, not how they were performed on a particular day.
- If well-known procedures were used, account for the procedure by name, possibly with a reference, and that’s all.

Approach:

It is embarrassing to use vigorous voice when documenting methods without using first person, which would focus the reviewer’s interest on the researcher rather than the job. As a result, when writing up the methods, most authors use third person passive voice.

Use standard style in this and every other part of the paper—avoid familiar lists, and use full sentences.

What to keep away from:

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings—save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part as entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Use statistics and tables, if suitable, to present consequences most efficiently.

You must clearly differentiate material which would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matters should not be submitted at all except if requested by the instructor.
Content:
- Sum up your conclusions in text and demonstrate them, if suitable, with figures and tables.
- In the manuscript, explain each of your consequences, and point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation of an exacting study.
- Explain results of control experiments and give remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or manuscript.

What to stay away from:
- Do not discuss or infer your outcome, report surrounding information, or try to explain anything.
- Do not include raw data or intermediate calculations in a research manuscript.
- Do not present similar data more than once.
- A manuscript should complement any figures or tables, not duplicate information.
- Never confuse figures with tables—there is a difference.

Approach:
As always, use past tense when you submit your results, and put the whole thing in a reasonable order.

Put figures and tables, appropriately numbered, in order at the end of the report.

If you desire, you may place your figures and tables properly within the text of your results section.

Figures and tables:
If you put figures and tables at the end of some details, make certain that they are visibly distinguished from any attached appendix materials, such as raw facts. Whatever the position, each table must be titled, numbered one after the other, and include a heading. All figures and tables must be divided from the text.

Discussion:
The discussion is expected to be the trickiest segment to write. A lot of papers submitted to the journal are discarded based on problems with the discussion. There is no rule for how long an argument should be.

Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implications of the study. The purpose here is to offer an understanding of your results and support all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of results should be fully described.

Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact, you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved the prospect, and let it drop at that. Make a decision as to whether each premise is supported or discarded or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."

Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work.
- You may propose future guidelines, such as how an experiment might be personalized to accomplish a new idea.
- Give details of all of your remarks as much as possible, focusing on mechanisms.
- Make a decision as to whether the tentative design sufficiently addressed the theory and whether or not it was correctly restricted. Try to present substitute explanations if they are sensible alternatives.
- One piece of research will not counter an overall question, so maintain the large picture in mind. Where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

© Copyright by Global Journals | Guidelines Handbook
Approach:

When you refer to information, differentiate data generated by your own studies from other available information. Present work done by specific persons (including you) in past tense.

Describe generally acknowledged facts and main beliefs in present tense.

The Administration Rules

Administration Rules to Be Strictly Followed before Submitting Your Research Paper to Global Journals Inc.

Please read the following rules and regulations carefully before submitting your research paper to Global Journals Inc. to avoid rejection.

Segment draft and final research paper: You have to strictly follow the template of a research paper, failing which your paper may get rejected. You are expected to write each part of the paper wholly on your own. The peer reviewers need to identify your own perspective of the concepts in your own terms. Please do not extract straight from any other source, and do not rephrase someone else's analysis. Do not allow anyone else to proofread your manuscript.

Written material: You may discuss this with your guides and key sources. Do not copy anyone else's paper, even if this is only imitation, otherwise it will be rejected on the grounds of plagiarism, which is illegal. Various methods to avoid plagiarism are strictly applied by us to every paper, and, if found guilty, you may be blacklisted, which could affect your career adversely. To guard yourself and others from possible illegal use, please do not permit anyone to use or even read your paper and file.
Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals.

<table>
<thead>
<tr>
<th>Topics</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-B</td>
</tr>
<tr>
<td>Abstract</td>
<td>Clear and concise with appropriate content, Correct format. 200 words or below</td>
</tr>
<tr>
<td>Introduction</td>
<td>Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited</td>
</tr>
<tr>
<td>Methods and Procedures</td>
<td>Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads</td>
</tr>
<tr>
<td>Result</td>
<td>Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake</td>
</tr>
<tr>
<td>Discussion</td>
<td>Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited</td>
</tr>
<tr>
<td>References</td>
<td>Complete and correct format, well organized</td>
</tr>
</tbody>
</table>
Index

A
Anxiety · 68, 69, 83

D
Deterministic · 1, 2

E
Ellipsoid · 3, 14, 15

F
Fayoum · 69, 83

H
Homogeneity · 70

N
Nominal · 2, 3, 8, 14, 15, 70

P
Polyhedral · 3

T
Turbidity · 88, 89, 91, 92