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The Harmonic Oscillator, Complex-Dynamics Predictability, 
and the Beauty of Trigonometry Subharmonic Cascades 

towards Resonance 

Belkacem Meziane 

   Abstract-
 

The forced and undamped harmonic oscillator 
revisits with new and fundamental aspects. The study 
discloses complementary and -so far overlooked- intrinsic 
properties. Despite its simplicity, the model is shown to be 
characterized by countless -theoretically unlimited- sequences 
of intricate solutions. Such hierarchies, including the familiar 
period-doubling series -or equivalently subharmonic 
cascades- usually typify complex nonlinear dynamical 
systems. The remarkable similarity between the numerically 
simulated and the analytically predicted solutions confers the 
model unquestionable credit. It takes simple trigonometry -at 
the reach of the willing undergraduate student- to fully grab the 
essence of the new outcomes.  

  
I.

 
Introduction 

omplex dynamics usually refers to nonlinearly 
coupled systems. These divide into two main 
classes: a) the autonomous models, whose 

behavior depend on specific control parameters -such 
as the case of an unstable laser [1], and the Lorenz 
model of turbulence

 
[2]- and b) the non-autonomous 

systems that respond nonlinearly to some harmonic 
excitation, externally supplied by an adequate 
mechanism. The dynamical properties of these systems 
usually rely on computer simulations. Numerous 
examples have been put forward to demonstrate the 
complex-and unpredictable- behavior of nonlinear 
models that are generally described in terms of coupled 
differential equations, which contain -at least- one 
nonlinear term [3-6]. However, no report has expanded 
the analysis of the undamped harmonic oscillator, 
externally driven with harmonic excitations. The usual 
approach to hold this simple model is limited to 
analytical ingredients that have become standard in 
introductory courses at the undergraduate level. The 
commonly accepted point is that sinusoidal 

                   excitations yield comparative sinusoidal responses. Our 
investigations reveal that such a conclusion is 
incomplete to explain the wealth of solutions outputting 
from the system.

 The harmonic oscillator is -par excellence- the 
fundamental dynamical system, which introduces at the 
very first academic lectures of physics and mathematics 
[7-18]. The study of the autonomous scheme usually 
goes along with the introduction of second-order 
differential equations in mathematics, and the study of 
small-amplitude oscillations in physics, whereas the 

non-autonomous case is delayed until the 
undergraduate years, imparting in the more specific 
classes of mechanics and vibrations. Its properties are 
so largely recognized that trying to bring new elements 
of analysis may seem difficult, if not impossible. Yet, 
despite its universally acknowledged properties, we 
shall reveal new outcomes and features that have never 
been disclosed before. The new findings are based on 
an overlooked solution that plays an essential role in 
orbit modelling. Even though the new approach does 
not question the model’s main property, i.e., its intrinsic 
resonant phenomenon, it unveils further complexities. 
The disclosures arise from extensive computer analysis. 
The numerical solutions are shown to follow their 
analytical counterparts, which are straightforwardly 
derived from the introduction of the overlooked solution.  

The study reveals a wealth of phase-space 
trajectories, with sequences that stem from locking and 
beating mechanisms between the forcing and the 
resonant frequencies. These phenomena retrieve with 
direct numerical simulations while recovering -with 
staggering precision- from the new analytical 
ingredients.  

The presentation develops according to the 
following hierarchy. After recalling the properties of the 
autonomous harmonic oscillator in Sec. II, the non-
autonomous system is presented in Sec. III. Sec. IV 
deals with irregular signals and a periodic trajectories, 
while some locking phenomena and period-doubling 
sequences are presented in Sec. V. A few concluding 
remarks follow in Sec. VI, and three appendixes are 
integrated to give comprehensive accounts of the 
primary analytical aspects. 

II. The Autonomous Harmonic 
Oscillator: The Pendulum and Mass-

Spring Examples 

The oscillatory movement of a simple pendulum 
of length l describes with the second-order differential 
equation. 

𝑑𝑑2 𝜃𝜃
𝑑𝑑𝑡𝑡2

+ 𝑔𝑔
𝑙𝑙

sin(𝜃𝜃) = 0   (1a) 

i.e., 
𝑑𝑑2 𝜃𝜃
𝑑𝑑𝑡𝑡2

+ 𝜔𝜔0
2 sin(𝜃𝜃) = 0   (1b) 

C 
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where 

𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0 = �𝑔𝑔
𝑙𝑙   (1c) 

is the free-oscillator pulsation (angular frequency), and 
𝑓𝑓0  its natural frequency. 

For small enough 𝜃𝜃, i.e., 𝜃𝜃 ≤ 𝜋𝜋
18

,  sin(𝜃𝜃) ≅ 𝜃𝜃 (it 

takes a pocket calculator to check that sin � 𝜋𝜋
18
� ≅ 𝜋𝜋

18
), 

the equation becomes 

𝑑𝑑2 𝜃𝜃
𝑑𝑑𝑡𝑡2

+ 𝜔𝜔0
2𝜃𝜃 = 0    (2a) 

Whose solution reads 

𝜃𝜃 = 𝜃𝜃0 cos�𝜔𝜔0 𝑡𝑡�   (2b) 

The pendulum oscillates with the angular velocity 

𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

= −𝜔𝜔0 𝜃𝜃0 sin�𝜔𝜔0 𝑡𝑡� =𝜔𝜔0 𝜃𝜃0 cos �𝜔𝜔0 𝑡𝑡 + 𝜋𝜋
2
�
 

 
    

(2c) 

Showing a 𝜋𝜋
2 phase difference between the 

velocity and the displacement. 
The elements of analysis apply to the case of a 

free mass-spring oscillator. The mass small movement 
𝑥𝑥 (𝑡𝑡) around the position of equilibrium satisfies 

𝑑𝑑2 𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝜔𝜔0
2𝑥𝑥 = 0    (3a) 

whose solution reads, 

𝑥𝑥 = 𝑥𝑥0 cos�𝜔𝜔0 𝑡𝑡�,   (3b) 

for the displacement, and 

v(t) = 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= −𝜔𝜔0 𝑥𝑥0 sin�𝜔𝜔0 𝑡𝑡� = v0 cos �𝜔𝜔0 𝑡𝑡 + 𝜋𝜋
2
� 

 
  

 
(3c)

 

for its speed. 

From Eqs (3b) and (3c), we readily derive  

� 𝑥𝑥
𝑥𝑥𝑜𝑜
�
2

+ � v
vo
�
2

= 1   (3d) 

i.e., the equation of an ellipse, which represents the 
system’s trajectory in phase space. If the maximum 
position and maximum speed have the same absolute 
values, the phase space orbit transforms into a circle. 
The orbit exact shape depends on the precise initial 
conditions, i.e., on 𝑥𝑥0  and v0 .  

Figure 1 depicts two examples corresponding 
to a) 𝑥𝑥0 = 1, 𝜔𝜔0 = 1, and b) 𝑥𝑥0 = 1, 𝜔𝜔0 = 2. In the 
figures, 𝑦𝑦(𝑡𝑡) = v(t) = 𝑑𝑑𝑥𝑥

𝑑𝑑𝑡𝑡
 

 
Figure 1: Phase space trajectories obtained with a) 𝑥𝑥0 =
1, 𝜔𝜔0 = 1 (circular orbit), and b) 𝑥𝑥0 = 1, 𝜔𝜔0 = 2 
(elliptical trajectory). 

III. The Non-Autonomous System 

When some sinusoidal excitation of the form 
𝑓𝑓 (𝑡𝑡) = 𝐹𝐹 cos(𝜔𝜔𝑡𝑡) is supplied to the harmonic oscillator 
not undergoing any damping force, the mass movement 
describes with 

𝑑𝑑2 𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝜔𝜔0
2𝑥𝑥 = 𝐹𝐹 cos(𝜔𝜔𝑡𝑡)   (4a) 

As introduced in mechanics-and-vibrations 
lessons, the usual method of solving such an equation 
away from resonance, is to consider a response of the 
same form as the excitation, i.e. 

𝑥𝑥(𝑡𝑡) = 𝐴𝐴 cos(𝜔𝜔𝑡𝑡 + 𝜑𝜑)   (4b) 

Where amplitude 𝐴𝐴 and phase 𝜑𝜑 are 
coefficients that must be evaluated. 

Plugging Eq. (4b) into Eq. (4a), yields 

−𝐴𝐴𝜔𝜔2 cos(𝜔𝜔𝑡𝑡 + 𝜑𝜑) + 𝐴𝐴𝜔𝜔0
2 cos(𝜔𝜔𝑡𝑡 + 𝜑𝜑) = 𝐹𝐹 cos(𝜔𝜔𝑡𝑡) 

    
(4c)

 
i.e.,

 
�𝜔𝜔0

2 − 𝜔𝜔2 �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡) cos(𝜑𝜑) − �𝜔𝜔0
2 − 𝜔𝜔2 �𝐴𝐴 sin(𝜔𝜔𝑡𝑡) sin(𝜑𝜑) =

𝐹𝐹 cos(𝜔𝜔𝑡𝑡) (4d) 

implying 

�𝜔𝜔0
2 − 𝜔𝜔2 �𝐴𝐴 sin(𝜑𝜑) = 0   (4e) 

and 

�𝜔𝜔0
2 − 𝜔𝜔2 �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡) cos(𝜑𝜑) = 𝐹𝐹  (4f) 

Since 𝜔𝜔 ≠ 𝜔𝜔0 , and 𝐴𝐴 ≠ 0, we are left with 𝜑𝜑 =
0  mod 𝜋𝜋, and 

𝐴𝐴 = 𝐹𝐹
𝜔𝜔0
2− 𝜔𝜔2     (4g) 

The general solution thus reads 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔0
2− 𝜔𝜔2 cos(𝜔𝜔𝑡𝑡)   (4h) 

For the displacement, and 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= − 𝐹𝐹𝜔𝜔
𝜔𝜔0
2−𝜔𝜔2 sin(𝜔𝜔𝑡𝑡)   (4i) 
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for its speed. Note that the response is linearly 
correlated to the excitation, i.e. 



𝑥𝑥(𝑡𝑡) = 𝐴𝐴(𝜔𝜔)𝑓𝑓(𝑡𝑡)   (4j) 

Eqs (4h) and (4i) carry the well-known 
phenomenon of resonance, which occurs at 𝜔𝜔 = 𝜔𝜔0 .   

The resonance curve, represented in Fig. 2, with 
the parameters 𝜔𝜔0 = 1, and 𝐹𝐹 = 1, shows the notable 
infinite-amplitude-catastrophe that occurs at 𝜔𝜔 = 𝜔𝜔0 , 
and which was responsible for famous disasters in the 
past: 

− On April 18, 1850, in Angers (France), a military unit 
crossing in cadenced steps a suspension bridge 
spanning the Maine river caused its destruction. 

− On November 7, 1940, six months after its 
inauguration, the Tacoma bridge (USA) was 
destroyed by the effects of gusts of winds, which -
without being particularly violent (60 km/h)- were 
regular. 

Figure 2: Resonance phenomenon which occurs when 
the driving frequency 𝑓𝑓 = 𝜔𝜔

2𝜋𝜋
 equals the system’s proper 

frequency 𝑓𝑓0 = 𝜔𝜔0 /2𝜋𝜋. 
To derive an expression for the growing 

amplitude at resonance, we must solve  

𝑑𝑑2 𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝜔𝜔0
2𝑥𝑥 = 𝐹𝐹 cos(𝜔𝜔0 𝑡𝑡)   (5a) 

With the initial conditions, 𝑥𝑥(0)  =  0, and 
𝑑𝑑𝑥𝑥/𝑑𝑑𝑡𝑡 =  0, we are left with (see appendix A for details) 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
2𝜔𝜔0

t cos (𝜔𝜔0 𝑡𝑡)   (5b) 

0 10 20 30 40 50

-5

0

5

x(t)

t

A(t)

-A(t)

 
Figure 3: Displacement 𝑥𝑥(𝑡𝑡), simulated at resonance. 
Note the linearly growing amplitude towards infinity, 
following Eq. (5c).  

Showing a linearly growing amplitude with 
respect to 𝑡𝑡, an example of which is depicted in Fig. 3. 

𝐴𝐴(𝑡𝑡) = 𝐹𝐹
2𝜔𝜔0

t     (5c) 

Let us represent two typical solutions, 
describing with Eqs (4h) and (4i), away from resonance. 
Taking 𝐹𝐹 =  1, 𝜔𝜔 = 0. 5𝜔𝜔0 , and𝜔𝜔 = 2𝜔𝜔0 , the 
corresponding trajectories depict with elliptical orbits, as 
portrayed in Fig. 4.  

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5
-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

-0,8-0,6-0,4-0,2 0,0 0,2 0,4 0,6 0,8
-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

dx/dt

x(t)

a)
ω = 0.5ω0

dx/dt

x(t)

b)
ω = 2ω0

 

Figure 4: Elliptical orbits corresponding to Eqs (4h) and 
(4i), with a) 𝜔𝜔 = 0.5𝜔𝜔0 , and b)  𝜔𝜔 = 2𝜔𝜔0 . 

Whatever the parameter values and initial 
conditions, Eqs (4h) and (4i), describe elliptical or 
circular orbits. That is what we teach in fundamental 
physics and mathematics. However, the numerical 
analysis of Eq. (4a) tells a different story. 

To solve Eq. (4a) numerically, we introduce a 𝑦𝑦 
variable and obtain two coupled differential equations of 
the first order 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑦𝑦     (6a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝜔𝜔0
2𝑥𝑥 + 𝐹𝐹 cos(𝜔𝜔𝑡𝑡)   (6b) 

It takes some basic numerical code, such as 
the second-or-fourth order Runge-Kutta algorithms, to 
solve Eqs (6). 

The simulated solution corresponding to 𝐹𝐹 =
 1, 𝜔𝜔 = 0. 5𝜔𝜔0 , with the initial conditions 𝑥𝑥(0) =  0, and 
𝑦𝑦((0) = 0  is represented in Fig. 5. To fully sense the 
ingredients of the solution, we depicted the time traces, 
the spectrum, and the phase-space portrait. It takes this 
first example to grab the difference between the orbits of 
Fig. 4 and that of Fig. 5d. The ellipse converting into a 
double-loop trajectory. Such a double-loop orbit usually 
characterizes nonlinear systems. Since no obvious 
nonlinearity seems to connect 𝑥𝑥 and 𝑦𝑦, in Eqs (6), one 
cannot but feel surprised by such an unanticipated 
nonlinear response: Fig. 5a clearly indicates that 𝑥𝑥(𝑡𝑡)is 
not a pure sinusoidal function. Therefore, it is not linearly 
related to 𝑓𝑓(𝑡𝑡)! Such a new and fundamental result is 
analytically derived in the following (see Eqs (8a) and 
(8c)). 
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Figure 5: a) Displacement, b) speed, c) Fourier spectrum, and 
d) phase-space orbit, as simulated with Eqs (6), and an 
excitation frequency equal to half the natural one. Since we 
chose 𝜔𝜔0 = 1, the fundamental frequency scales as 𝑓𝑓0 =
1
2𝜋𝜋
≅ 0.16. 
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Figure 6: Phase-space orbit corresponding to 𝜔𝜔 = 2𝜔𝜔0 . Note 
the similarity with Fig. 5d. 

Two other orbits, corresponding to 𝜔𝜔 = 0. 25𝜔𝜔0  
and 𝜔𝜔 = 4𝜔𝜔0 are represented in Fig. 7. Again, the two 
trajectories are similar. 
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Figure 7: Simulated four-cycle orbits corresponding to a) 𝜔𝜔 =
0.25𝜔𝜔0 , and b)𝜔𝜔 = 4𝜔𝜔0 . Note the similarity between the two 
trajectories. Indeed, due to their dependence on frequency, 
the amplitudes scale differently. 

Additional trajectories, corresponding to 𝜔𝜔 =
5𝜔𝜔0  and 𝜔𝜔 = 10𝜔𝜔0 are represented in Figs. 8 and 9. As 
expected, the Fourier spectrum of Fig. 8a indicates the 
presence of the natural and excitation frequencies. The 
temporal time trace of Fig. 9a points to some                
well-structured modulation effect, the low frequency 
𝑓𝑓0 − 𝑓𝑓 modulating the high pulsation signal 𝑓𝑓0 + 𝑓𝑓 (see 
Appendix B for detailed analytical accounts). 
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Figure 8: a) Fourier spectrum, and b) phase-space orbit, 
simulated with  𝜔𝜔 = 5𝜔𝜔0 . The trajectory is a fifth-order 
orbit. 

In view of these unusual and unexpected 
results, it becomes obvious that Eq. (4h) is partial, if not 
unsatisfactory. As discussed above, the commonly 
admitted solution to Eq. (4a) is Eq. (4h). However, such 
a solution is incomplete because it neglects the intrinsic 
properties of the autonomous system 

𝑑𝑑2 𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝜔𝜔0
2𝑥𝑥 = 0    (7a) 

which must be added to Eq. (4h). 
Consequently, the complete solution should 

read (see Appendix A for details) 
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Figure 9: a) Displacement time trace in the form of 
modulated and modulating signals (see appendix B for 
details and formulations), and b) multi-loop (of the tenth 
order) trajectory, simulated with 𝜔𝜔 = 10𝜔𝜔0 . 

𝑥𝑥(𝑡𝑡) = 𝐴𝐴 cos�𝜔𝜔0 𝑡𝑡� + 𝐵𝐵 cos(𝜔𝜔𝑡𝑡)  (7b) 

Which, when plugged into Eq. 4a, yields 
−𝐴𝐴𝜔𝜔0

2 cos�𝜔𝜔0 𝑡𝑡� − 𝜔𝜔2 𝐵𝐵 cos(𝜔𝜔𝑡𝑡) + 𝐴𝐴𝜔𝜔0
2 cos�𝜔𝜔0 𝑡𝑡� +𝐵𝐵𝜔𝜔0

2 cos(𝜔𝜔𝑡𝑡)
=𝐹𝐹 cos(𝜔𝜔𝑡𝑡)  (7c) 

and      
𝐵𝐵 = 𝐹𝐹

𝜔𝜔0
2− 𝜔𝜔2    (7d) 
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As represented in Fig. 6, at 𝜔𝜔 = 2𝜔𝜔0 , we 
retrieve the features of Fig. 5d, which was simulated 
at𝜔𝜔 = 0. 5𝜔𝜔0 . Such a resemblance is not limited to the 
present example. It clarifies with the full analytical 
solution, as henceforth demonstrated.



𝑥𝑥(𝑡𝑡) = 𝐴𝐴 cos�𝜔𝜔0 𝑡𝑡� + 𝐹𝐹
𝜔𝜔0
2−

 
𝜔𝜔2 cos(𝜔𝜔𝑡𝑡)  

 

    
(7e)

 

Furthermore, with the initial condition 𝑥𝑥(𝑡𝑡)  =  0, 
at 𝑡𝑡 =  0,  Eq. (7e) converts into 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔0
2−

 
𝜔𝜔2 �−cos�𝜔𝜔0 𝑡𝑡� + cos(𝜔𝜔𝑡𝑡)�  

     
(8a)

 
While the displacement velocity expands as 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝐹𝐹
𝜔𝜔0
2−𝜔𝜔2 �𝜔𝜔0 sin�𝜔𝜔0 𝑡𝑡� − 𝜔𝜔 sin(𝜔𝜔𝑡𝑡)�  

     

(8b)

 
If the initial displacement changes into 𝑥𝑥(𝑡𝑡)  =

 𝑥𝑥0 , at
 
𝑡𝑡 =  0, then 𝑥𝑥(𝑡𝑡) writes [see appendix A]

 

𝑥𝑥(𝑡𝑡) = �𝑥𝑥0 − 𝐹𝐹
𝜔𝜔0
2− 𝜔𝜔2 � cos�𝜔𝜔0 𝑡𝑡� + 𝐹𝐹

𝜔𝜔0
2− 𝜔𝜔2 cos(𝜔𝜔𝑡𝑡) 

     

(8c)

 
As one can see, whatever the initial conditions, 

the state of resonance is preserved through similar 
frequency dependent amplitudes. 

 

Figure 10:
 
Phase space orbits describing with Eqs (8) 

and, a) 𝜔𝜔 = 0.5𝜔𝜔0 , b)
 
𝜔𝜔 = 2𝜔𝜔0 , c)

 
𝜔𝜔 = 5𝜔𝜔0 , and 𝜔𝜔 =

10𝜔𝜔0 . 
Note however that -as expected from the 

numerical solutions- we have analytically retrieved the 
nonlinear nature of 𝑥𝑥(𝑡𝑡)

 

with respect to 𝑓𝑓(𝑡𝑡), since both 
Eq (8a) and Eq. (8c) write as combinations of two 
distinct functions

 𝑥𝑥(𝑡𝑡) = 𝐴𝐴(𝜔𝜔)𝑓𝑓(𝑡𝑡) + 𝐵𝐵(𝜔𝜔)𝑔𝑔(𝑡𝑡)

 

  (9)

 This constitutes a major outcome of the present 
report. Such a fundamental result has never been 
highlighted in past studies. Most studies focused on the 
damped case, limiting the undamped one to its least 
ingredients. In so doing we all missed the main point 
about the nonlinear nature of the harmonic oscillator. 

 
Let us use the same examples as the simulated 

ones and represent the solutions for 𝑓𝑓(𝑡𝑡) = cos (𝜔𝜔𝑡𝑡), 
𝑥𝑥(0) =  0 ,  and respectively

 

𝜔𝜔 = 0.5𝜔𝜔0 , 𝜔𝜔 = 2𝜔𝜔0 , 𝜔𝜔 =
5𝜔𝜔0 , and 𝜔𝜔 = 10𝜔𝜔0 . The corresponding trajectories 
are depicted in Fig. 10. Indeed, if one wants to compare 
the associated time traces, Eq (8a) perfectly describes 

the features of Figs 5a, 5b and 9a, or those of any other 
example, provided the two involved frequencies scale 
commensurately to prevent irregular signals and fuzzy 
aperiodic trajectories. 

As a last and compelling example pertaining to 
the validity of Eqs (8), let us solve the differential 
equation with 𝜔𝜔 = 3𝜔𝜔0  . The result is a -somewhat 
peculiar- three-orbit trajectory. Nonetheless, an exact 
replica generates with Eqs (8).  It is represented in Fig. 
11. Let us again note that a similar phase-space portrait 
obtains with 𝜔𝜔 = 𝜔𝜔0 /3. 

-0,2 -0,1 0,0 0,1 0,2
-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

dx/dt

x(t)

ω = 3ω0

Figure 11: Analytical and numerical three-loop trajectory 
obtained with 𝜔𝜔 = 3𝜔𝜔0 , and, equivalently, with 𝜔𝜔 =
𝜔𝜔0 /3 

All these examples, and numerous others, 
demonstrate the validity of Eqs (8). A one-to-one 
comparison between the numerical and the analytical 
results does not call for supplementary comments, since 
a one-to-one correspondence obtains whatever the 
initial conditions or the driving frequency, as well as the 
forcing amplitude. 𝐹𝐹 and 𝜔𝜔 may consider as the two 
control parameters of the system. With respect to 𝜔𝜔, 𝐹𝐹 
plays a minor role. 

One may therefore conclude that the general 
solution of the harmonic oscillator undergoing an 
external harmonic excitation of the form 𝐹𝐹cos(𝜔𝜔𝑡𝑡) 
contains both the exciting frequency 𝑓𝑓 and the system’s 
natural frequency 𝑓𝑓0 . The above results are conclusive 
enough to include in future graduate and undergraduate 
programs that deal with oscillatory systems. The 
presented properties may serve as a simple introductory 
lesson to more complex dynamical systems. 

The above examples show some worth-
mentioning symmetry properties. For instance, we found 
the same phase portraits with 𝜔𝜔 = 0.5𝜔𝜔0 , and 𝜔𝜔 =
2𝜔𝜔0 , as well as with 𝜔𝜔 = 0.25𝜔𝜔0 , 𝜔𝜔 = 4𝜔𝜔0 ; 𝜔𝜔 = 𝜔𝜔0

3
, 

and𝜔𝜔 = 3𝜔𝜔0 .  i.e., whenever 𝜔𝜔 =  𝑛𝑛𝜔𝜔0  or 𝜔𝜔0 = 𝑛𝑛𝜔𝜔. 
In short, for any integer 𝑛𝑛 such that 𝜔𝜔 =  𝑛𝑛𝜔𝜔0 ,  

similar trajectories obtain with 
𝑥𝑥(𝑡𝑡) = −cos�𝜔𝜔0 𝑡𝑡� + cos(𝑛𝑛𝜔𝜔0 𝑡𝑡)  (10a) 
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𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝜔𝜔0 sin�𝜔𝜔0 𝑡𝑡� − 𝑛𝑛𝜔𝜔0 sin(𝑛𝑛𝜔𝜔0 𝑡𝑡) (10b) 

and 

𝑥𝑥(𝑡𝑡) = − cos �𝜔𝜔
𝑛𝑛
𝑡𝑡� + cos(𝜔𝜔𝑡𝑡)  (10c) 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

=  𝜔𝜔
𝑛𝑛

sin �𝜔𝜔
𝑛𝑛
𝑡𝑡� − 𝜔𝜔sin (𝜔𝜔𝑡𝑡)  (10d)

 

 
It takes some simple graphical software to 

confirm these elements. Indeed, such a symmetric 
property is valid only for the case studied in this section, 
with the initial condition, 𝑥𝑥(0)  =  0. 

IV. Irregular Signals and Aperiodic 
Trajectories 

Irregular trajectories usually characterize more 
complex nonlinear systems through sequences of 
solutions ultimately ending in chaotic signals. 
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f = 1.36f0

 
Figure 12: Analytical and numerical solution obtained 
with a driving frequency 𝑓𝑓 = 1.36𝑓𝑓0 , a) and b) irregular 
time traces, c) Fourier spectrum, and d) aperiodic 
trajectory. 

Let us represent the solution corresponding          
to Eq. (8c) by fixing the external frequency to 
incommensurately scale with the natural frequency. The 
example of Fig. 12 was simulated with 𝑓𝑓 = 1.36𝑓𝑓0 . The 
displacement and velocity time traces do not show any 
periodicity. The phase-space trajectory is multi-loop 
orbit with an infinite order. The orbit was simulated 
limiting the time span to 𝑡𝑡 =  100. The more we 
increase 𝑡𝑡, the more surface the trajectory occupies. 
This is an indication of aperiodicity. 

The analytical descriptions of each graph in Fig. 
12 obtain with the following expansions 
 

𝑥𝑥(𝑡𝑡) = cos�𝜔𝜔0 𝑡𝑡� + cos(1.36𝜔𝜔0 𝑡𝑡)
 

(11a)
 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= −𝜔𝜔0 sin�𝜔𝜔0 𝑡𝑡� − 1.36𝜔𝜔0 sin(1.36𝜔𝜔0 𝑡𝑡)  (11b)
 

Again, outstanding similarities appear between 
the numerically simulated graphs of Fig. 12 and the 
analytical counterparts depicted in Fig. 13. 

Two frequency chaos has long been reported in 
complex systems [14]. However, to the best of our 
knowledge, it demonstrates here analytically for the first 
time, in the case of a harmonic oscillator. It takes Eqs 
(11), or any other expansions, with two incommensurate 
frequencies, to obtain irregular trajectories. As time 
flows, the orbits fill the entire plane, an indication of the 
aperiodic nature of the solution. 

0 20 40 60 80 100

-2
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0
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2

-2 -1 0 1 2
-3

-2
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0

1

2

3

x(t)

t

a)

dx/dt

x(t)

b)

Figure 13: a) Irregular time trace, and b) aperiodic 
trajectory, obtained with Eqs (11). 

Noteworthy is the fact that slight changes in 
driving frequencies transform well-structured signals 
and orbits into aperiodic time traces and trajectories. 
These may consider as further examples of the famous 
butterfly effect, which demonstrates in other nonlinear 
systems, such as the Lorenz attractor [2, 15]. 

V. Locking Phenomena and Generation 
of Sub-Harmonic Sequences 

The sequence of period-doubling-or, 
equivalently, subharmonic cascading- is known in 
nonlinear dynamics as a route towards deterministic 
chaos [15]. Phase space trajectories with period 
doubling sequences also characterize the forced 
harmonic oscillator, as hereafter demonstrated in 
several cases with distinct control parameters and initial 
conditions.  

a) Period doubling sequence generated with  𝑓𝑓(𝑡𝑡) =
0.1𝐴𝐴𝑠𝑠𝑛𝑛 (𝜔𝜔𝑡𝑡), 𝜔𝜔0 = 1, and 𝑥𝑥0 = 0. 

In this case, the solution expands into (see 
Appendix A) 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔0
2−𝜔𝜔2� − 𝜔𝜔

𝜔𝜔0
sin�𝜔𝜔0 𝑡𝑡� + sin (𝜔𝜔𝑡𝑡)�  

    

(12a)

 
and

 
𝑦𝑦 (𝑡𝑡) = 𝑑𝑑𝑥𝑥

𝑑𝑑𝑡𝑡
= 𝐹𝐹𝜔𝜔

𝜔𝜔0
2−𝜔𝜔2 �− cos�𝜔𝜔0 𝑡𝑡� + cos (𝜔𝜔𝑡𝑡)�  

    

(12b)

 The trajectories obtained both numerically and 
analytically, successively with 𝜔𝜔 = 2𝜔𝜔0

 
(period one), 

𝜔𝜔 = 1.5𝜔𝜔0 (period two), 𝜔𝜔 = 1.25𝜔𝜔0 (period four), 
and𝜔𝜔 = 1.21𝜔𝜔0 (aperiodic, the driving and natural 
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frequencies scale incommensurately), are represented 
in Fig. 14. 

The full sequence of period doubling towards 
resonance generates with 

𝜔𝜔1 = 2𝜔𝜔0 , 

𝜔𝜔2 = 2𝜔𝜔0 − 1
2
𝜔𝜔0 ,  

𝜔𝜔4 = 𝜔𝜔22 = 2𝜔𝜔0 − �1
2

+ �1
2
�
2
�𝜔𝜔0 ,  

𝜔𝜔8 = 𝜔𝜔23 = 2𝜔𝜔0 − �1
2

+ �1
2
�
2

+ �1
2
�
3
�𝜔𝜔0 , 

… 

𝜔𝜔2𝑛𝑛 = 2𝜔𝜔0 − �1
2

+ �1
2
�
2

+ �1
2
�
3

+ ⋯�1
2
�
𝑛𝑛
�𝜔𝜔0 ,𝜔𝜔2∞ = 𝜔𝜔0

 

(resonance (aperiodic)).  

 
 

∑ 1
2𝑛𝑛

=
1−�12�

𝑛𝑛+1

1−12

𝑛𝑛
𝑛𝑛=1 − 1 = 1 − �1

2
�
𝑛𝑛

,   

𝜔𝜔2𝑛𝑛 = 2𝜔𝜔0 − �1 − �1
2
�
𝑛𝑛
�𝜔𝜔0 = �1 + �1

2
�
𝑛𝑛
�𝜔𝜔0 ,   

and  

𝜔𝜔0
2 − 𝜔𝜔2𝑛𝑛

2 = 𝜔𝜔0
2 − �1 + �1

2
�
𝑛𝑛
�
2
𝜔𝜔0
2 = −�2 �1

2
�
𝑛𝑛

+ �1
2
�
2𝑛𝑛
�𝜔𝜔0

2 =

−�1
2
�
𝑛𝑛−1

�1 + �1
2
�
𝑛𝑛+1

�𝜔𝜔0
2. 

Also note that the state of resonance is reached 
at 𝜔𝜔2∞ = �1 + �1

2
�
∞
�𝜔𝜔0 = 𝜔𝜔0 . 

The complete sub-harmonic cascade depicts -
and predicts- analytically with the following formulas

 

𝑥𝑥2𝑛𝑛 (𝑡𝑡) = 𝐹𝐹
𝜔𝜔0
2−𝜔𝜔2𝑛𝑛

2 �−
𝜔𝜔2𝑛𝑛

𝜔𝜔0
sin�𝜔𝜔0 𝑡𝑡� + sin (𝜔𝜔2𝑛𝑛 𝑡𝑡)�

 

  
 

  

(13a)
 

𝑦𝑦2𝑛𝑛 (𝑡𝑡) =
𝐹𝐹𝜔𝜔2𝑛𝑛

𝜔𝜔0
2−𝜔𝜔2𝑛𝑛

2 �−
 
cos�𝜔𝜔0 𝑡𝑡� +

 
cos (𝜔𝜔2𝑛𝑛 𝑡𝑡)�  

  
  

(13b)
 

With 𝜔𝜔2𝑛𝑛 = �1 + �1
2
�
𝑛𝑛
�𝜔𝜔0 , 𝑛𝑛 =  0, 1, 2, 3…  
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Figure 14: Period doubling sequence, analytically 
replicated with a) 𝜔𝜔 = 2𝜔𝜔0  (period one), b) 𝜔𝜔 =
1.5𝜔𝜔0 (period two), c) 𝜔𝜔 = 1.25𝜔𝜔0 (period four), and              
d) 𝜔𝜔 = 1.21𝜔𝜔0 (aperiodic orbit). 

The order of the trajectory corresponds to the 
value of 2𝑛𝑛 . For example,20 = 1 (period one),  22 =
4 (period four), 23 = 8 (period eight), 24 = 16 (period 
sixteen), etc. 

According to Eqs (13), the period-8 trajectory 
follows 

𝑥𝑥8 (𝑡𝑡) = −6.4
17

(− 1.125sin(𝑡𝑡) + sin (1.125𝑡𝑡))  
    

(14a)
 

𝑦𝑦8 (𝑡𝑡) = −7.2
17

(− cos(𝑡𝑡) + cos (1.125𝑡𝑡))  
     

(14b)
 

where 𝜔𝜔8 = �1 + �1
2
�
3
�𝜔𝜔0 = 9

8
𝜔𝜔0 . 

We leave the reader with the simple task to 
replicate the corresponding orbit with any graphical 
software to confirm the associated periodicity. Indeed, 
one may -for the purpose of corroboration- confirm that 
exact replicas of the trajectories generate, as well, with 
numerical simulations of Eqs. (6). 

b) Period doubling sequence generated with 𝑓𝑓(𝑡𝑡) =
0.1 𝐴𝐴𝑠𝑠𝑛𝑛 (𝜔𝜔𝑡𝑡), 𝜔𝜔0 = 1, and 𝑥𝑥0 = 1. 

 
𝑥𝑥(𝑡𝑡) = 𝐹𝐹

𝜔𝜔0
2−𝜔𝜔2 �−

𝜔𝜔
𝜔𝜔0

sin�𝜔𝜔0 𝑡𝑡� + sin (𝜔𝜔𝑡𝑡)� + 𝑥𝑥0 𝐴𝐴𝐴𝐴𝐴𝐴�𝜔𝜔0 𝑡𝑡�

 
   

(15a)

 
𝑦𝑦

 
(𝑡𝑡) = 𝑑𝑑𝑥𝑥

𝑑𝑑𝑡𝑡
= 𝐹𝐹𝜔𝜔

𝜔𝜔0
2−𝜔𝜔2 �−

 
cos�𝜔𝜔0 𝑡𝑡� +

 
cos (𝜔𝜔𝑡𝑡)� − 𝑥𝑥0 𝐴𝐴𝑠𝑠𝑛𝑛

 
�𝜔𝜔0 𝑡𝑡�

 
   (15b) 
The trajectories generated both numerically and 

analytically, successively with 𝜔𝜔 = 2𝜔𝜔0  
(period one),

 𝜔𝜔 = 0.5𝜔𝜔0 (period two), 𝜔𝜔 = 0.75𝜔𝜔0 (period four) 
and𝜔𝜔 = 0.875𝜔𝜔0 (period eight)

 
are represented in 

                     Fig. 15. 
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Each cycle of the sequence generates with Eqs (12). 

Note that 

In this case, the solution expands into (see Appendix A)
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Figure 15: Period doubling sequence analytically 
replicated with a) 𝜔𝜔 = 2 𝜔𝜔0 (period one), b) 𝜔𝜔 =
0.5 𝜔𝜔0  (period two), c) 𝜔𝜔 = 0.75 𝜔𝜔0 (period four), and d)  
𝜔𝜔 = 0.875 𝜔𝜔0 (period eight). 

c) Period doubling sequence generated with 𝑓𝑓(𝑡𝑡) =
0.1𝐴𝐴𝐴𝐴𝐴𝐴 (𝜔𝜔𝑡𝑡),  𝜔𝜔0 = 1, and 𝑥𝑥0 = 0.   

The solution describes with 

𝑥𝑥(𝑡𝑡) = 0.1
1− 𝜔𝜔2 (−cos(𝑡𝑡) + cos(𝜔𝜔𝑡𝑡)) (16a) 

𝑦𝑦(𝑡𝑡) = 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 0.1
1− 𝜔𝜔2 (sin(𝑡𝑡) −𝜔𝜔 sin(𝜔𝜔𝑡𝑡)) (16b) 

The trajectories obtained both numerically and 
analytically successively with 𝜔𝜔 = 0.5𝜔𝜔0  (period two), 
𝜔𝜔 = 0.75𝜔𝜔0 (period four), 𝜔𝜔 = 0.875𝜔𝜔0 (period eight) 
and𝜔𝜔 = 𝜔𝜔0 (resonance (aperiodic signal)) are 
represented in Fig. 16. 

As in subsection a), the full sequence of period 
doubling towards resonance follows 

𝜔𝜔2 = 𝜔𝜔0
2

, 

𝜔𝜔4 = �1
2

+ 1
4
�𝜔𝜔0 ,  

𝜔𝜔8 = �1
2

+ 1
4

+ 1
8
�𝜔𝜔0 ,  

𝜔𝜔16 = �1
2

+ 1
4

+ 1
8

+ 1
16
�𝜔𝜔0 ,…  

𝜔𝜔2𝑛𝑛 = �1
2

+ 1
4

+ 1
8

+ ⋯ 1
2𝑛𝑛
�𝜔𝜔0 , 

….  

𝜔𝜔2∞ = 𝜔𝜔0  (resonance (unbounded aperiodic signal)). 

Each cycle of the sequence describes analytically with 
Eqs (16).  

Undoubtedly, this is the first report on nonlinear 
dynamics in which subharmonic cascades generate 
analytically. The main physical mechanism behind such 
cascades is a locking phenomenon that takes place 
between the driving and the natural frequencies. Such 
looking mechanism occurs whenever the ratio between 
these two frequencies is a rational number. 
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Figure 16: Trajectories obtained both numerically and 
analytically, a) with 𝜔𝜔 = 0.5𝜔𝜔0  (period two), b) 𝜔𝜔 =
0.75𝜔𝜔0 (period four), c) 𝜔𝜔 = 0.875𝜔𝜔0 (period eight), and 
d)𝜔𝜔 = 𝜔𝜔0 (resonance, with an aperiodic structure). 

Let us note that the period doubling sequence 
generated with the conditions 𝑥𝑥0 = 1, 𝑓𝑓(𝑡𝑡) =
0.1 cos (𝜔𝜔𝑡𝑡), and 𝜔𝜔0 = 1 is identical to that found in 
subsection b), with𝑥𝑥0 = 1, and  𝑓𝑓(𝑡𝑡) = 0.1 sin (𝜔𝜔𝑡𝑡).  We 
leave the generation of this supplementary cascade as 
an exercise to the reader. To enable such a simple task, 
the associated formulas are comprehensively derived 
and summarized in appendix A. 

In view of the results of Subsect. a)-c), one may 
so conclude that period-doubling towards resonance is 
an intrinsic property of the externally driven harmonic 
oscillator. Other complex structures obtain by varying 
the main control parameter𝜔𝜔 while fixing F to any 
arbitrary value. 

d) Additional trajectories generated with 𝑓𝑓(𝑡𝑡) =
0.1 𝐴𝐴𝑠𝑠𝑛𝑛 (𝜔𝜔𝑡𝑡),  𝜔𝜔0 = 1, and 𝑥𝑥0 = 0.  

The corresponding analytical expansions read 

𝑥𝑥(𝑡𝑡) = 0.1
1−𝜔𝜔2 (−𝜔𝜔 sin(𝑡𝑡) + sin (𝜔𝜔𝑡𝑡)) (17a) 

𝑦𝑦(𝑡𝑡) = 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 0.1𝜔𝜔
1−𝜔𝜔2 (− cos(𝑡𝑡) + cos (𝜔𝜔𝑡𝑡)) (17b) 

The trajectories simulated both numerically and 
analytically, successively with 𝜔𝜔 = 3 𝜔𝜔0  (double loop 
structure), 𝜔𝜔 = 5 𝜔𝜔0 (four loop trajectory), 𝜔𝜔 =
4 𝜔𝜔0 (symmetric orbit) and𝜔𝜔 = 2.5 𝜔𝜔0  (asymmetric 
trajectory) are depicted in Fig. 17.  
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Figure 17: Trajectories obtained both numerically and 
analytically, successively with a) 𝜔𝜔 = 3𝜔𝜔0 , b) 𝜔𝜔 = 5𝜔𝜔0 , 
c) 𝜔𝜔 = 4𝜔𝜔0 , and d) 𝜔𝜔 = 2.5𝜔𝜔0 . Again, note the 
commensurate scaling between the driving and the 
natural frequencies.  

These examples were arbitrarily chosen 
amongst countless others. Almost any orbit -with simple 
or complex structure- may be generated by randomly 
fixing the system’s control parameters and initial 
conditions. To avoid fuzzy aperiodic trajectories -as that 
of Fig. 14d- the driving and natural frequencies must 
scale commensurately.  

Let us recall that two quantities are 
commensurable if their ratio is a rational number. If not, 
these are incommensurable. 

As a final statement added in proof, let us bring 
the attention to the fact that an intrinsic nonlinearity 
carries through the sine or cosine of the external 
excitation. Consequently, despite its apparent simplicity, 
the forced harmonic oscillator is a nonlinear system. As 
such, its behavior has much to share with other 
nonlinear structures. The originality here is the fact that 
given the set of initial conditions and the values of the 
two control parameters, the system’s dynamics is fully 
predictable, through analytical developments of the 
solutions with a simple relationship, which relates the 
oscillator movement to the excitation 𝑓𝑓(𝑡𝑡) and to the 
natural solution 𝑔𝑔(𝑡𝑡), i.e., 𝑥𝑥(𝑡𝑡)  =  𝐴𝐴(𝜔𝜔)𝑓𝑓(𝑡𝑡) + 𝐵𝐵(𝜔𝜔)𝑔𝑔(𝑡𝑡). 

Appendix A summarizes the complete series of 
solution structures, which connect to the precise initial 
conditions. These condensate into four formulas that 
give comprehensive accounts of the predictable 
dynamics.  

Let us finally add that if we introduce a third 
variable, 𝑧𝑧 = 𝜔𝜔𝑡𝑡, the model transforms into three 
nonlinearly coupled differential equations of the form 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑦𝑦     (18a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝜔𝜔0
2𝑥𝑥 + 𝐹𝐹 cos(𝑧𝑧)   (18b) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝜔𝜔     (18c) 

Therefore, it should not be surprising that the 
model’s dynamics carries the same complexities as 
those of any other nonlinear structure with three degrees 
of freedom. One non-linear term, i.e., cos(𝑧𝑧), is all it 
takes to generate a wealth of periodic and aperiodic 
solutions, with the external frequency as the primary 
control parameter. The main difference with other 
nonlinear systems is the depiction of any phase-space 
trajectory without calling for computer routines, except 
for the purpose of corroboration and consistency with 
the analytical formulations. 

VI. Conclusion 

We have revisited the forced-and-undamped 
harmonic oscillator and disclosed so far overlooked 
solutions that carry intrinsic nonlinearities. Extensive 
numerical and analytical examinations give full credit to 
the outcomes. Despite the complex dynamics these 
hold, our findings are simple enough to promote their 
introduction into academic courses in mechanics and 
vibrations, as well as in mathematics classes that deal 
with second-order differential equations. The model may 
serve as a basic example to introduce more complex 
dynamical systems [12, 15] and familiarize the student 
with the simple construction of phase space orbits and 
sequences such as period doubling that were shown to 
stem from a simple locking phenomenon between the 
driving frequency and the system’s natural frequency. 
Let us point out the fact that it takes a simple graphical 
calculator to depict any analytical signal or trajectory. 
Since the system depends on two control parameters -
the amplitude and frequency of the external excitation- 
that may arbitrarily be selected, the number of solutions, 
and phase-space trajectories, is theoretically unlimited.  

Worth insisting on is the construction-
unquestionably for the first time in a research and 
pedagogical paper dedicated to the study of nonlinear 
dynamical systems- of a series of analytical 
subharmonic cascades towards resonance. With this 
respect, our analysis makes clear the fact that period 
doubling is an intrinsic characteristic that structures 
systematically and predictably in the case of the forced 
harmonic oscillator, when the driving and natural 
frequencies scale commensurately. In addition, next to 
the unbounded state of resonance, aperiodicity -with 
bounded trajectories- is the rule whenever the two 
frequencies scale incommensurately, i.e., when their 
ratio is a not a rational number.  

 
 
 
 

© 2023    Global Journ als 

G
lo
ba

l 
J o

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
  

Vo
lu
m
e 

X
xX
II
I 
Is
su

e 
II
  

V
 er
si
on

 I
  

 
  

 
(

)
J

  
  
 

  

9

Y
e
a
r

20
23

The Harmonic Oscillator, Complex-Dynamics Predictability, and the Beauty of Trigonometry Subharmonic 
Cascades towards Resonance



Appendix A 

Comprehensive review of the non-autonomous system 

Let us write the second order differential equation that describes the forced harmonic oscillator when it is 
driven with an external excitation of the form 

 𝑓𝑓(𝑡𝑡) =  𝐹𝐹 sin(𝜔𝜔𝑡𝑡)  

𝑑𝑑2 𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝜔𝜔0
2𝑥𝑥 = 𝐹𝐹 sin(𝜔𝜔𝑡𝑡)  (A1a) 

Considering the free oscillator properties, the general solution reads 

𝑥𝑥(𝑡𝑡) =  𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛�𝜔𝜔0 𝑡𝑡� + 𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴�𝜔𝜔0 𝑡𝑡� + 𝐶𝐶𝐴𝐴𝑠𝑠𝑛𝑛(𝜔𝜔𝑡𝑡) + 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡)    (A1b) 

implying 

𝑑𝑑2 𝑥𝑥
𝑑𝑑𝑡𝑡2

= −𝐴𝐴𝜔𝜔0
2 sin�𝜔𝜔0 𝑡𝑡� − 𝐵𝐵𝜔𝜔0

2 cos(𝜔𝜔𝑡𝑡) − 𝐶𝐶𝜔𝜔2 sin(𝜔𝜔𝑡𝑡) − 𝐷𝐷𝜔𝜔2 cos (𝜔𝜔𝑡𝑡)  (A1c) 

So that  

�𝜔𝜔0
2 − 𝜔𝜔2 �𝐶𝐶𝐴𝐴𝑠𝑠𝑛𝑛(𝜔𝜔𝑡𝑡) + �𝜔𝜔0

2 − 𝜔𝜔2 �𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡) = 𝐹𝐹 sin(𝜔𝜔𝑡𝑡)    (A1d) 

With the solutions   

𝐷𝐷 = 0     (A1e) 

and 

𝐶𝐶 =  𝐹𝐹
𝜔𝜔02−𝜔𝜔

2     
(A1f)

 

The solution writes 

𝑥𝑥(𝑡𝑡) =  𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛�𝜔𝜔0 𝑡𝑡� + 𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴�𝜔𝜔0 𝑡𝑡� + 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 sin (𝜔𝜔𝑡𝑡)     (A2a) 

A and B obtain with precise initial conditions.  
In the case where  𝑑𝑑𝑥𝑥

𝑑𝑑𝑡𝑡
 =  0, at 𝑡𝑡 =  0, we obtain 

𝐴𝐴𝜔𝜔0 + 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 𝜔𝜔 = 0   (A2b) 

i.e., 

𝐴𝐴 = − 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2
𝜔𝜔
𝜔𝜔0

    (A2c) 

If at 𝑡𝑡 =  0, 𝑥𝑥(0)  =  0, then 𝐵𝐵 = 0, and the solution writes 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 �−
𝜔𝜔
𝜔𝜔0

sin�𝜔𝜔0 𝑡𝑡� + sin (𝜔𝜔𝑡𝑡)�      (A2d) 

If at 𝑡𝑡 =  0, 𝑥𝑥 =  𝑥𝑥0 , then 𝐵𝐵 = 𝑥𝑥0 , and 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 �−
𝜔𝜔
𝜔𝜔0

sin�𝜔𝜔0 𝑡𝑡� + sin (𝜔𝜔𝑡𝑡)� + 𝑥𝑥0 𝐴𝐴𝐴𝐴𝐴𝐴�𝜔𝜔0 𝑡𝑡�    (A3) 

If the system is driven with 𝑓𝑓(𝑡𝑡) =  𝐹𝐹 cos(𝜔𝜔𝑡𝑡), the equation writes 

𝑑𝑑2 𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝜔𝜔0
2𝑥𝑥 = 𝐹𝐹 cos(𝜔𝜔𝑡𝑡)   (A4a) 

The solution is not quite the same as Eqs (A2d) and (A3). It expands into  

𝑥𝑥(𝑡𝑡) =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝜔𝜔0 𝑡𝑡� + 𝐵𝐵𝐴𝐴𝑠𝑠𝑛𝑛�𝜔𝜔0 𝑡𝑡� + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡) + 𝐷𝐷𝐴𝐴𝑠𝑠𝑛𝑛(𝜔𝜔𝑡𝑡)    (A4b)  

Which, when plugged into Eq. A(4a) yields 

�𝜔𝜔0
2 − 𝜔𝜔2 �𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡) + �𝜔𝜔0

2 − 𝜔𝜔2 �𝐷𝐷𝐴𝐴𝑠𝑠𝑛𝑛(𝜔𝜔𝑡𝑡) = 𝐹𝐹 cos(𝜔𝜔𝑡𝑡)    (A4c) 
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i.e. 

𝐷𝐷 = 0      (A4d) 

and 

𝐶𝐶 =  𝐹𝐹
𝜔𝜔02−𝜔𝜔

2     (A4e) 

The solution writes 

𝑥𝑥(𝑡𝑡) =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝜔𝜔0 𝑡𝑡� + 𝐵𝐵𝐴𝐴𝑠𝑠𝑛𝑛�𝜔𝜔0 𝑡𝑡� + 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 cos(𝜔𝜔𝑡𝑡)     (A5a) 

If, at 𝑡𝑡 =  0, 𝑥𝑥 =  𝑥𝑥0 , then  

𝐴𝐴 =  𝑥𝑥0 − 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2    (A5b) 

We determine 𝐵𝐵 with 𝑑𝑑𝑥𝑥/𝑑𝑑𝑡𝑡 =  0, at 𝑡𝑡 =  0 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= −𝐴𝐴𝜔𝜔0 sin�𝜔𝜔0 𝑡𝑡� + 𝐵𝐵𝜔𝜔0 cos�𝜔𝜔0 𝑡𝑡� − 𝐶𝐶𝜔𝜔 sin�𝜔𝜔 𝑡𝑡� + 𝐷𝐷𝜔𝜔 cos�𝜔𝜔0 𝑡𝑡� = 0 (A5c) 

From which we extract, 𝐵𝐵 =  𝐷𝐷 =  0, and 

𝑥𝑥(𝑡𝑡) =  �𝑥𝑥0 − 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 � 𝐴𝐴𝐴𝐴𝐴𝐴�𝜔𝜔0 𝑡𝑡� + 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 cos(𝜔𝜔𝑡𝑡)      (A5d) 

i.e. 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 �−𝐴𝐴𝐴𝐴𝐴𝐴�𝜔𝜔0 𝑡𝑡� + cos(𝜔𝜔𝑡𝑡)� + 𝑥𝑥0 cos(𝜔𝜔0 𝑡𝑡)    (A5e) 

The case corresponding to 𝑥𝑥(0)  =  0 is considered in the text. See Eq. (8a) or Eq. (A7c). 
Solution at resonance 

For 𝜔𝜔 = 𝜔𝜔𝑜𝑜 , Eq. (A4a) writes   
𝑑𝑑2 𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝜔𝜔0
2𝑥𝑥 = 𝐹𝐹 cos(𝜔𝜔0 𝑡𝑡)   (A6a) 

Since we know that at resonance the amplitude grows indefinitely, we try the following solution  

𝑥𝑥(𝑡𝑡) = 𝐴𝐴𝑡𝑡𝐴𝐴𝑠𝑠𝑛𝑛�𝜔𝜔0 𝑡𝑡� + 𝐵𝐵𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔0 𝑡𝑡) (A6b) 

Transforming Eq. (A6a) into 

2𝜔𝜔0 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �𝜔𝜔0 𝑡𝑡� − 2𝜔𝜔0 𝐵𝐵𝐴𝐴𝑠𝑠𝑛𝑛 �𝜔𝜔0 𝑡𝑡� = 𝐹𝐹 cos(𝜔𝜔0 𝑡𝑡)     (A6c) 

i.e.  

𝐵𝐵 = 0      (A6d) 

and   

𝐴𝐴 = 𝐹𝐹
2𝜔𝜔0

     (A6e) 

The general solution expands into 

𝑥𝑥(𝑡𝑡) = 𝐴𝐴1 sin(𝜔𝜔0 𝑡𝑡) + 𝐴𝐴2 cos(𝜔𝜔0 𝑡𝑡) + 𝐹𝐹
2𝜔𝜔0

t cos (𝜔𝜔0 𝑡𝑡)    (A6f) 

With the initial conditions 𝑥𝑥(0)  =  0 and 𝑑𝑑𝑥𝑥/𝑑𝑑𝑡𝑡 =  0, we are left with 

𝑥𝑥(𝑡𝑡) = − 𝐹𝐹
2𝜔𝜔02

sin�𝜔𝜔0 𝑡𝑡� + 𝐹𝐹
2𝜔𝜔0

t cos (𝜔𝜔0 𝑡𝑡)       (A6g) 

For large 𝑡𝑡′𝐴𝐴, the first term becomes negligible, and 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
2𝜔𝜔0

t cos (𝜔𝜔0 𝑡𝑡)   (A6h) 

Indicative of linearly growing amplitudes, conforming to the graph of Fig. 3. 

Summary of the solutions 

For straightforward comparisons between the formulas -and forthright signal and orbit depictions- let us 
summarize the solutions. 
a) 𝑓𝑓(𝑡𝑡) = 𝐹𝐹 sin (𝜔𝜔𝑡𝑡),  𝑥𝑥(0) = 0 
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𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 �−
𝜔𝜔
𝜔𝜔0

sin�𝜔𝜔0 𝑡𝑡� + sin (𝜔𝜔𝑡𝑡)� (A7a) 

b) 𝑓𝑓(𝑡𝑡) = 𝐹𝐹 sin (𝜔𝜔𝑡𝑡),  𝑥𝑥(0) = 𝑥𝑥0  

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 �−
𝜔𝜔
𝜔𝜔0

sin�𝜔𝜔0 𝑡𝑡� + sin (𝜔𝜔𝑡𝑡)� + 𝑥𝑥0 cos�𝜔𝜔0 𝑡𝑡�    (A7b) 

c) 𝑓𝑓(𝑡𝑡) = 𝐹𝐹 cos (𝜔𝜔𝑡𝑡), 𝑥𝑥(0) = 0 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔02− 𝜔𝜔2 �−cos�𝜔𝜔0 𝑡𝑡�+ cos(𝜔𝜔𝑡𝑡)� (A7c) 

d) 𝑓𝑓(𝑡𝑡) = 𝐹𝐹 cos (𝜔𝜔𝑡𝑡), 𝑥𝑥(0) = 𝑥𝑥0  

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔02−𝜔𝜔

2 �− cos�𝜔𝜔0 𝑡𝑡� + cos(𝜔𝜔𝑡𝑡)� + 𝑥𝑥0 cos(𝜔𝜔0 𝑡𝑡)    (A7d) 

As fully demonstrated in the text, through the subharmonic sequences, even though only slight differences 
appear between the four expressions, each formula carries distinctive dynamics. 

Again, let us insist on the fact that, whatever the initials conditions, all four formulas bear the form 𝑥𝑥(𝑡𝑡)  =
 𝐴𝐴(𝜔𝜔)𝑓𝑓(𝑡𝑡) + 𝐵𝐵(𝜔𝜔)𝑔𝑔(𝑡𝑡). An indication of the nonlinear dependence of the oscillator displacement with respect to the 
external excitation. 

Indeed, if we represent 𝑥𝑥(𝑡𝑡) vs 𝑓𝑓(𝑡𝑡), we recover a linear segment in the case of a linear response (Fig.A1-a) 
and a nonlinear curve in the case of nonlinear response (Fig.A1-b). Both curves correspond to 𝐹𝐹 =  1, 𝜔𝜔0 = 1,  and 
ω = 2𝜔𝜔0 . 
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Figure A1: Response 𝑥𝑥(𝑡𝑡) vs excitation 𝑓𝑓(𝑡𝑡), in the case of a) a linear solution, and b) a nonlinear solution. 

Appendix B 

Useful trigonometry 

To understand the modulation effect that occurs in the presence of the driving and the natural frequencies, it 
is useful to establish the following relationship 

cos�𝜔𝜔0 𝑡𝑡� − cos(𝜔𝜔𝑡𝑡) = 2 sin �𝜔𝜔+𝜔𝜔0
2

𝑡𝑡� sin �𝜔𝜔−𝜔𝜔0
2

𝑡𝑡�     (B1a) 

Let us start with 

cos(𝜔𝜔𝑡𝑡) = cos �𝜔𝜔+𝜔𝜔0
2

𝑡𝑡 + 𝜔𝜔−𝜔𝜔0
2

𝑡𝑡�  (B1b) 

which transforms into 

cos(𝜔𝜔𝑡𝑡) = cos �𝜔𝜔+𝜔𝜔0
2

𝑡𝑡� cos �𝜔𝜔−𝜔𝜔0
2

𝑡𝑡� − sin �𝜔𝜔+𝜔𝜔0
2

𝑡𝑡� sin �𝜔𝜔−𝜔𝜔0
2

𝑡𝑡�  (B1c) 

Furthermore 

cos�𝜔𝜔0 𝑡𝑡� = cos �𝜔𝜔+𝜔𝜔0
2

𝑡𝑡 − 𝜔𝜔−𝜔𝜔0
2

𝑡𝑡�       (B1d) 

converts into 

cos�𝜔𝜔0 𝑡𝑡� = cos �𝜔𝜔+𝜔𝜔0
2

𝑡𝑡� cos �𝜔𝜔−𝜔𝜔0
2

𝑡𝑡� + sin �𝜔𝜔+𝜔𝜔0
2

𝑡𝑡� sin �𝜔𝜔−𝜔𝜔0
2

𝑡𝑡�  (B1e) 

So that 
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−cos�𝜔𝜔0 𝑡𝑡� + cos(𝜔𝜔𝑡𝑡) = −2 sin �𝜔𝜔+𝜔𝜔0
2

𝑡𝑡� sin �𝜔𝜔−𝜔𝜔0
2

𝑡𝑡�  (B1f) 

and 

𝑥𝑥(𝑡𝑡) = 𝐹𝐹
𝜔𝜔02−

 
𝜔𝜔2 �−cos�𝜔𝜔0 𝑡𝑡�+ cos(𝜔𝜔𝑡𝑡)� = − 2𝐹𝐹

𝜔𝜔02−
 

𝜔𝜔2 sin �𝜔𝜔+𝜔𝜔0
2

𝑡𝑡� sin �𝜔𝜔−𝜔𝜔0
2

𝑡𝑡� (B1g) 

 
This last relation indicates that in the presence of the driving and natural solutions, the signal outputs in the 

form of a high frequency component 𝑓𝑓 + 𝑓𝑓0  modulated by a lower frequency at𝑓𝑓 − 𝑓𝑓0 , an example of which is 
represented in Fig. 9a of the text. 

Also note that the amplitude of the displacement is twice that obtained when the natural solution is 
neglected (compare Eq. (B1g) and Eq. (4h) of the text). This means that the resonant phenomenon becomes more 
important when the free oscillator frequency is included. Consequently, added to the butterfly effect, which 
transforms regular signals into turbulent ones whenever the driving and natural frequencies scale incommensurately, 
catastrophes -as those described in the text- are (were) more likely to occur! 

Appendix C 

Note added in proof 

Let us rewrite Eqs (6) 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑦𝑦     (C1a) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝜔𝜔0
2𝑥𝑥 + 𝐹𝐹 cos(𝜔𝜔𝑡𝑡)   (C1b) 

And define a new variable  
𝑧𝑧 = 𝜔𝜔𝑡𝑡     (C2a) 

So that  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 = 𝜔𝜔     (C2b) 

Eqs (C1) rewrite in the form 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑦𝑦     (C3a) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝜔𝜔0
2𝑥𝑥 + 𝐹𝐹 cos(𝑧𝑧)   (C3b) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 = 𝜔𝜔     (C3c) 

We are in the presence of a three-dimensional system nonlinearly coupled through the term cos(𝑧𝑧). 
Therefore, it should be of no surprise to retrieve typical properties of other nonlinearly coupled differential 

equations as fully described in the text [12].  
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