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Abstract- This article presents the analysis of Strut-and-Tie Model (STM) in reinforced concrete 
3D structures based on the study of topological optimization, so that the problem is formulated 
with the Smooth-ESO (SESO) discrete method, whose removal heuristic is bidirectional with 
discrete optimization procedure, and the Velocity Field Level Set Method (VFLSM), which is an 
inheritance of the classical continuum Level Set Method (LSM), but advances the design limits 
with a velocity field constructed from the rate of the design variables and base functions. The 
proposed approach is to couple both methods in conjunction with the Method of Moving 
Asymptotes (MMA), used to control the various design constraints that are the minimization of 
compliance and the Von Mises stress that has demonstrated more rational STM results. 
Additionally, it has been formulated a methodology for the automatic generation of optimal of 3D 
STM by using sensitivity analysis obtaining via derivatives of the Von Mises stress fields, finding 
the force paths prevailing compression in the directions of the strut and the tensile in the 
directions of the ties for the reinforcement insertion. 
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Abstract- This article presents the analysis of Strut-and-Tie 
Model (STM) in reinforced concrete 3D structures based on 
the study of topological optimization, so that the problem is 
formulated with the Smooth-ESO (SESO) discrete method, 
whose removal heuristic is bidirectional with discrete 
optimization procedure, and the Velocity Field Level Set 
Method (VFLSM), which is an inheritance of the classical 
continuum Level Set Method (LSM), but advances the design 
limits with a velocity field constructed from the rate of the 
design variables and base functions. The proposed approach 
is to couple both methods in conjunction with the Method of 
Moving Asymptotes (MMA), used to control the various design 
constraints that are the minimization of compliance and the 
Von Mises stress that has demonstrated more rational STM 
results. Additionally, it has been formulated a methodology for 
the automatic generation of optimal of 3D STM by using 
sensitivity analysis obtaining via derivatives of the Von Mises 
stress fields, finding the force paths prevailing compression in 
the directions of the strut and the tensile in the directions of the 
ties for the reinforcement insertion. All the codes are 
implemented with Matlab software and several comparison 
examples: Deep beam with opening, a pile cap, a bridge pier, 
and a single corbel, are presented to validate the present 
formulations and the results are compared with the literature. 

 

I. Introduction 

n the field of structural engineering, most concrete 
linear elements are designed by the classical theory 
of Bernoulli hypothesis. For a real physical analysis 

about behavior of these bending elements it is common 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

to use the Strut-and-Tie Model (STM) that is a 
generalization of the classical analogy of the truss beam 
model. This analogy is shown by Ritter and Morsch at 
the beginning of the twentieth century, associated with 
the Reinforced Concrete (RC) beam in an equivalent 
truss structure (regions B, Fig. 1). The bar elements 
represent the fields of tensile and the compressed struts 
emerged inside the structural element as bending 
effects. The analogy has been improved and is still used 
by the technical standards in the design of reinforced 
concrete beams in flexural and shear force and laying 
down various criteria for determining safe limits in its 
procedures. However, the application of this hypothesis 
for any structural element can lead to over or under 
sizing of certain parts of the structure. 

The Bernoulli hypothesis is valid for parts of the 
frame that there is no interference from other regions, 
such as sections near the columns, changing in 
geometry or other areas where the influence of strain 
due to shear efforts is not negligible. In this line, there 
are regions where the assumptions of Bernoulli do not 
adequately represent the bending structural behavior 
and the stress distribution. Structural elements such as 
beams, walls and pile caps and special areas such as 
beam-column connection, openings in beams and 
geometric discontinuities are examples. These regions, 
denominated “discontinuity regions D”, are limited to 
distances of the dimension order of structural adjacent 
elements (Saint Venant’s principle), that the shear 
stresses are applicable and the distribution of strains in 
the cross section is not linear. From the 80's, a Professor 
at the University of Stuttgart and other collaborators 
presented several researches that evaluated these 
regions more adequately, as [1], [2], [3], and other 
researchers as [4], [5] and [6]. The pioneering work by 
[1] describes the STM more generally, covering the 
equivalent truss models and including these regions and 
special structural elements. The analogy used in the 
STM uses the same idea of the classical theory in order 
to define bars representing the flow of stress trying to 
create the shortest and more logical path loads. Several 
experimental evaluations have been studied to validate 
the STM applied to the RC design, as [7], [8], [9] and 
[10]. 
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The STM is recognized as a rational approach 
to the design of discontinuity regions and is 
incorporated in several current codes, such as ASCE-
ACI 445 on Shear and Torsion [11], [12], [13] and [14]. 
These code provisions still require improvement due to 
uncertainties in the selection of optimal struts-and-ties, 
especially in the case of complex geometry or general 

load application conditions. Because of its simple model 
and needs the experience of the designer to select and 
distribute the elements of the model in order to 
represent the stresses path in a better way, it becomes 
evident the use of more reliable and automatic tools for 
defining its geometric and structural configuration. 

Fig. 1: D and B regions

To overcome these difficulties and improve the 
efficiency in building the optimal STM in RC structures, 
the theory of Topology Optimization (TO) has been used 
for two decades as an alternative and systematic 
approach consolidating itself as a fruitful path of design 
related research, once facilitates the shaping of 
materials under certain conditions. Many methods have 
been proposed for the solution of TO applied to STM, 
highlighting the use of the classical SIMP: [15], [16], 
[17], or ESO (Evolutionary Structural Optimization): [18], 
[19], [20], Liang et al. [21,22,23], Chen et al. [24], 
Zhong et al. [25], or variants, like BESO, Shobeiri et al. 
[26], RESO (Refined ESO), Leu et al. [27] or SESO 
proposed by the present authors, Almeida et al. [28]. 
SESO is based on the philosophy that if an element is 
not really necessary for the structure, its contribution to 
the structural stiffness is gradually diminished until it 
does not have any influence in the structure; that is, its 
removal is done smoothly, not radically as in the ESO 
method, that have been showed more efficient and 
robust and less sensitive to the discretization than ESO 
and faster than BESO, causing a decrease of the 
checkerboard formation. 

In the last decade, the Level Set Method (LSM) 
has been highlighted in the field of TO, different from the 
conventional element wise density-based methods. LSM 
has clearer and smoother results and are flexible for 
complex topological changing, citing the pioneer’s 
works of [29], [30] and [31]. The method describes the 
topological path by an implicit shape evolutive 
sequence by using a higher dimensional function to the 

design space for achieving the minimum energy under 
design constraints. Several other schemes have been 
included in the standard LSM to improve performance 
and achieve better results for general applications, like 
[32], [33]. Wang and Kang [34,35] proposed the 
Velocity Field Level Set Method (VFLSM) which has 
been proved to be more efficient to deal with multiple 
constraints and design variables than LSM, but few 
works have been applied to STM by using VFLSM. 

OT in solving problems in the field of 3D STM is 
not much explored for general D-regions, discouraged 
by the instabilities (checkerboard problem) inherent to 
SIMP, ESO/BESO or the complex formulation and high 
processing time of LSM/VFLSM. Thus, for stabilizing and 
accelerating the TO solution, several mathematical 
optimization methods have been proposed, such as 
Optimality Criteria, by Huang et al. [36] with BESO, 
Augmented Lagrangian [37] or [38] with Level-Set, 
Lagrangian multiplier by [39] and [40] with LSM, or the 
Method of Moving Asymptotes (MMA), by [41] with 
SIMP. 

In the present work, aiming at the solution of 3D 
STM in general reinforced concrete problems, the SESO 
methods whose advantages are easy implementation 
and decrease of the checkerboard effect and the 
VFLSM, which deals well with shape and topological 
optimizations, are formulated together with the MMA 
optimization method to accelerate and stabilize 3D STM. 
It is also noteworthy new approach of sensitivity analysis 
is incorporated in these formulations for the automatic 
generation of struts-and-ties based on partial derivatives 
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with respect to Von Mises stresses. The volume 
constraints are considered in the analyses, as the 
implementation of a spatial filter and the conjugate 
gradient method with the incomplete Cholesky 
preconditioner to speed up the solution of the linear 
system of each step of the search. 

a) Problem Formulation 
Considering the classical topology problem for 

the maximum stiffness of statically loaded linear elastic 

structures, a TO mathematical formulation for continuum 
structure can be discussed. Considering the TO 
problem as minimizing the deformation energy of a 
given structure considering the equilibrium, it follows 
that W=2U. The problem can then be defined as: 

 
 
 

 

 

                   (1) 

     

with 𝐸𝐸𝑒𝑒  being the element's elasticity matrix, 𝜀𝜀𝑒𝑒  is the 
element's strain vector, 𝑉𝑉𝑒𝑒  is the volume of an element, 
NE is the number of finite elements of the mesh, 𝐾𝐾 is the 
stiffness matrix, 𝐾𝐾𝑢𝑢 = 𝐹𝐹 is the equilibrium equation, 𝐹𝐹 is 
the vector of loads applied to the structure, 𝑥𝑥𝑖𝑖  is the 
design variable of the i-th element, 𝑋𝑋  is the vector of 
design variables. 

b) Smooth Evolutionary Structural Optimization (SESO) 
The ESO method, which heuristic is based on 

the gradual and systematic removal of elements whose 
contribution to the stiffness of the structure are 
insignificant, was proposed by Xie and Steven [42]. The 
SESO method proposed by Simonetti et al. [43] is 
based on the ESO philosophy and applies a weighting 
to the constitutive matrix so that the element that would 

be eliminated is maintained and receives a smoothing 
characteristic. This treatment procedure applies a 
degradation in the value of its initial stiffness in such, 
during the removal process, its influence can contribute 
and determine its permanence or its definitive 
withdrawal from the design domain. Thus, the elements 
located near the limit to the left of this maximum strain 
energy are kept in the structure, defining a smoother 
heuristic removal. In Fig. 2, 𝐷𝐷(𝑗𝑗) is the constitutive matrix 
of element j, 𝛤𝛤 =  𝛤𝛤𝐿𝐿𝐿𝐿 + 𝛤𝛤𝐺𝐺𝐿𝐿  is the domain of elements 
that can be withdrawn, 𝛤𝛤𝐿𝐿𝐿𝐿 is the domain of elements that 
must be effectively removed, 𝛤𝛤𝐺𝐺𝐿𝐿  is the domain of 
elements that are returned to the structure, 0 ≤  𝜂𝜂�𝛤𝛤� ≤
1 is a weighted function. 

Fig. 2: Classic procedure in strain energy: (a) SESO and (b) ESO

c) The Level Set Method (LSM) 
LSM is a technique for representing moving 

interfaces or boundaries using a fixed mesh. The 
dynamics of the interfaces can be formulated as the 

evolution of the level function defined by 𝜙𝜙(𝑥𝑥(𝑡𝑡), 𝑡𝑡) , 
which is continuous Lipschitz and is usually defined as 
follows
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Minimize:    𝑈𝑈(𝑋𝑋) = 1
2
𝑢𝑢𝑇𝑇𝐾𝐾𝑢𝑢 = ∑ 1

2 ∫ 𝜀𝜀𝑒𝑒𝑇𝑇𝐸𝐸𝑒𝑒(𝑥𝑥)𝜀𝜀𝑒𝑒𝑑𝑑𝑉𝑉𝑒𝑒𝑉𝑉𝑒𝑒
𝑁𝑁𝐸𝐸
1

Subject to:   𝐾𝐾𝑢𝑢 = 𝐹𝐹

𝑉𝑉(𝑋𝑋) = ∑ 𝑋𝑋𝑖𝑖𝑉𝑉𝑖𝑖 − 𝑉𝑉 ≤ 0𝑁𝑁𝐸𝐸
𝑖𝑖=1                       

𝑋𝑋 = {𝑥𝑥1𝑥𝑥2 𝑥𝑥3 … 𝑥𝑥𝑛𝑛}, 𝑥𝑥𝑖𝑖 = 1 𝑜𝑜𝑜𝑜𝑥𝑥𝑖𝑖 = 0



𝜙𝜙(𝑥𝑥, 𝑡𝑡) = { 𝜙𝜙(𝑥𝑥, 𝑡𝑡) > 0   ∀ 𝑥𝑥 ∈ 𝛺𝛺\𝜕𝜕𝛺𝛺 ;     𝜙𝜙(𝑥𝑥, 𝑡𝑡) = 0   ∀ 𝑥𝑥 ∈ 𝜕𝜕𝛺𝛺 ;    𝜙𝜙(𝑥𝑥, 𝑡𝑡) < 0 ∀ 𝑥𝑥 ∈ 𝐷𝐷\𝛺𝛺  } 

with  𝑥𝑥𝑥𝑥𝐷𝐷 ⊂ {(𝑥𝑥, 𝑦𝑦)𝑥𝑥𝑅𝑅2}  is any point in the design 
domain D and ∂Ω is the solid domain boundary as 
shown in Fig. 3 for a 2D case.             

(2) 

In classical LSM for TO, such as [30] and [31], 
the design evolution is based on the solution of the 
Hamilton-Jacobi partial differential Eq. (4). Thus, it 
needs an appropriate choice of finite difference 
methods on a fixed cartesian mesh. In general, the 
design update involves differentiation, resetting and 
velocity extension.       

(3)      

(4) 

𝜕𝜕∅
𝜕𝜕𝑡𝑡 − 𝑉𝑉𝑛𝑛 |𝛻𝛻∅| = 0 

𝑉𝑉𝑛𝑛 = 𝑉𝑉.  �−
𝛻𝛻∅

|𝛻𝛻∅|� 

with 𝛻𝛻∅  denotes the gradient of a function, 𝑡𝑡  is the 
pseudo time that represents the evolution of the function 
𝜙𝜙(𝑥𝑥, 𝑡𝑡)  defined, 𝑉𝑉𝑛𝑛 (𝑥𝑥, 𝑡𝑡)  is the normal velocity vector 
(pointing outwards) based on the derivatives of the 
shape functions in the TO problem. 

Fig. 3: Evolution history of the 2D geometry to a 3D level

Recently, Wang and Kang [34, 35] proposed a 
100-line Velocity Field Level Set (VFLS), implemented in 
Matlab code. The structural shape and topology are 
updated by a velocity field constructed with the base 
function and velocity design variables defined 
throughout the domain. Then, the velocity field 
determines the search direction of the shape and the 
topological evolution can be obtained by a generic 
mathematical programming algorithm, which makes it 
more convenient and efficient to deal with multiple 
constraints and types of design variables. For VFLS, we 
have:       

(5)

 

𝑉𝑉𝑛𝑛 (𝑥𝑥) = �𝛽𝛽𝑗𝑗𝑝𝑝𝑗𝑗 (𝑥𝑥)
𝑁𝑁

𝑗𝑗=1

 

with 𝛽𝛽𝑗𝑗 (𝑗𝑗 = 1,2, … ,𝑁𝑁) are the velocity design variables at 
N velocity points distributed throughout the main design, 
and 𝑝𝑝𝑗𝑗 (𝑥𝑥)  are the basic functions. It is observed that 
when 𝑝𝑝𝑗𝑗  satisfies the properties of the Kronecker delta it 
has 𝛽𝛽𝑗𝑗 = 𝑉𝑉𝑛𝑛  of Eq.(3). 

II. Optimization Algorithm - Moving 
Asymptotes Method 

To accelerate and stabilize the present 3D STM 
in this paper, MMA is employed, which is a 

mathematical programming algorithm suitable for TO, 
capable of handling optimization of many constraints 
and design variables. At each step of the algorithm's 
iterative process, a convex approximation subproblem is 
generated and solved. The generation of these 
subproblems is controlled by the moving asymptotes, 
which can both stabilize and accelerate the 
convergence of the overall process, [44]. 

The optimal solution of the subproblem may or 
may not be accepted: if so, the outer iteration is 
completed; if not, a new inner iteration is performed, in 
which a new subproblem is generated and solved. The 
iterations are repeated until the values of the 
approximations of the objective function and the 
constraints become greater than or equal to the values 
of the original function when evaluated in the optimal 
solution of the subproblem, that is, until the conservative 
condition is satisfied for the functions involved. The 
approximations that characterize the MMA are rational 
functions whose asymptotes are updated at each 
iteration. It is noteworthy that the use of rational 
approximations is justified by the fact that in several 
structural engineering problems where reciprocal 
variables arise, that is, interaction and mutual effort, 
given the objective function or a constraint 𝐶𝐶(𝑥𝑥) , the 
approximation functions are given by:        
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𝐶𝐶(𝑥𝑥) ≈ 𝐶𝐶(𝑥𝑥𝑘𝑘) +��
𝑜𝑜𝑖𝑖

𝑈𝑈𝑖𝑖
(𝑘𝑘) − 𝑥𝑥𝑖𝑖

+
𝑠𝑠𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝐿𝐿𝑖𝑖
(𝑘𝑘)�

𝑛𝑛

1

 

where 𝑜𝑜𝑖𝑖  e 𝑠𝑠𝑖𝑖  are defined as: 

𝐼𝐼𝐼𝐼  
𝜕𝜕𝐶𝐶(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

> 0  𝑡𝑡ℎ𝑒𝑒𝑛𝑛   𝑜𝑜𝑖𝑖 = �𝑈𝑈𝑖𝑖
(𝑘𝑘) − 𝑥𝑥𝑖𝑖

(𝑘𝑘)�
2 𝜕𝜕𝐶𝐶(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

    𝑎𝑎𝑛𝑛𝑑𝑑     𝑠𝑠𝑖𝑖 = 0  

𝐼𝐼𝐼𝐼  
𝜕𝜕𝐶𝐶(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

< 0 𝑡𝑡ℎ𝑒𝑒𝑛𝑛  𝑠𝑠𝑖𝑖 = −�𝑥𝑥𝑖𝑖
(𝑘𝑘) − 𝐿𝐿𝑖𝑖

(𝑘𝑘)�
2 𝜕𝜕𝐶𝐶(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

  𝑎𝑎𝑛𝑛𝑑𝑑     𝑜𝑜𝑖𝑖 = 0  

For the optimization problem in compliance Eq. (8), it is known that it is satisfied because 𝜕𝜕𝐶𝐶(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

< 0. Then 

the MMA provides the current design with an approximation of a linear programming problem of the type: 

(6)  

(7) 

 

(8)

 

   

      

 

 

(9)
 

with 𝜒𝜒𝑘𝑘   = {𝑥𝑥𝑥𝑥𝜒𝜒|0.9𝐿𝐿𝑖𝑖
(𝑘𝑘) + 0.1𝑥𝑥𝑖𝑖

(𝑘𝑘) ≤ 𝑥𝑥𝑖𝑖 ≤ 0.9𝑈𝑈𝑖𝑖
(𝑘𝑘) + 0.1𝑥𝑥𝑖𝑖

(𝑘𝑘) }  ∀ 𝑖𝑖 = 1,2, … , 𝑛𝑛 

with 𝐿𝐿𝑖𝑖
(𝑘𝑘)  and 𝑈𝑈𝑖𝑖

(𝑘𝑘)  being lower and upper asymptotes, 
respectively, k is the current iteration, n the number of 
design variables, 𝑥𝑥𝑘𝑘  the design variable and 𝑣𝑣  the 
prescribed volume. The following heuristic rule is used 
by [44] for updating the asymptotes, for the first two 
outer iterations, when k =1 and k = 2 are adopted: 

𝑈𝑈𝑖𝑖
(𝑘𝑘) + 𝐿𝐿𝑖𝑖

(𝑘𝑘) = 2𝑥𝑥𝑖𝑖
(𝑘𝑘)  (10) 

𝑈𝑈𝑖𝑖
(𝑘𝑘) − 𝐿𝐿𝑖𝑖

(𝑘𝑘) = 1 

For 𝑘𝑘 ≥ 3 

𝑈𝑈𝑖𝑖
(𝑘𝑘) + 𝐿𝐿𝑖𝑖

(𝑘𝑘) = 2𝑥𝑥𝑖𝑖
(𝑘𝑘) 

𝑈𝑈𝑖𝑖
(𝑘𝑘) − 𝐿𝐿𝑖𝑖

(𝑘𝑘) = 𝛾𝛾𝑖𝑖
(𝑘𝑘) 

with 

𝛾𝛾𝑖𝑖
(𝑘𝑘) = �

𝜁𝜁�𝑥𝑥𝑖𝑖
(𝑘𝑘) − 𝑥𝑥𝑖𝑖

(𝑘𝑘−1)��𝑥𝑥𝑖𝑖
(𝑘𝑘−1) − 𝑥𝑥𝑖𝑖

(𝑘𝑘−2)� < 0
𝜉𝜉�𝑥𝑥𝑖𝑖

(𝑘𝑘) − 𝑥𝑥𝑖𝑖
(𝑘𝑘−1)��𝑥𝑥𝑖𝑖

(𝑘𝑘−1) − 𝑥𝑥𝑖𝑖
(𝑘𝑘−2)� > 0

𝜍𝜍�𝑥𝑥𝑖𝑖
(𝑘𝑘) − 𝑥𝑥𝑖𝑖

(𝑘𝑘−1)��𝑥𝑥𝑖𝑖
(𝑘𝑘−1) − 𝑥𝑥𝑖𝑖

(𝑘𝑘−2)� = 0

�           (11) 

where the values of 𝜁𝜁, 𝜉𝜉  and 𝜍𝜍  were fitted in the 
respective numerical ranges 0.65 ≤ 𝜁𝜁 ≤ 0.75 ,  1.15 ≤
𝜉𝜉 ≤ 1.25 and 0.9 ≤ 𝜍𝜍 ≤ 1. 

It can be seen in Eq. (11) that the MMA saves 
the signal of three consecutive iterations. Thus, when 
the signals alternate, the MMA detects that the values of 
the design variables are oscillating, i.e., �𝑥𝑥𝑖𝑖

(𝑘𝑘) −

approximate the design point 𝑥𝑥𝑖𝑖
(𝑘𝑘). If the values of the 

design variables do not oscillate, i.e., �𝑥𝑥𝑖𝑖
(𝑘𝑘) −

𝑥𝑥𝑖𝑖
(𝑘𝑘−1)��𝑥𝑥𝑖𝑖

(𝑘𝑘−1) − 𝑥𝑥𝑖𝑖
(𝑘𝑘−2)� ≥ 0, then the MMA moves the 

asymptotes away from the design point in order to 
accelerate up convergence. There are two approaches 
to solving subproblems in MMA, the "dual approach" 
and the "primal-dual interior point approach". The dual 
approach is based on the dual Lagrangian relaxation 
corresponding to the subproblem, which seeks the 
maximization of a concave objective function without 
other constraints and the non-negativity condition on the 
variables. This dual problem can be solved by a 
modified Newton method, and then the dual optimal 
solution can be translated into a corresponding optimal 
solution of the primal subproblem, which is used in this 
paper. 

III. Methodology for Generation 3D 
Strut-and-Tie Models and the Final 

Flowchart 

To determine the path load of the 3D bars of the 
STM from the TO analysis, this paper employs a new 
procedure to evaluate the struts and ties by the signs of 
the derivatives of the Von Mises stress components. It is 
known that for 3D problems they can be written as 
 
 

(𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀 )² =
1
2

[(𝜎𝜎11 − 𝜎𝜎22 )2 + (𝜎𝜎22 − 𝜎𝜎33 )2 + (𝜎𝜎33 − 𝜎𝜎11 )2] + 3(𝜎𝜎12
2 + 𝜎𝜎23

2 + 𝜎𝜎31
2 ) (12)
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𝑥𝑥𝑖𝑖
(𝑘𝑘−1)��𝑥𝑥𝑖𝑖

(𝑘𝑘−1) − 𝑥𝑥𝑖𝑖
(𝑘𝑘−2)� , < 0 the    asymptotes

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 −�
�𝑥𝑥𝑖𝑖

(𝑘𝑘) − 𝐿𝐿𝑖𝑖
(𝑘𝑘)�

2

𝑥𝑥𝑖𝑖 − 𝐿𝐿𝑖𝑖
(𝑘𝑘)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝑥𝑥�(𝑘𝑘)�
𝑛𝑛

1

𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆𝑒𝑒𝜕𝜕𝑆𝑆 𝑆𝑆𝑜𝑜 𝑥𝑥�𝑇𝑇𝑣𝑣 − 𝑣𝑣 ≤ 0                              

𝑥𝑥 ∈ 𝜒𝜒𝑘𝑘



Taking the local calculation of the derivative of the von Mises stress of the element with respect to the 
components of the stress vector described respectively as: 

𝜕𝜕(𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀 )
𝜕𝜕𝜎𝜎𝑒𝑒11

=
1

2𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀
(2𝜎𝜎𝑒𝑒11 − 𝜎𝜎𝑒𝑒22 − 𝜎𝜎𝑒𝑒33 ) 

𝜕𝜕(𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀 )
𝜕𝜕𝜎𝜎𝑒𝑒22

=
1

2𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀
(2𝜎𝜎𝑒𝑒22 − 𝜎𝜎𝑒𝑒11 − 𝜎𝜎𝑒𝑒33 ) 

𝜕𝜕(𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀 )
𝜕𝜕𝜎𝜎𝑒𝑒33

=
1

2𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀
(2𝜎𝜎𝑒𝑒33 − 𝜎𝜎𝑒𝑒11 − 𝜎𝜎𝑒𝑒22 ) 

𝜕𝜕(𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀 )
𝜕𝜕𝜎𝜎𝑒𝑒12

=
3𝜎𝜎𝑒𝑒12

2𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀
 

𝜕𝜕(𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀 )
𝜕𝜕𝜎𝜎𝑒𝑒23

=
3𝜎𝜎𝑒𝑒23

2𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀
 

𝜕𝜕(𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀 )
𝜕𝜕𝜎𝜎𝑒𝑒31

=
3𝜎𝜎𝑒𝑒31

2𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀
 

Considering Eq.(13) and making 𝜕𝜕(𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀 (𝑥𝑥))
𝜕𝜕𝜎𝜎𝑒𝑒11

> 0 

then the elements are preponderantly tensioned (blue 

color - ties) while  𝜕𝜕(𝜎𝜎𝑒𝑒𝑣𝑣𝑀𝑀 (𝑥𝑥))
𝜕𝜕𝜎𝜎𝑒𝑒33

< 0  are preponderantly 

compressed (green color - strut). The flowchart 
presented in Fig. 4 shows the original methodology 
presented in this section with the approach of using 
element sensitivity for automatic generation of STMs via 
stress derivatives, when a target volume is reached, the 
stopping criterion is reached. A set of techniques has 
not yet been presented in scientific articles on 3D 
models, so the results obtained in item 4 are compared 
with those proposed by [16], [26] and [45]. Highlights 
that the VFLSM method required a neighborhood filter to 
define the tensile (blue) and compression (green) 
regions. This filter is due to intermediate values that 
occur in continuous TO methods such as the 
intermediate densities that occur in the SIMP 
methodology.         

IV. Numerical Examples 

The following examples of structures 
engineering focus on TO base on minimizing 
compliance for STMs. The geometry and boundary 
conditions for numerical applications are represented for 
each case. All numerical examples were processed on a 
Core i7-2370, 8th Gen notebook, 2.8 GHz CPU with 20.0 
GB (RAM). 

a) Example 1 – Deep Beam with Opening 
The example presents a simply supported deep 

beam with an opening at the bottom left corner. The 
beam has its span three times its height and it is defined 
in [46], where the simple bending structural behavior is 
no longer considered. A vertical downward force 
F=3000 kN is applied eccentrically at the top edge as 
shown in Fig. 5. The structure is discretized with a total 

of 65,420 hexahedral elements (SESO) and 65,420 
tetrahedral elements (LSM) (Fig. 5 shows the design 
domain and its boundary conditions). In this 
configuration, the force in off-center position and the 
opening positioned near the left low end create a 
situation that changes the internal stress flow in the 
structure, between the load and the supports. The tie 
elements, resulting from tensile stresses, are positioned 
at the extremities of the strut elements, resulting from 
compressive stresses, geometrically defining the final 
model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(13)
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Fig. 4: Flowchart of the STM via TO

 

 

Fig. 5: Design domain and boundary conditions 
(measuring in cm) 

Fig. 6 provides the optimal topologies of the 
optimization procedures for the SESO (Fig. 6a and Fig. 

6b) and VFSLM (Fig. 6c) methods, with a final volume 
fraction equal to 32%. The optimal configurations have 
similarity to the classical STM presented by [1] and later 
by [20]. The computational cost presented by SESO 
using Optimality Criteria [47] is approximately 40% lower 
than the SESO and VFLSM methods using the MMA. It 
can be also noticed in Fig. 6 that the optimal settings 
obtained by the VFLSM formulation clearly defines 
distinct elements (strut or tie) near the lateral faces of 
the deep beam, resulting in a more discrete STM, 
compared to the optimal settings presented by the 
SESO method. The classic model, Fig. 7, denotes three 
diagonal struts starting from the region of load 
application, one of them external directed to the closest 
support, another contouring the opening and directed to 
the support, and a third internal one. The ends of the 
struts are connected by tie composing the final structure 
of the STM. 

Fig. 6: Topology optimal for deep beam: (a) SESO-MMA; (b) SESO – OC and (c) VLSM-MMA
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Fig. 7: Topology optimal for deep beam with opening: classical model (a) [28]; (b) [45]

In Fig. 8 it can be seen that the SESO 
formulation (Fig. 8a) results in a setting similar to the 
classical model, but the VFLSM formulation (Fig. 8b) 
presents a model with a discretely simpler setting, with 
the internal strut in the vertical direction, unifying at a 
lower point the two ties. This setting simplifies the 

design procedure and the reinforcement detailing of the 
reinforced concrete structure, in the practical and 
executive sense, although the classic model makes it 
possible to calculate the complementary reinforcement 
around the opening.  

 

Fig. 8: Strut-and-tie models: (a) SESO; (b) VFLSM

b) Example 2 – Pile Cap 
In this example, a building foundation structure 

is dimensioned as a pile cap according to the 
dimensions shown in Fig. 9, for consideration as a rigid 
block and to enable the analysis by the STM concept. 
The pile cap is subjected to a vertical force of 4,000 kN 
located at the center of the upper face. The material 
properties used are the compressive strength of the 
concrete cylinder is 32 MPa. The Young's modulus of 
the concrete Ec = 25,000 MPa and Poisson's coefficient 
𝜈𝜈 = 0.15. The filter radius 𝑜𝑜𝑀𝑀𝑖𝑖𝑛𝑛 = 1.5 𝑀𝑀𝑀𝑀  mm and the 
volume fraction of 22.5%, a rejection ratio, RR = 1% and 
the evolution ratio ER = 2% were specified in the 
optimization process. 
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Fig. 9: Design domain and boundary conditions of pile cap

In the numerical simulations, to discretize the 
domain of the structure, a refined mesh of 40x20x40 
was used, totaling 32,000 hexahedral elements (SESO) 
with 1mm reference side was used and a mesh of 
32,000 tetrahedral elements (VFLSM). The results 
obtained as final optimal topologies of this problem for 
these meshes are represented in Fig. 10 and can be 
compared with the results with those presented by [16] 
and [26], see Fig. 11. 

The optimal topology is basically composed of 
discrete elements represented in the principal stress 
flows. These optimal settings are adequate to perform 
the detailing and dimensioning of the required 

reinforcement, as well as strength checks. In this 
structure, the vertical load is distributed in four struts 
inclined toward the supports represented by vertical 
piles. The models highlight elements at the base of the 
pile cap, representing the tensile stresses, where a 
plane frame of ties balances the strut ends generated by 
the 3D structure in both horizontal directions, Fig. 10, 
where it can be seen the optimum topologies for the two 
methods, SESO and VFLSM. In the automatic 
generation of the strut models, it was considered the 
main flows of distinct stresses by colors, where the 
region of compression struts is green color and the 
region of tensile ties is blue. 

                                                     a)                                                                        b) 

Fig. 10: Optimal topology: (a) SESO; (b) VLSM (present formulation)
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Fig. 11: Optimal topology: (a) BESO by [26]; (b) SIMP by [16]

Although the models result quite similar, when 
approaching this problem, one must consider the 
increased computational burden associated with a 3D 
structure; a solid mesh usually requires that many 
elements be investigated at an adequate level of detail, 
with notable consequences on the number of equations 
and variables. Seeking to minimize this aspect of the 
processing, the system of equations received the 
implementation of a sparse approximation 
preconditioner for the inverse matrix. With this routine 
active, the computational cost of SESO-3D for this 
problem was decreased from 8,000 sec to 1,854 sec 
(4.3 times less) while VFLSM had a decrease from 8,000 
sec to 3,851sec (2.1 times less). 

The dimensioning of the reinforcement of this 
model is performed, as already presented in [28]; in the 

calculations of the dimensions of the model elements, 
namely, inclined compression strut - column-pile and 
horizontal tension tie - pile-pile, the geometry of the 
problem presented [26] is used:  

𝐼𝐼𝑜𝑜𝑜𝑜𝜕𝜕𝑒𝑒 𝑖𝑖𝑛𝑛 𝐿𝐿𝑡𝑡𝑜𝑜𝑢𝑢𝑡𝑡 −  𝐶𝐶1 =
4,000

4
𝑠𝑠𝑖𝑖𝑛𝑛(29.5) = 2,031 𝑘𝑘𝑁𝑁 

𝐼𝐼𝑜𝑜𝑜𝑜𝜕𝜕𝑒𝑒 𝑖𝑖𝑛𝑛 𝑇𝑇𝑖𝑖𝑒𝑒 −  𝑇𝑇1 = 𝐶𝐶1
cos(29.5)

√2
= 1,250 𝑘𝑘𝑁𝑁 

Two evaluations need to be performed, the 
limits of stresses in the steel bars (CA50) for the tie and 
stresses in the concrete (C32) of the struts. According to 
the Brazilian technical standard, we have the following 
expressions: 

𝐴𝐴𝑠𝑠𝑑𝑑 ,𝑡𝑡𝑖𝑖𝑒𝑒 =
𝛾𝛾𝐼𝐼∗𝑇𝑇1

𝐼𝐼𝑦𝑦𝑑𝑑
= 1.4∗1,250

50/1.15
= 40.25 𝜕𝜕𝑀𝑀² (3 layers of 4 𝑁𝑁𝑜𝑜. 22)

adopting steel bar with diameter 𝑑𝑑 = 22 𝑀𝑀𝑀𝑀 with 12 bars (𝐴𝐴𝑠𝑠,𝑒𝑒𝐼𝐼𝐼𝐼𝑒𝑒𝜕𝜕𝑡𝑡𝑖𝑖𝑣𝑣𝑒𝑒 = 45.60 𝜕𝜕𝑀𝑀² ) 

In the inclined strut, the verification of the compressive stresses is performed according to  

  

   

and the area of the strut required for the design strength of the concrete not to be exceeded: 

𝐴𝐴𝜕𝜕𝑑𝑑 ,𝑠𝑠𝑡𝑡𝑜𝑜𝑢𝑢𝑡𝑡 =
𝛾𝛾𝐼𝐼 ∗ 𝐶𝐶1

0.8 ∗ 𝐼𝐼𝜕𝜕𝑑𝑑
=

1.4 ∗ 2,031
0.8 ∗ (3.2/1.4) = 1.555 𝜕𝜕𝑀𝑀² 

By way of comparison, in [26], the results of this 
sizing are 𝐴𝐴𝑠𝑠𝑑𝑑 ,𝑡𝑡𝑖𝑖𝑒𝑒 = 41.66 𝜕𝜕𝑀𝑀2 and 𝐴𝐴𝜕𝜕𝑑𝑑 ,𝑠𝑠𝑡𝑡𝑜𝑜𝑢𝑢𝑡𝑡 = 1,659 𝜕𝜕𝑀𝑀². 
The differences in values (3.5% and 6.3, respectively) 
are due to different calculation criteria between the 
technical standards used, but values of the same order 
of magnitude can be considered. Fig. 12 shows the 
reinforcement arrangement for the pile cap. 
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𝐶𝐶𝑜𝑜𝑛𝑛𝜕𝜕𝑜𝑜𝑒𝑒𝑡𝑡𝑜𝑜𝐶𝐶32− 𝐼𝐼𝜕𝜕𝑘𝑘 = 32 𝑀𝑀𝑀𝑀𝑎𝑎

𝐸𝐸𝜕𝜕𝑖𝑖 = 𝛼𝛼𝐸𝐸 ∗ 𝛼𝛼𝑖𝑖 ∗ 5600 ∗ �𝐼𝐼𝜕𝜕𝑘𝑘 = 1.0 ∗ 0.88 ∗ 5600 ∗ √32 = 27,877𝑀𝑀𝑀𝑀𝑎𝑎



 

Fig. 12: Reinforcement arrangement for the pile cap 

c) Example 3 – Bridge pier 
The SESO and VFLSM methods using the MMA 

as accelerator are applied to a structure representing a 
column receiving loading from the bridge 
superstructure, represented by four vertical forces, as 
shown in Fig. 13. The concrete material properties, 
rejection ratio (RR), evolutionary ratio (ER) and filter 
radius are the same as in the previous example. For the 
numerical simulations, in the SESO method the bridge 
support is discretized using a fine mesh of 85x55x20 
hexahedral elements of eight nodes, with reference side 
of 1 mm, while in the VFLSM method the mesh used has 
85x20x55, totaling 93,500 tetrahedral finite elements. 

The compliance history and the performance of the 
methods during the optimization procedure are plotted 
in Fig. 14. It can be seen in Fig. 14b that the 
performance index perfectly captures the changes in 
compliance and increases from unity to a maximum 
value of 2.3, stabilizing quickly around 2.1, the value at 
the optimal iteration. 

The history of the optimization procedure via 
SESO and VFLSM for the bridge pier are shown in Fig. 1 
and Fig. 16. The optimal topologies were achieved at 
iterations 82 and 100 with final volumes equal to 20% of 
the initial volume and a computational cost of 4,315.8 
sec for SESO while VFLSM showed a computational 
cost of 5,486.5 sec. 

 

Fig. 13: Project domain of the Bridge pier

Fig. 14: Performance Index: topological history
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Fig. 15: Optimization history of  bridge pier with SESO: (a) initial structure; (b) topology at iteration 25; (c) optimal 
topology at iteration 82; (d) optimal topology (hexahedral elements)

Fig. 16: Optimization history of bridge pier VFLSM: (a) initial structure; (b) topology at iteration 25; (c) optimal 
topology at iteration 68 (d) optimal topology (tetrahedral elements)

The optimal settings with highlights of the 
distinct regions by colors are presented in Fig. 17 for the 
two methods proposed in this paper. In these 
representations, a vertical axial force is expected to 
balance the symmetric external loads in the region of the 
base constraint. The applied vertical forces, in fact, are 
transferred to the column axis by means of two inclined 
struts and two vertical struts that merge into two in the 
proximity of the top region of the vertical element, driving 
the load distribution to the lower region where are the 
base supports. Note that the SESO method creates a 
unified region at the base while the VFLSM method sets 

up two parallel vertical paths. In addition, a horizontal 
tensile tie is arranged at the top of the body receiving 
the applied forces, which ensures the "T" geometry of 
the structure and configures the struts equilibrium in the 
load application zones. From a numerical point of view, 
the result obtained is optimal and configures the 
symmetry defined by the position of the design load. For 
automatic generation of STM models in the VFLSM 
method, it was necessary to implement the derivatives 
of von Mises stresses in the code proposed by [34]. Fig. 
17b exhibits an optimal topology of VFLSM with tensile 
stress flows (blue) in the upper part and compression 
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stress flows (green) similar to those of the SESO 
method, Fig. 17a, highlighting the robustness of both 
methods for creating strut-and-tie models. With the 
objective of investigate the effects of D-regions, three 
holes were inserted in the horizontal element of the 
bridge pier structure, and the number of finite elements 
of the mesh was reduced to 88,700, as shown in Fig. 18. 
The optimal topologies of the SESO and VFLSM models 
are represented in Fig. 19, where the struts are 
represented by green color and the ties by blue color. 

The optimum results obtained demonstrate that 
the presence of geometric discontinuities produces 
changes in the stress flows, that seek to contour the 

discontinuities, describing practically vertical struts in 
the horizontal body of the bridge pier from the points of 
load application. These struts bend below the openings 
to meet at the top of the vertical element, creating points 
of deviation that need to be equilibrated by tensile ties. 
In Fig. 19, it can be seen the representations of STM 
elements created as described. 

This modification with the presence of the 
openings affects the STMs models significantly, and the 
real load transfer mechanism can change with the 
dimensions of the openings. The optimization histories 
are shown in Fig. 20 and Fig. 21, by the SESO and 
VFLSM formulations, respectively. 

Fig. 17: Bridge Pier: Strut-and-tie models (a) SESO and (b) VFLSM

 

Fig. 18: Bridge pier with three holes as structural discontinuities in horizontal braces 

 

Fig. 19: Strut-and-tie model: (a) SESO and (b) VFLSM 
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Fig. 20: Optimization history of  bridge pier with openings SESO: (a) initial structure ; (b) topology at iteration 25; (c) 
optimal topology at iteration 70; (d) final optimal topology

 

Fig. 21: Optimization history of  bridge pier with openings VFLSM: (a) initial structure ; (b) topology at iteration 27; (c) 
optimal topology at iteration 70; (d) optimal topology

d) Example 4 – Single Corbel 
The SESO and VFLSM methods were also 

experimented with for modeling struts-and-ties in a 
single corbel attached to a column. A simple structure 
can eventually result in an intricate STM as the 
dimensions and load arrangements can be defined. The 
geometry and dimensions of the structure are shown in 
Fig. 22. This single corbel is subjected to a 
concentrated load of 1 kN. The compressive strength of 
the concrete used in this example is 32 MPa. Young's 
modulus of the concrete E = 28,567 MPa and the 
Poisson's ratio 𝜈𝜈 = 0.15 were defined in the analysis. A 
prescribed fraction volume V = 0.22 m3 and an 
evolution ratio of ER = 2% was specified in the 
optimization process. 

In the SESO method the structure was 
discretized with a mesh of 44x12x108 unit hexahedral 
finite elements. The performance of the structure was 
monitored throughout the optimization procedure and, 
despite the breaks in the load transfer mechanisms due 
to element removal, the structure did not present failure 
modes and the performance index remained higher than 
1, stabilizing at 1.6. In the VFLSM method, the same 
mesh was used, totaling 57,024 tetrahedral elements. 
Figures 23a, b, c and d show that the optimal topologies 
obtained by the two models are different and 
checkerboard patterns were not detected. It is noted in 
observation made in the deep beam example that both 
formulations, SESO and VFLSM, define settings 
differently for elements of strut-and-tie models. Discrete 
elements are configured on the side faces of the models 

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
  

 © 2023    Global Journ als

(
)

E
Vo

lu
m
e 

X
xX
II
I 
Is
su

e 
II
 V

 er
si
on

 I
  

  
 

  

36

Y
e
a
r

20
23

Topology Optimization: Applications of VFLSM and SESO in the Generation of Three-Dimensional 
Strut-and-Tie Models



in different regions, while complete planes are shaped in 
other regions, with no common convention between the 
two formulations. The presented results show that both 
SESO-3D and VFLSM-3D are able to provide the 

prediction of the load transfer mechanism in reinforced 
concrete structures, even considering the structural 
domain thickness in the configuration of the component 
elements of the models. 

 

Fig. 22: Single Corbel: Project Domain 

 

Fig. 23: Single Corbel, optimal topology: (a) e (b) SESO (c) and (d) VFLSM

The STMs are presented in Fig. 24, it can be 
seen that these models are different and capable of 
clearly representing the location of the struts, ties and 
nodal zones. These results can be compared with those 
presented by [16] and [26]. It is also highlighted that the 
parameters of the MMA optimizer were changed to 
𝜁𝜁 ≤ 0.98, 𝜉𝜉 ≤ 1.25 e 𝜍𝜍 ≤ 0.75 proportion a more feasible 
topology for design.  Fig. 24b shows the optimal setting 
of the VFLSM used for automatic creation of the STM 
models; both formulations exhibit distinct tensile (blue) 
and compressed (green) regions, even in the width of 
the structural domain. Table 1 highlights the 
computational cost of SESO and VFSLM in all the 
examples presented in this paper evidencing the better 
performance for SESO-OC and SESO-MMA compared 
to VFLSM-MMA. 
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Fig. 24: Single Corbel, Strut-and-tie model: (a) SESO; (b) VFSLM

Table 1: Strut-and-tie Models and Computational Cost

  
 

 
 

 
 

 

     

 

    

 

    

 

 
   

 

    

 

Structure

Computation
al Cost 
(minute)

(SESO-OC)

Computational 
Cost (minute)
(SESO-MMA)

Computational
Cost (minute)

(VFLSM)
Strut-and-tie Models

Deep beam
with opening 90.7 109.8 229.81

Pile Cap 21.4 38.0 64.2

Bridge pier 57.9 95.0 159.3

Bridge pier with 
three holes

56.5 95.9 158.6

Single Corbel 45.4 71.9 103.7
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This paper aimed to extend the application of 
TO in 3D elasticity to obtain the best solution to STM 
problems. It brought some processes as innovation, 
such as the use of the SESO method and the VFLSM 
employed in conjunction with the OC and MMA 
methods to accelerate and stabilize the analyses; so 
that, the first method demonstrated to be more efficient 
when employed with the SESO, about 2 to 3 times faster 
in all the examples evaluated. It is highlighted that in 
these processes the incorporation of the linear solution 
by the conjugate gradient method with the incomplete 
Cholesky preconditioner further enhanced the 
computational cost. In the automated generation of the 
final designs of the STM, the procedure of obtaining 
struts and ties computed by the partial derivatives of the 
stresses of each element was applied highlighting that 
this novelty is easy to implement and the use of a spatial 
modal filter in the stress field was enough to completely 
eliminate the checkerboard. From the automatic 
generations performed, it was possible to design an 
example according to the recurring norm in an 
expeditious manner, in which the required reinforcement 
areas were evaluated and compared, demonstrating a 
good similarity. All codes were implemented in the high 
level language Matlab, which is easily accessible and 
extensible for future incorporation of other more realistic 
models, such as a rheological model more suitable for 
concrete. The study of STM using optimization applied 
to both materials (steel and concrete), leading to 
dimensioning and detailing of RC structural elements 
under the reliability-based topology optimization (RBTO) 
paradigm, taking advantage of the efficiency and 
stability of the procedures, are the highlights in the 
formulations developed in this paper. 
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