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Abstract-

 

Since the first industrial revolution, the leading role of 
emerging technologies has been highlighted in modernizing 
the industry and developing the workforce. This study explores 
the impact of Industry 4.0 digital technologies on 
manufacturing competitiveness, focusing on Finnish SMEs 
within the EU with

 

a sample (n = 123). It utilizes extensive 
2022 European Manufacturing Survey (EMS22) data. 
Advanced statistical techniques reveal complex connections 
between automation, competitive edge on services, and 
innovation models, among other factors. Robust statistical 
methods, including component and reliability analyses, 
reinforced the findings. The conclusion offers critical insights 
and identifies areas for further research in combining 
innovative manufacturing practices with technology education.

 

Keywords:

 

industry 4.0; competitiveness and 
employment, supply chain contracts, human resources, 
training and competence development, business 
innovation model, digital services, digital elements, 
product related services, cybersecurity practices, key 
enabling technologies, organization concepts, relocation 
activities, factor analysis.

 

I.

 

Introduction

 

his study's central motive is to quantitatively 
assess the impact of Industry 4.0 digital 
technologies on manufacturing competitiveness, 

specifically within the context of European Union Finnish 
small and medium-sized enterprises (SMEs). The 
alignment within the EU's strategic priorities is to 
modernize industry. Preparing the workforce in 
education and training means examining how 
technologies like automation and robotics applications 
can be integrated and leveraged. By utilizing the 
European Manufacturing Survey 2022 (EMS22) dataset 
tailored to the Finnish manufacturing sectors, the study 
aims to gain granular insights into SMEs' adoption and 
use of the manufacturer's key enabling technologies. 
The quantitative analysis of survey data provides data-
driven perspectives to inform decision-making for 
Industry 4.0 integration.

 

The manufacturing industry has undergone 
significant transitions over centuries, from the advent of

 

steam power and assembly lines in the 1750s (Industry 
1.0) to the rise of global supply chains and localized 
production goals (Industry 2.0), and then progressive 
automation and digitalization since the 1960s (Industry 
3.0). These advances have been driven by innovation 
and connectivity needs (Heilala, 2022). Today's 

environment demands extreme customization and 
efficiency. This motivates embracing technologies like 
automation and robotics, moving towards Industry 4.0. 
Such technologies are critical for European Union (EU) 
small and medium-sized enterprises (SMEs) to bolster 
competitiveness. The EU aims to strategically modernize 
industry and develop workforces for the future (Heilala, 
2022). 

This research utilizes the EMS, which has 
tracked Europe's industrial progression for two decades, 
offering a rich dataset. The EMS is an extensive survey 
conducted across European countries that collects key 
information on manufacturing strategies, technologies, 
and practices. It provides valuable insights into the state 
of the industry and how it is evolving amidst digital 
transformation and Industry 4.0 trends. The EMS adopts 
a broad perspective on manufacturing evolution, 
complementing the innovation-focused Community 
Innovation Survey (CIS) grounded in the OSLO 
framework (Consortium for the European Manufacturing 
Survey 2020; Dachs & Zanker, 2015; European 
Commission et al., 2015). The refined EMS22 survey 
shows, by each question, The quantified variables of a 
representative sample of 123 small firms. As per 
leveraging EMS data, the impact of digital 
transformation on competitiveness is analyzed. The 
analysis applies exploratory factor analysis, structural 
equation modeling, and logistic regression to evaluate 
variable relationships on testing proposed hypotheses 
to form the logistic regression model. Key results reveal 
complex interdependencies between innovation models, 
technologies, services, and performance. The 
discussion interprets these insights, outlining empirical 
connections found and limitations encountered. The 
statistically driven findings contribute to the discourse 
on digital competitive advantage, providing a modeling 
foundation for ongoing research into optimizing smart 
manufacturing implementation. 

II. Literature Review - Decade-Long 
Perspective 

a) Analytical Review of Manufacturing Research Trends  
Prior EMS-based studies have utilized diverse 

statistical methods to analyze the survey data. The 
scoping review includes component analysis, reliability 
analysis through alpha, rho, and omega, and 
exploratory and confirmatory analyses. Structural path 
analysis shows multivariate analysis for discriminant and 
convergent validity assessments to implement in 
response to information characterization. Prior studies 

T
 

Author α σ ρ Ѡ: University of Turku. e-mails: janne.p.heilala@utu.fi, 
jussi.kantola@utu.fi, antti.salminen@utu.fi, wallace.moreirabessa@utu.fi

Ѡ

G
lo
ba

l 
Jo

ur
na

l 
of
 R

es
ea

rc
h 

in
 E

ng
in
ee

ri
ng

  
( 
G
 )
  
X
X
II
I 
 I
ss
ue

  
II
I 
 V

er
si
on

  
I 

 Y
ea

r 
20

23

15

© 2023 Global Journals



have shown depth in trade (European Commission, 
2016; Kinkel et al., 2015). The lookup followed the 
format 'TITLE-ABS-KEY ("manufacturing" AND "statistic 
method")' to identify publications similar in the metadata. 
Results were filtered by year (2013-2023) for trends in 

Figure 1. The usage of each component's method used 
in manufacturing literature (2013-2023) needed to be 
more extensive. The internal structures' lower reliability 
frequency and the current research gap were identified. 

 

Figure 1: Trends for the Statistical Methods used in Manufacturing Method Studies (2013-2023) (Scopus 2023)

While the analysis criteria development 
established the management domain, the gap in 
examined publication trends is shown. The scope 
highlights increased utilization of exploratory and 
confirmatory factor analysis while other areas decline. 
The current study is aligned with the use of pre-defined 
variables from key themes from the EMS 2022 survey to 
fill the gap. The analysis incorporates a meta-level 
surfacing the variables from the EMS2022 survey across 

categories, including competitiveness and employment 
metrics, supply chain contracts, human resources 
distribution, training initiatives, business innovation 
models, implementation of digital services, adoption of 
digital elements, provision of product-related services, 
cybersecurity practices, utilization of key enabling 
technologies, organization concepts, and prevalence of 
relocation activities abroad (Table 1). 

Table 1: The study's classification development baseline adapts to EMS22 statements, testing if the practice is used 
for the context frameworks (EMS, 2022). The questions on the development of competitiveness and employment 
(DCES) are measuring manufacturing digitalization, acronymized as European manufacturing survey's (EMS's) key 
enabling technologies (KETs); organizational concepts (OCs) for relocation activities (RAs); digital services (DSs); 
cybersecurity practices (CPs) from the supply chain contract (SCCs) and resources (HR) perspectives. This shows 
that each of the factors explained is emerging in the experimental factor analysis addressed sample. 

Category Variables 

Competitiveness and 
Employment 

Annual turnover, number of employees, manufacturing capacity utilization, return 
on sales, investments in equipment and machinery, annual payroll as 
percentage of turnover, year of establishment. 

Supply Chain Contracts Manufacturers, suppliers, contract manufacturers. 

Human Resources 
Distribution 

University/college graduates, technically skilled workforce, trained workforce, 
semi-skilled and unskilled workers, trainees each segment indicating that 
practical skills and in-house training are highly valued in the workforce. 

Training Initiatives 
Task-specific training, cross-functional training, support in digital implementation, 
data security and compliance training, creativity, and innovation training. 

Business Innovation 
Models 

Distribution, access, maintenance service-based, high-performance computing, 
on-demand, sharing, performance, and turnkey innovative economies. 

Digital Services 
Implementation 

Customer contact platforms, digital standard solutions, automated customer 
interactions, remote access control elements, cloud and IoT solutions, big data 
analysis. 

Digital Elements Adoption 
Identification tags, sensor technology, interactive interfaces, real-time network 
connection, digital transformation technologies. 

Optimizing Smart Factories: A Data-Driven Approach

G
lo
ba

l 
Jo

ur
na

l 
of
 R

es
ea

rc
h 

in
 E

ng
in
ee

ri
ng

  
( 
G
 )
  
X
X
II
I 
 I
ss
ue

  
II
I 
 V

er
si
on

  
I 

 Y
ea

r 
20

23

16

© 2023 Global Journals



Product-Related Services 
Provision 

Installation and start-up, maintenance and repair, training, remote support, 
design and project planning, prototype development, revamping and 
modernization, take-back services, software development. 

Cybersecurity Practices 
Data security awareness, software solutions, hardware solutions, organizational 
measures. 

Key Enabling Technologies 
Utilization 

Production control, automation and robotics, efficiency technologies, simulation, 
data analysis, additive manufacturing. 

Organization Concepts 

Organization of production, management, and control, such as lean 
management, quality circles, and continuous improvement processes highlight 
the significance of organizational culture and structure in driving performance 
and adaptability. 

Sustainable manufacturing is the creative 
process of synergizing the supply chain components. 
The enhanced competitiveness is a sign of good 
manufacturing for maintaining operations. It is reflected 
in key EMS variables related to innovation. 
Innovativeness requires automating human capital 
development for efficiency (Chia-Yen & Andrew, 2015; 
Mehta et al., 2010). Aligning with Europe's 2020 strategy 
goals, the Scopus review has limitations to the latest 
EMS data. Studying and assessing relationships 
between digital transformation, competitiveness, and 
employment within Finnish manufacturing is a top 
priority (European Commission, 2014). 

b) Research Hypothesizes 
The review preliminaries show eight hypotheses 

developed to align with the analysis methods 
subsequently presented in the literature. The 
hypotheses show predictive relationships between 
EMS22 survey variables and manufacturing 
competitiveness and employment status for managing 
new natural law for technologist implications. The 
analysis tests hypotheses on the influence of EMS 
variables related to competitiveness and employment 
metrics (integer/binary), 
which are: 

H1. Business innovation model variables 
H2. Digital service implementation variables, 
H3. Digital element adoption variables, 
H4. Product-related service provision variables, 
H5. Cybersecurity practice variables, 
H6. Key enabling technology utilization variables, 
H7. Organization concept variables, and  
H8. Relocation activity variables, that 

Have an explicit connection to Finnish 
manufacturers' competitiveness and employment. 
Anonymization was applied to model the small 
enterprises on the modeling path for a general overview. 
Competitiveness and employment status show the 
sample balanced challengingly with various sectors. The 
general model of the multivariate analyses between 
variables is usable for remote measurement of the firm 
floor-level relationships when fitted with normalized 
scores. The hypotheses assume the specific 
hypotheses of connections explore the exploratory 

model and the bottom-level quotes to converge for 
discussion. Thus, the literature review of analysis 
methods considers exploratory factor analysis to assess 
the underlying factor structure. The measurement 
models against the survey data follow the factor 
structure evaluation. Structural path visioning shows the 
Tested hypothesized relationships advantaged to 
classify the sample. Reliability analysis for discriminant 
and convergent validity assessments validates the 
construct's internal validity. This EMS data derives the 
measure to manage small chains by a quantitative 
approach aligned with analyzed studies. 

III. Multi-analytic Research 
Methodology 

Over time, the manufacturing studies trends 
from Scopus show applications to analyze 
manufacturing survey data. Findings of analyses type 
sorted (e.g., Kinkel et al., 2015; European Commission, 
2016). A requirement to utilize factor analysis with 
structural path analysis is to establish an augmentation 
to explore relationships between variables from the 
latest EMS data. As such, explorative factor analysis is 
applied to assess the underlying factor structure with 
linear regression. The confirmatory on-path evaluation 
shows the measurement models on the survey data to 
the lagged binary correspondence. This was adapted to 
logistic regression with industry responses, reporting 
reliability to the causal treatment domain, see, e.g. 
(Wang et al., 2020; Gomila, 2021). For the detailed 
analysis, with the depth of linear analyses, utilizing 
logistic regression helped deal with binary data for 
drawing dedicated results. The grounding is considering 
traditional model fit indices for likelihoods. The accuracy 
on the analysis-dependent level is usually based on 
statistical principles (Hilbe, 2009; Casella & Berger, 
2002; Hosmer Jr. et al., 2013). The approach offers 
coefficient interpretation in terms of associations 
between the variables studied. The regression path 
shows the hypothesized relationships influencing 
manufacturing competitiveness and employment 
component space. Reliability analysis shows internal 
consistency (Taber, 2016). discriminant and convergent 
validity validated in further models of measurement 
(Anderson & Gerbing, 1988). 
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IV. Data-Analysis 

A sample (n=123) encompassed diverse 
industrial classifications to capture a breadth of product 
types and business models as classified (Heilala & 
Krolas, 2023). The data was acquired through 
Webropol's natural language collection tool and 
underwent cleaning to remove irrelevant responses 
(Webropol, 2022). The refined dataset was coded for 
frequency, reliability, and component analyses. 
Reliability analysis of the EMS2022 constructs was used 
to reveal internal consistency values. For reliable data, a 
partial technique across Industry 4.0 sectors established 
interpretable results (Bozgulova & Adambekova, 2023; 
Juariyah et al., 2020). Utilizing over 50 sub-items from 
the EMS22 survey represents a framework. Analysis of 
growth strategies in manufacturing, focusing on 
technologies, practices, and their impact on competition 
and employment industry-wide. 

This spectrum of the manufacturing sector 
shows' manufacturing of metal products and 
'Manufacturing of machinery and equipment,' and the 

software sector is most prominent. Industry sectors held 
a more miniature representation on each side for 
diversity and possibilities (Heilala & Krolas, 2023). The 
manufacturing industry studies have not been interested 
in industry-wide participatory studies (EMS, 2022; 
European Commission et al., 2015). Participation is 
included in the varied scope of industrial manufacturing, 
from factory assemblies to comprehensive lifecycle 
process assessments. Studies have usually served 
customers with platform requirements, such as within 
construction industry (He et al., 2018). 

a) Convergent and Congeneric Reliability Levels 
Component analysis was used for 

dimensionality reduction to measure the reliability of 
constructs. The Cronbach Alpha, Jöreskog's Rhô, and 
McDonald's omega were followed as in Table 2 (Taber, 
2016). Alongside the analysis of several items (survey 
questions or statements used), the measures of internal 
consistency indicate a set of items' interrelation. A higher 
value suggests that the items measure the same 
concept. 

Table 2: Construct Reliability Levels Show Higher Reliability for Constructs, Abbreviations Explained Below, 
Indicating Strong Internal Consistency with High Measurement Accuracy 

 Items Cronbach's 
Alpha Joreskog Rhô McDonald’s Omega val. 

DCES 4 0.900 0.803 0.867 62 
BIMs 6(7) 0.765 0.530 0.505 59 
DSs 6 <.50 <.50 <.50 88 
PRS 17 .825 0.824 .839 105 
DEs 5 .799 0.865 .812 106 
CPs 4 <.50 <.50 <.50 105 
KETs 18 0.951 0.595 0.755 123 
OCs 11 0.803 0.889 0.659 120 
RAs 3(4) 0.900 0.885 0.583 80 

Several constructs in Table 2 exhibit poor 
reliability per the coefficient values below 0.5. In the 
stats table, DCES (developing competitiveness and 
employment stats) measures various aspects such as 
AT (annual turnover) and NE (numbers of employees) to 
the other factory specifics, showing high reliability in all 
coefficients and suggesting it is a well-measured 
construct. On the contrary, BIM (business innovation 
models) has moderate reliability, indicating the varying 
degree of integration that could be the first varying 
signal of innovation potential within firms. Surprisingly, 
DSs (digital services) exhibit poor reliability, raising 
concerns over the effectiveness of these measures in 
capturing companies' digital transition. PRS (product-
related services) demonstrated robust reliability across 
all coefficients for services provided, reflecting customer 
relationship on maintenance services. The high-reliability 
scores were affirmed for DEs (digital elements). Poor 
reliability for CPs (cybersecurity practices) has indicated 
potential issues in consistently measuring how digital 

infrastructure is safeguarded. Despite moderate 
reliability, KETs (key enabling technologies) benefit the 
omega display because it has a broad scope of 
moderate reliability measures regarding a few item 
combinations that align with each other. Similarly, but 
contrary to omega, OCs (organization concepts) present 
reliable measures contributing to firm efficiency and 
agility. Uniformity to globalization, RAs (relocation 
activities) exhibit varied reliability across coefficients. 
The first signal to the empty tabulations shows Heilala 
and Krolas (2023), who note that the carbon footprint in 
offshore locations needs to be more consistently 
optimized by reassessing certified systems. 

b) Factor Analysis  
Despite a few constructs having insufficient 

reliability for further analyses, another angle to 
considering partial exploratory factor analysis (PEFA) 
was taken. PEFA was an intriguing option to form over 
an established, validated framework of the survey 
metrics. The technique has been used across 
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manufacturing and other Industry 4.0 sectors, reliably 
increasing safety to select the analysis method 
(Bozgulova & Adambekova, 2023; Juariyah et al., 2020). 
Factor analysis provides insights into the multivariate 
relationships of survey instruments (Creswell, 2015; 
Edmonds & Kennedy, 2019). PEFA shows the 
interconnections between factors influencing the 
instruments (Matsunaga, 2010; Revelle, 2013). Rotation 
methods of VariMax and ProMax optimize factor 
separability (Matsunaga, 2010). The PEFA is shown in 
the Table 3 model DCES (developing competitiveness 
and employment situ) measures of annual turnover for 
2019-2021 (AT19/21; m23a1, m23a2), employee 
numbers for 2019-2021 (NE19/21; m23b1, m23b2), 
capacity utilization for 2019-2021 (MCU19/21; m23h), 
return on sales for 2019-2021 (ROS19-21; m23i1-5), 
investments (m23f), payroll percentage (m23g), and 
establishment year (m23k) reflect financials, labor 
dynamics, asset efficiency. High turnover and 
employment correlate with competitiveness. Supply 
chain contract (SCC) types categorize operators as 
manufacturers (MFR; m03a1-a3), suppliers (SPLR; 
m03a4-a5), or contract manufacturers (CM; m03a6), 
capturing production system roles. Manufacturers' 
negative SCC correlation potentially signals inflexibilities, 
unlike positively correlated suppliers and contract 
manufacturers benefitting from dynamic agreements. 
Human resources (HR) distribution classifies graduates 
(m16a1), technical staff (sm16a2), trained workers 
(m16a3), semi/unskilled personnel (m16a4), and 
trainees (m16a5), measuring skills and qualifications. 
Graduates' negative HR correlation potentially reflects 
oversaturation, contrasting positives for vocational 
abilities. Business innovation models (BIM) like leasing 
(BIM1; m18a1), service contracts (BIM2; m18b1), 
output-based services (BIM3; m18c1), sharing models 
(BIM4; m18d1), availability guarantees (BIM5; M18e1), 
and turnkeys (BIM6; m18f1) integrate variably, signaling 

innovation potential. Digital services (DS) include 
standards solutions (m18g1), automated customer 
processes (m18g2), remote access controls (m18g3), 
cloud/IoT applications (m18g4), and data analytics 
(m18g5), enabling digital transitions. Digital elements 
(DE) such as identification tags (m04a1), sensors 
(m04a2), interactive interfaces (m04a3), real-time 
connections (m04a4), and IoT integrations (m04a5) 
emphasize digitization's role. Product-related services 
(PRS) spanning installation (m15a1), maintenance 
(m15b1), training (m15c1), support (m15d1), consulting 
(m15e1), prototyping (m15f1), modernization (m15g1), 
takebacks (m15h1), and software (m15i1) maintain 
customer relationships. Cybersecurity practices (CP), 
including awareness (m11a1), data controls (m11a2), 
network solutions (m11a3), and protections (m11a4) 
safeguard digital infrastructure. Key enabling 
technologies (KET) from programming devices (m09a1) 
to simulation software (m09p1) drive innovation and 
sustainability. Organization concepts (OC) 
encompassing integration (m06a1), customer-focus 
(m06b1), pull-based control (m06c1), changeover 
optimization (m06d1), standardization (m06e1), visual 
management (m06f1), quality assurance (m06g1), 
innovation involvement (m06h1), performance incentives 
(m06i1), environmental management (m06k1), and 
energy management (m06l1) contribute to efficiency 
and agility. Relocation activities (RA), including off 
shoring production (m26a1) and R&D (m26b1) and 
back shoring production (m26c1) and R&D (m26d1) 
represent strategic footprint optimization. The 
commonalities indicate digitalization's integral role and 
human capital's nuance in competitiveness, demanding 
tailored management. This statistical portrait outlines the 
drivers of European manufacturing competitiveness, 
employment, innovation, and strategy amidst Industry 
4.0 transformation. (EMS, 2022.). 

Table 3: The Factor Loadings Offer a Multidimensional Perspective on the Interconnected Variables Influencing 
European Manufacturing as Discerned from the EMS22 Survey 

EMS 
item DCES SSC HR BIM DS DE PRS CP KETs OCs RA COM 

m23a1 .937           .878 
m23b1 .915           .836 
m23h .389           .151 

m23i1-5 .261           .068 
m23a2 .932           .869 
m23b2 .920           .846 
m23h .419           .175 
m23f .514           .264 
m23g -.451           .203 
m23k .676           .457 

m03a1-
a3 

 -.909       
 

  .826 

m03a4-
a5 

 .522       
 

  .273 

m03a6  .564          .318 
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m16a1   -.927         .860 
m16a2   .190         .036 
m16a3   .211         .045 
m16a4   .677         .458 
m16a5   .357         .127 
m18a1    .332        .110 
m18b1    -.144        .021 
m18c1    -.081        .007 
m18d1    .794        .631 
M18e1    .795        .631 
m18f1    .785        .616 
m19a     -.612       .375 
M18g1     .538       .290 
m18g2     .153       .023 
m18g3     .570       .325 
m18g4     -.560       .313 
m18g5     -.612       .375 
m04a1      .768      .356 
m04a2      .727      .590 
m04a3      .858      .528 
m04a4      .785      .736 
m04a5      .597      .616 
m15a1       .681     .463 
M15b1       .625     .391 
m15c1       .654     .427 
M15d1       .602     .362 
M15e1       .550     .302 
m15f1       .482     .232 
m15g1       .622     .387 
M15h1       .208     .043 
M15i1       .577     .333 
m15a2       .598     .358 
m15b2       .643     .413 
m15c2       .499     .249 
m15d2       .506     .256 
m15e2       .436     .190 
m15f2       .276     .076 
m15g2       .360     .130 
m15h2       .089     .008 
m11a1        -.318    .101 
m11a2        .617    .381 
m11a3        .725    .525 
m11a4        .509    .259 
m09a1         .446   .199 
m09b1         .448   .201 
m09c1         .259   .067 
m09d1         .496   .246 
m09e1         .537   .289 
m09f1         .466   .218 
m09g1         .481   .232 
m09h1         .560   .313 
m09i1         .588   .345 
m09q1         .536   .287 
m09r1         .562   .316 
m09k1         .665   .443 
m09l1         .552   .304 

m09m1         .581   .337 
m09n1         .584   .341 
m09o1         .452   .204 
m09p1         .608   .369 
M09q*         .516   .266 
m06a1          .609  .370 
m06b1          .595  .355 
m06c1          .482  .232 
m06d1          .570  .325 
m06e1          .647  .418 
m06f1          .532  .283 
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Annual turnover and employee numbers 
(m23a1, m23a2, m23b1, m23b2) strongly correlate with 
the Competitiveness and Employment Status factor 
(DCES), underscoring their pivotal role in manufacturing 
prowess. Conversely, manufacturers (m03a1-a3) exhibit 
a negative relationship with Supply Chain Contracts 
(SSC), in contrast to the positive loadings for suppliers 
and contract manufacturers (m03a4-a6), revealing the 
complexities within supply chain dynamics. Human 
Resources (HR) are differentially impacted by the 
workforce composition, where graduates (m16a1) show 
a negative association, while technical, trained, semi-
skilled, unskilled staff and trainees (m16a2-a5) present 
positive correlations, highlighting the multifaceted nature 
of human capital in this sector. The Business Innovation 
Models (BIM) spectrum (m18a1 to m18f1) demonstrates 
diverse associations, suggesting that innovation models 
integrate more seamlessly into the current industrial 
fabric. Digital Services (DS) and Elements (DE), 
illustrated by loadings for (m19a, m18g1 to m18g5, and 
m04a1 to m04a5), emphasize the growing importance 
of digitalization. Product-related services (PRS: m15a1 
to m15h2), Cybersecurity Practices (CPs: m11a1 to 
m11a4), Key Enabling Technologies (KET: m09a1 to 
m09p1), Organization Concepts (OC: m06a1 to m06l1), 
and Relocation Activities (RA: m26a1 to m26d1) all 
display variegated correlations, indicating that specific 
practices, technologies, and strategies are differentially 
integrated and valued within the sector. Collectively, 

these loadings serve as a statistical map outlining how 
various elements contribute to the overall 
competitiveness, employment landscape, innovative 
capacity, and strategic direction of European 
manufacturing firms. 

c) Convergent and Discriminant Validity 
However, the PEFAs Tucker-Lewis (Tucker & 

Lewis 1973) indicated only partial reliability, as from the 
reliability in Table 2 a few chapters back elaborated. For 
consistency, the potential removal of some variables is 
suggested. The limit must be raised to elaborate the 
unrelated contribution of interrelations of arithmetic 
sums of the companies’ characteristics studied (Revelle, 
2013)—correlation (R) analysis to Table 4 further 
explored relationships between variables of interest. The 
data normalization was applied to ensure compliance 
with the central limit theorem (Schober & Boer, 2018). 
This comprehensive analysis elaborates on variable 
relationships. Potential quadratic relationships were 
acknowledged. The quadratic or cubic terms are rare, 
highlighting the need for careful analysis to saturation 
(Robinson & Schumacker, 2009). The R shows that the 
internal reliability does not control the fluctuations of the 
company-dependent variables. There are no 
homogeneous groups unless market transformers are 
balanced in the manufacturing portfolio (Malik et al., 
2023). 

Table 4: R Magnitudes Average Extractions; the Factors are Z-Standardized 

 ZDCES ZBIMs ZDSs ZDEs ZPRS ZCPs ZKETs ZOCs ZRAs 
ZDCES (0.25)         
ZBIMs -0.063 (0.297)        

ZDSs 0.052 .324**        

ZDEs .303** .318** 0.219 (0.565)      

ZPRS 0.028 .419**
* 

.371**
** 

.658***
* (0.41)     

ZCPs 0.007 0.256* 
.910**

** 0.089 .205** (0.317)    

ZKETs .417*** -0.100 0.060 0.175* 0.047 0.042 (0.28)   

ZOCs .418*** 0.006 0.090 .248** 0.050 0.046 .655**
** 

(0.31)  

ZRAs 0.077 0.022 0.085 .398*** .379**
** 0.023 .305**

* 
0.214

* (0.41) 

Note: results do not have significant relation/not connect (n.s./n.c.), ****p<0.001, ***p<0.01, **p<0.05 
and *p<0.1. 
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m06g1 .480 .230
m06h1 .613 .375
m06i1 .552 .305
m06k1 .555 .308
m06l1 .393 .155
m26a1 .699 .488
m26b1 .749 .561
m26c1 - .031
m26d1 .751 .564
z-standardized; *Extra

(0.283)



Table 4 presents a matrix of R coefficients, 
which explores the relationships between pairs of z-
scored variables representing different constructs (e.g., 
ZDCES, ZBIMs, ZDSs, etc.). Rs are showing the strength 
and direction of the relationships between constructs. 
The diagonal elements in parentheses indicate the 
average variance extracted for each construct, a 
measure of convergent validity that assesses the extent 
to which items of a construct are positively correlated. 
For instance, ZDEs and ZPRS have a robust positive 
correlation (R = .658****), suggesting that as one 
construct increases, the other tends to increase as well, 
and this relationship is statistically significant at the 
p<0.001 level. Similarly, ZCPs and ZDSs are highly 
correlated (R = .910****), indicating a strong positive 
relationship with statistical significance. 

d) Hypothesis Testing 
Table 5 presents the results of hypothesis 

testing, adding depth to the cross-correlations by direct 

multivariate measures to evaluate the fit of different 
models to the data. The models test specific hypotheses 
concerning the relationships between the introduced 
construct and other variables within the dataset. A high 
RMSEA (root mean square error approximation) 
suggests a poor fit between the model and the 
observed data, indicating the need for model revision. 
Despite model data fit limitations, the survey analysis is 
a complete, valid measure involving an extraordinary 
spectrum. The mediation model successfully depicted 
indirect effects on the resolution (Baron & Kenny, 1986; 
Frazier et al., 2004). For example, in biotechnology 
studies, multiple indices can be eliminated if a too-good 
fit becomes a highly restricted model (Lai et al., 2016). 
 
 

Table 5: Uses Dof (Degrees of Freedom), 𝜒𝜒² (Chi-Squared) Test, and P-Value for Model Evaluation. A P-Value < 
0.05 Typically Rejects the Model Fit. Ratios 𝜒𝜒²⁄𝑑𝑑𝑓𝑓, and RMSEA Show Fit Informing Questionnaire Validation 

Models DoF (𝜒𝜒2) p-value 𝜒𝜒2⁄𝑑𝑑𝑓𝑓 RMSEA* Hypotheses Result 

BIMs 21 61.636 <.001 2.92 Medium 

Accepted for BIM2, 
BIM6; Rejected for 
others 

DSs 10 N/A >.05 N/A High Rejected for all (5) 

PRS 153 497.613 <.001 2.47 Medium 

Accepted for PRSO3, 
PRSO8; Rejected for 
others 

DEs 10 170.463 <.001 17.463 Medium Accepted for all (5) 

CPs 10 N/A >.05 N/A High Rejected for all (4) 

KETs 
6 59.579 <.001 9.93 Null 

model 
Accepted for PC, AR; 
Declined for SDA, ET 

OCs Accepted for all (3) 

RAs Rejected for all (4) 
*Note Low (>.07), null model  (>.20), medium (<.20) or High RMSEA (<.30). 
N/A(not applicable): not computed; lack of data. 

The hypotheses result column reflects 
hypothesis testing outcomes within each model for 
having relative model fit indices based on what we have 
(Schubert et al., 2017). The consideration of industry 
requirements culminates in certifying operating 
boundaries in the globally recognized framework for 
management. The question of accepting or rejecting the 
sample rather than removing the sample size could be 
based on p-values and fit indices like 𝜒𝜒²⁄𝑑𝑑𝑓𝑓 and RMSEA 
with high factor loadings applicable to be studied. This 
would elevate the indices results due to limited 
saturation. As per medium models were found in the 
BIMs (business innovation models), specific hypotheses 
such as BIM2 (access) and BIM6 (turnkey project) 
having supported; product-related service (PRS) show 
PRS3 (training) and PRS8 (recycling/lifecycle of a 

product tracing); and for DE (digital elements) for all: 
DE1 (identification), DE2 (digital functions); DE3 
(interfaces); DE4 (realtime-network); and DE5 
(transformations). KETs (key enabling technologies) for 
AR (automation and robotics) with PC (production 
control) were supported, but other technologies like 
simulation, data analysis, and additive manufacturing 
were not. The OCs (organization concepts) spectrum 
showed affirmative. Table 5 shows that null modes were 
taken to the investigations to build a new model in 
discussion. The proposed automation and robotics 
technology management model was stable out of 
statistical biases. The industrial engineering 
management on automation and robotics robustness 
shows a technology model. Industrial Management's 
dilemma on perfect model fit corresponds to the highest 
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expectations (Hogeforster & Wildt, 2021). The chi-
square is not definitive in determining fit indices in 
understanding industrialized imbalanced segregations 
with indications (West et al., 2012; Shi et al., 2019). The 
hypothesized per a priori model is in Figure 2—the path 

drives key relationships. The figure's paths provide the 
research model's partial exploratory factor analysis 
elimination perspective. The figure proposes ln-not 
corroborated linkage to avoid worsening the model fit. 
 

 

Figure 2: Has medium outlining for a null model for manufacturing survey results for discussion (arrows as causal 
hypotheses), focusing on contribution altogether, with BIMs with factors fc1-access and fc2-turn key innovation; 
KETs with factors fc3-automation and robotics and fc4-production control; and PRS, with factors fc5-online and fc6-
maintenance provided —to achieve digital competitive advantage in Industry 4.0. Solid arrows depict validated 
causal connections between variables and factors, while double-headed arrows represent bidirectional correlations 
among BIMs, KETs, and PRS 

e) Refining Empirical Variables 
The refined structural multivariate hypothesis 

test shows evidence for support. Proposed relationships 
in the explorative research model are merged. 
Automation and robotics technologies computed 
dependent variables. Given the guess. Given their 
increasing prevalence in smart factories (Wang et al., 
2020). This will allow testing of the integration between 
production control software and automated/robotic 
management. Per Manufacturing execution systems 
(MES, m09g1) and product lifecycle management (PLM, 
m09f1) selection to the independence of production 
control systems. The integral components of digital 
manufacturing infrastructure were explored (Lee et al., 
2022). Shall MES and PLMs be selected for real-time 
data collection, monitoring, quality management, and 
product lifecycle data management (Zhong et al., 
2021)? As per demonstration affirmative. The 
maintenance model into performance could also be 
critical for manufacturing operations review (Grieco et 

al., 2022). The result identifies MES and PLM enabling 
the transformation forward for Industry 4.0 (Capgemini 
Research Institute, 2021). 

V. Empirical Results 

a) Structural Concept 
Per linear analysis: the depth included methods 

for causal links and chained handling of binary data, 
providing logic for advanced manufacturing (Heilala & 
Krolas, 2023). The logistic analysis is flexible per 
practice contract. Figure 3 shows that managed 
business innovation models (BIMs) and product-related 
services (PRS) can be abandoned. Industry 4.0 
emphasizes manufacturing production control, 
automation, and robotics as key enablers. This 
framework for competitive advantage dynamics is in 
Figure 3. 
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Figure 3: Structural Models Illustrate the a Priori Linear Relationships Between Automation and Robotics Production 
Control Endogenous Variables (E1-E6, M09, and M23-Series with Financial Management in EMS). 

Exclusions of most of the factors were due to 
data constraints-imposed model. The boundary 
limitations for the power analysis on a small square are 
visible. Yielding lower RMSEA for fit between production 
control, automation, and robotics technologies. The 
correlates in m09-series endogenous variables e1 (f1) 
and e2 (g1), and connections to e3 (h1) and e4(i1) were 
highlighted. Integrating advanced technologies as 
foundational for Industry 4.0's competitive positioning 
evokes the primary hypothesis. The cross-sectional 
innovative servicing of robots and automation also 

linkages with e5(q1) and e6(r1) can validate hypotheses. 
Confirmatory analysis suggests that innovative business 
practices leverage m09-series digital capability. This 
implies refined performance strategies resulting in 
manufacturer-minimum classification. The pathways of 
the manufacturer show solid arrows for empirically 
supported hypotheses, as regression ruling 
demonstrates. Growth stimulates advancement in other 
elements without the requirement for simulation. The 
selection variables support the theoretical hypotheses in 
Table 7 (Appendix A). 

Table 7:  The examination of a logistic regression model showing linear as detailed in Appendix Awith A.1, merging 
various metrics of model performance with validation; A.2 measuring the model predicting correct outcomes; A.3-
A.4 the model's accuracy to the relationship with result predictions 

 Precision Recall F1-Score Support   

       

 
0.0 1.00 0.71 0.83 7 

 

 
1.0 0.88 1.00 0.93 14 

 

       

 
accuracy 0.90 21 

   

 
macro avg 0.94 0.86 0.88 21 

weighted avg 0.92 0.90 0.90 21  

The logistic regression predicts the fusion of 
automation technology with performance metrics. The 
characteristics of manufacturing classification accuracy 
elucidated precision to continue scientific discussions of 
applied regression's (Hilbe, 2009; Casella & Berger, 

2002; Hosmer Jr et al., 2013). The analytical strategy's 
novelty shows reliability and discourse to literature to 
transform it into transformative innovation for 
engineering and financial management. Execution and 
lifecycle systems were chosen to represent the 
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production of automation and robotics. These are 
integral components of digital manufacturing 
infrastructure for sustainability (Lee et al., 2022). These 
systems offer comprehensive capabilities for real-time 
data collection, monitoring, quality management, and 
product lifecycle data management (Zhong et al., 2021). 
Past research shows similarities in shipbuilding 
(Sánchez-Sotano et al., 2019). Execution systems 
dimensioning without what operations are left to the 
heavy organization procedures irrelevant to 
manufacturers. Leading industry reports also identify 
results essential in digital transformation enablers for 
Industry 4.0 (Capgemini Research Institute, 2021). 
Regressions in measuring the literature confirmed a 
similar significant positive correlation between integrated 
execution on the production lifecycle, and it is being 
integral to finance.   

VI. Discussion 

This study utilized path analysis and logistic 
regression to examine relationships between key 
manufacturing technologies and production outcomes. 
The analysis focused on widely adopted technologies 
and their interactions with automation and robotics. 
Positive correlations were found between these 
variables, validating hypothesized beneficial technology 
integration effects. While data limitations prevented 
confirmation of all proposed relationships, the 
statistically supported linkages represent essential 
findings for a refined model concentrating on validated 
connections to enable intelligent manufacturing 
performance. 

The study also analyzed survey data assessing 
connections between digital transformation, 
manufacturing competitiveness, and employment in 
Finland. While hypothesis testing yielded mixed results, 
complex interrelationships, some business models and 
technologies exhibited clear positive ties to improved 
competitiveness. Furthermore, interactive interfaces, 
real-time networking, and digital transformation adoption 
are related to better competitiveness and employment 
scenarios (Moeuf et al., 2017). However, more than 
transparent or insignificant relationships were found for 
other variables like digital services, cybersecurity, 
simulation tools, and additive manufacturing (McNeish, 
2018). These highlight areas needing further research 
before emphasis or investment. 

VII. Conclusion 

A statistical factorization outlined manufacturers' 
contributions from 2019 to 2021. The science gap 
reaches integration into European manufacturing 
competition, which concludes with execution and 
lifecycle management. According to the original 
hypotheses, growth has complex interdependencies. 
The inevitable other elements correspond to the 

performance outcomes. However, the study cannot 
decide which principles of execution and lifecycle 
should prepare manufacturing. The standpoint on 
usable data constraints limited full confirmation. A partial 
overview supports every hypothesis. However, it is rare 
for a company to afford a complex system and business 
when manufacturing must be planned separately. A 
couple of more prominent companies with higher 
turnovers have higher integrative posts. 

In conclusion, this study utilized statistical 
modeling to analyze the relationships for competitive 
manufacturing. Findings confirmed automation, 
robotics, and production control integration for 
performance. However, emerging technologies showed 
unclear impacts, requiring a reliable network. While 
small datasets set limitations preventing full spectral 
confirmation to all hypotheses reliably, responses 
contribute to future research and development. The 
database meta-analysis on the factor analysis’ reliability 
reporting could be interesting to address in further 
studies. Factor analysis root means a square error has 
been outlined as heterogeneous, to which 
homogeneous generalization researchers aim to keep 
science differentiated from the actual practice. At the 
same time, others seem not to report indices. The 
indicative meta-analysis with regression test 
differentiates items and could open the industry trends, 
improving high indices. 
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Appendix A: Evaluation of Logistic Regression Model Outcomes 

 
 

import pandas as pd  
from sklearn.model_selection import train_test_split  
from sklearn.linear_model import Logistic  Regression  
from sklearn.metrics import accuracy_score, classification_report  
data = {'AT_m23a1': [-99, -99, -99, -99, 0, -99, -99, -99, 1, -99, -99, -99, -99, 113, 13, -99, -99, 1, 2.1, -99, 6, 6, 
65, 8, 1, 2, -99, 29, 1, 16, 4, -99, 12, 4, 1, 7, 339, -99, 24, -99, 3, 59, 29, 24, 1, 10, 3, 10, -99, 70, 3, -99, 17, 2.4, 
17,  -99, -99, 3, 1, -99, 48, 2, 2.8, -99, -99, -99, 120, 10.8, -99, -99, 3.022, 0.6, 3, 45, 1.5, 1.2, -99, 1, -99, 5, 0.432, 
4.7, 1, 9.7, 2, -99, -99, 1.2, 2, 12.397, 100, -99, 1.04, 2.2, -99, 32, 80, 220, -99, -99, 6, -99, 19.586, 11, -99, 6.26, 
9.3, 6.4, 110, -99, 6, 1.7, -99, -99, -99, -99, 3.096, 6.2, 55, 0.4, 128, 82.295749  #… all others],  
'AT_m23a2': [-99, -99, -99, -99, 0, -99, -99, -99, 1, -99, -99, -99, -99, 105, 11, -99, -99, 1, 1.6, -99, 7, 6, 60, 6, 1, 
1,  -99, 38, 1, 15, -99, -99, 11, 5, 0, 9, 326, -99, 22, -99, 20, 63, 24, 24, 1, 9, 2, 12, -99, 49, 2, -99, 15, 0.6, 15, -99, 
-99, 2, 1, -99, 32, 1, 2.7, -99, -99, -99, 120, 7.8, -99, -99, 3.275, 0.615, 3, 35, 1.5, 1.4, -99, 1, -99, 5, 0.158, 4.7, 
0.64, 9, 2, -99, -99, 1.2, 1.8, 10.625, 110, -99, 0.1, 2.1, -99, 13, -99, 250, -99, -99, 6, -99, 16.694, 7, -99, 19.214, 
7.3, 4.2, 120, -99, 4.5, 1.5, -99, -99, -99, -99, 4.865, 6, 50, 0.5, 108, 70.102277  #… all others],  
'NE_m23b1': [-99, 15, 3, -99, -99, 15, 15, -99, 40, 30, 65, 18, 7, 14, -99, 250, 17, 108, 35, -99, 46, 19, 8, 53, 345, 
-99, 35, -99, 10, 177, 150, 54, 10, 42, 4, 55, -99, 220, 30, -99, 50, 21, 110, -99, -99, 6, 12, -99, 65, 19, 15, -99, -
99, 43, -99, 300, 120, 230, -99, 20, 26, 3, 240, 11, 6, 12, -99, 100, 7, 17, 12, 57, 11, 20, -99, 17, 20, 65, 280, -99, 
14, 10, -99, 65, 160, 500, -99, -99, 42, -99, 99, 60, -99, 51, 34, 76, 300, 200, 80, 12, -99, 75, -99, -99, 25, 43, 
190, 4, 52, 75, 20, 120, 140, 90, 14, 54, -99, -99, 5, 47, 9, 4, 54, 5, -99, 45  #… all others],  
'NE_m23b2': [-99, 12, 2, -99, -99, 14, 14, -99, 38, 28, 64, 18, 7, 13, -99, 240, 17, 105, 33, -99, 44, 18, 8,  51, 320, 
-99, 33, -99, 8, 175, 140, 52, 9, 40, 4, 53, -99, 210, 28, -99, 48, 20, 108, -99, -99, 5, 11, -99, 63, 18, 14, -99, -99, 
40,  -99, 290, 118, 220, -99, 19, 25, 2, 235, 10, 5, 11, -99, 96, 6, 15, 10, 55, 10, 18, -99, 16, 18, 63, 270, -99, 13, 
8,  -99, 62, 158, 480, -99, -99, 40, -99, 96, 58, -99, 50, 32, 73, 290, 190, 78, 11, -99, 70, -99, -99, 24, 40, 185, 3, 
50, 73, 19, 116, 135, 88, 12, 52, -99, -99, 4, 45, 8, 3, 52, 4, -99, 42  #… all others],  
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'PLM_m09f1': [0, 1, 0, -99, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, -99, 0, -99, 0, 0, 0, 0, 0, 0, 1, 0, -99, 1, 0, 1, 1, 0, 0, 
1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, -99, 0, 0, 0, -99, -99, 0, 0, 0, 0, -99, 0, 0, 1, 0, 1, 0, -99, 0, 0, 1, 
-99, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, -99, 0,  0, 0, 0, 0, 1, 0, 0, 0, -99, 0, 0, 1, -99, 1, 1  #… all others],  
'MES_ofm09g1': [0, 0, 0, -99, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, -99, 1, -99, 0, 1, 0, 0, 0, 1, 1, 1, -99, 0, 0, 0, 1, 0, 
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, -99, 1, 0, 0, -99, -99, 0, 0, 0, 0, -99, 0, 0, 0, 0, 0, 0, -99, 1, 0, 
1,  -99, 0,  1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, -99, 1, 0, 0, 0, 0, 0, 0, 0, 0, -99, 0, 0, 0, -99, 1, 0  #… all others],  
'AR1_m09h1': [1,1,-99,-99,0,1,-99,-99,-99,-99,1,0,-99,1,-99,-99,0,-99,-99,-99,-99,-99,-99,-99,-99,1,-99,1,-99,-
99,0,-99,-99,1,-99,-99,-99,1,-99,1,-99,-99,-99,1,-99,-99,1,0,-99,0,-99,1,-99,-99,-99,-99,-99,1,-99,1,1,1,0,-99,1,0,-
99,-99,-99,1,-99,1,1,-99,-99,1,-99,-99,1,0,1,1,-99,1,0,-99,-99,-99,-99,1,-99,1,1,-99,-99,0,-99,-99,-99,1,-99,-99,1,1  
#… all others],  
'AR2_m09i1': [0,0,-99,-99,1,0,-99,-99,-99,-99,0,0,-99,1,-99,-99,0,-99,-99,-99,-99,-99,-99,-99,-99,0,-99,0,-99,-
99,1,-99,-99,0,-99,-99,-99,0,-99,0,-99,-99,-99,0,-99,-99,1,1,-99,1,-99,0,-99,-99,-99,-99,-99,0,-99,1,0,1,1,-99,1,0,-
99,-99,-99,0,-99,0,1,-99,-99,0,-99,-99,0,1,1,0,-99,1,0,-99,-99,-99,-99,0,-99,1,0,-99,-99,1,-99,-99,-99,0,-99,-99,1,1  
#… all others],  
'AR3_m09q1: [0,0,-99,-99,0,0,-99,-99,-99,-99,1,1,-99,0,-99,-99,0,-99,-99,-99,-99,-99,-99,-99,-99,0,-99,0,-99,-
99,0,-99,-99,1,-99,-99,-99,0,-99,0,-99,-99,-99,0,-99,-99,0,0,-99,0,-99,0,-99,-99,-99,-99,-99,0,-99,0,0,1,0,-99,0,0,-
99,-99,-99,0,-99,0,0,-99,-99,0,-99,-99,0,0,1,1,-99,0,0,-99,-99,-99,-99,0,-99,0,0,-99,-99,0,-99,-99,-99,0,-99,-99,0,1  
#… all others],  
'AR4_m09r1': [0,0,-99,-99,0,0,-99,-99,-99,-99,0,1,-99,0,-99,-99,1,-99,-99,-99,-99,-99,-99,-99,-99,0,-99,0,-99,-
99,0,-99,-99,0,-99,-99,-99,0,-99,0,-99,-99,-99,0,-99,-99,1,0,-99,0,-99,0,-99,-99,-99,-99,-99,0,-99,0,0,1,1,-99,0,1,-
99,-99,-99,0,-99,0,0,-99,-99,0,-99,-99,0,1,1,1,-99,0,1,-99,-99,-99,-99,0,-99,0,0,-99,-99,0,-99,-99,-99,0,-99,-99,0,1  
#… all others]}  
df = pd.DataFrame(data)  
df.replace(-99, pd.NA, inplace=True)  
for  col in  df.columns:  
    mode_val = df[col].mode()[0]  
    df[col].fillna(mode_val, inplace=True)  
X = df[['MES', 'AT_m23a1', 'AT_m23a2', 'NE_m23b1', 'NE_m23b2', 'AR1 m09h1', 'AR2 m09i1', 'AR3 m09q1', 'AR4 
m09r1']]  
y = df['PLM'] 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
clf = LogisticRegression(max_iter=1000)  # max_iter  
clf.fit(X_train, y_train)  
y_pred = clf.predict(X_test)  

Figure A. 2: Receiver Operating Characteristic (ROC) Curve Demonstrating Outcome Predictive Efficacy 

 
 

import numpy as np  
from sklearn.metrics import precision_recall_fscore_support, roc_curve, auc  
import matplotlib.pyplot as plt  
import seaborn as sns  
df = pd.DataFrame(data) # As given  
df.replace(-99, np.nan, inplace=True)  
df.dropna(inplace=True)  
X = df[['PLM', 'MES']]  # PLM & MES as features  
y = df['AR1']  # Assuming for example, that 'AR1' is the target variable  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)  
logreg = LogisticRegression()  
logreg.fit(X_train, y_train)  
y_pred = logreg.predict(X_test)  
y_pred_proba = logreg.predict_proba(X_test)[:,1]  
accuracy = accuracy_score(y_test, y_pred)  
precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred, average='binary')  
report = classification_report(y_test, y_pred)  
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print('Accuracy:', accuracy) 
print('Precision:', precision) 
print('Recall:', recall) 
print('F1 Score:', f1) 
print('Classification Report:\n', report) 
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba) 
roc_auc = auc(fpr, tpr) 

Figure A.3: Histogram and Bar Plot Analysis Detailing Precision, Recall, and F1-Score for 'FF' and 'TF' Outcomes 

 # Plotted normalized data  
data = {     # 'Y': [5.5, 6.7, 8.8, 4.4], # Interface  

    'AT_m23a1': [1, 2, 3, 4], # Growth for 2021  
    'AT_m23a2': [2.1, 2.2, 2.3, 2.4], Growth for 2019  
    'NE_m23b1': [3, 3.1, 3.2, 3.3],# Size for 2021  
    'NE_m23b2': [4, 4.1, 4.2, 4.3],# Size for 2019  
    'AR1 m09h1': [5, 5.1, 5.2, 5.3],# Industrial robots for manufacturing adoption  
    'AR2 m09i1': [6, 6.1, 6.2, 6.3], # Industrial robots for handling adoption adoption  
    'AR3 m09q1': [7, 7.1, 7.2, 7.3], # Mobile industrial robots adoption  
    'AR4 m09r1': [8, 8.1, 8.2, 8.3], }# Collaborating robots adoption  

df = pd.DataFrame(data)  
# -99 missing removal  
df = df[df.PLM != -99]  
df = df[df.MES != -99]  
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))  
ax[0].hist(df['PLM'], bins=3, edgecolor='black')  
ax[0].set_title('PLM Distribution')  
ax[0].set_xlabel('PLM Value')  
ax[0].set_ylabel('Frequency')  
ax[1].hist(df['MES'], bins=3, edgecolor='black')  
ax[1].set_title('MES Distribution')  
ax[1].set_xlabel('MES Value')  
ax[1].set_ylabel('Frequency')  
plt.tight_layout()  
plt.show()  
# Regression  
sns.regplot(x='PLM', y='MES', data=df, logistic=True, ci=None)  # logistic regression as data is binary  
plt.title('Regression Plot between PLM and MES')  

Figure A.4: Scatter Plot with Trend Line for Model Support Against 'Outcome' Categories 

 
 
 

data = pd.DataFrame({# Tabulated logistic training results  
    'Outcome': ['FF', 'TF', 'Accuracy', 'Macro Avg', 'Weighted Avg'],  
    'Precision': [1.00, 0.88, None, 0.94, 0.92],  
    'Recall':  [0.71, 1.00, None, 0.86, 0.90],  
    'F1-Score': [0.83, 0.93, 0.90, 0.88, 0.90],  
    'Support': [7, 14, 21, 21, 21]})  

palette = {"FF": "#1f77b4", "TF": "#ff7f0e"}  
plt.figure(figsize=(20, 6))  
# Plot 1 for Precision, Recall, and F1-Score for FF and TF  
plt.subplot(1, 2, 1)  # 1 row, 2 columns, first subplot  
bar_data = data[:2].melt(id_vars='Outcome', value_vars=['Precision', 'Recall', 'F1-Score'])  
bar_plot = sns.barplot(x='variable', y='value', hue='Outcome', data=bar_data, palette=palette)  
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plt.ylim(0, 1.1)  
plt.title('Precision, Recall, and F1-Score by Outcome')  
plt.ylabel('Score')  
plt.xlabel('Metric')  
plt.legend(title='Outcome')  
for container in bar_plot.containers:  
    bar_plot.bar_label(container, fmt='%.2f', padding=3)  

# Plot 2 for F1-Score for Accuracy, Macro Avg, and Weighted Avg  
plt.subplot(1, 2, 2)  # 1 row, 2 columns, second subplot  
f1_data = data[2:].melt(id_vars='Outcome', value_vars=['F1-Score'])  
f1_plot = sns.barplot(x='Outcome', y='value', data=f1_data)  
plt.ylim(0, 1.1)  
plt.title('F1-Score for Accuracy, Macro Avg, and Weighted Avg')  
plt.ylabel('F1-Score')  
plt.xlabel('Metric')  
for container in f1_plot.containers:  
    f1_plot.bar_label(container, fmt='%.2f')  

plt.tight_layout()  
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