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It has recently been proposed by the author of the present work that the periodic NS 

equations (PNS) with high energy assumption can breakdown in finite time but with sufficient low 
energy scaling the equations may not exhibit finite

 
time blowup.

 
This article gives a general 

model using specific periodic special functions, that is degenerate elliptic Weierstrass P 
functions whose presence in the governing equations through the forcing terms simplify the PNS 
equations at the centers of

 
cells of the 3-Torus. Satisfying a divergence free vector field and 

periodic boundary conditions respectively with a general spatio-temporal forcing term 
 
which is 

smooth and spatially periodic, the existence of solutions which blowup in finite time for PNS can 
occur starting with the first derivative and higher with respect to time. P. Isett (2016) has shown 
that the conservation of energy fails for the 3D

 
incompressible Euler flows with H lder regularity 

below 1/3.
 
(Onsager’s second conjecture) The endpoint regularity in Onsager’s conjecture is 

addressed, and it is found that conservation of energy occurs when the H lder regularity is 
exactly 1/3. The endpoint regularity problem has important connections with turbulence theory.
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very recent developed new governing equations of fluid mechanics are proposed to have 

no finite time singularities.
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Exploring Finite-Time Singularities and 
Onsager’s Conjecture with Endpoint Regularity 

in the Periodic Navier Stokes Equations
T. E. Moschandreou

Abstract- It has recently been proposed by the author of the present work that the periodic NS equations (PNS) with high energy 
assumption can breakdown in finite time but with sufficient low energy scaling the equations may not exhibit finite time blowup. 
This article gives a general model using specific periodic special functions, that is degenerate elliptic Weierstrass P functions 
whose presence in the governing equations through the forcing terms simplify the PNS equations at the centers of cells of the 3-
Torus. Satisfying a divergence free vector field and periodic boundary conditions respectively with a general spatio-temporal 
forcing term 𝒇𝒇 which is smooth and spatially periodic, the existence of solutions which blowup in finite time for PNS can occur 
starting with the first derivative and higher with respect to time. P. Isett (2016) has shown that the conservation of energy fails for 
the 3D incompressible Euler flows with H�̈�𝖔lder regularity below 1/3. (Onsager’s second conjecture) The endpoint regularity in 
Onsager’s conjecture is addressed, and it is found that conservation of energy occurs when the H�̈�𝖔lder regularity is exactly 1/3. 
The endpoint regularity problem has important connections with turbulence theory. Finally very recent developed new governing 
equations of fluid mechanics are proposed to have no finite time singularities. 

I. Introduction to the Periodic Navier Stokes Equations 

he Navier–Stokes equations are useful because they describe the physics of many phenomena of scientific 
and engineering interest. They may be used to model the weather, ocean currents, pipe flows and heat 
exchangers and air flow around a wing. The Navier–Stokes equations, in their full and simplified forms, help 

with the design of aircraft and automobiles, hemodynamics, the design of power stations, the analysis of pollution 
and fuel emissions and many other things. 

In 1845, Stokes had derived the equation of motion of a viscous flow by adding Newtonian viscous terms 
and finalized the Navier–Stokes equations, which have now been used for almost two centuries. There are only a few 
studies to find how to understand the physical meaning of the viscous terms in NS equations. As is well known, 
Stokes had three assumptions: 1. The force on fluids is the stationary pressure when the flow is stationary. 2. Fluid 
viscosity is isotropic. 3. Fluid flow follows Newton’s law that fluid stress and strain have linear relations. These 
assumptions lead to the NSE. In [1], since the regular NS equations are quite demanding in computational time and 
resources the vorticity part is considered as the only source of fluid stress for the purpose of computation cost 
reduction. In fact, fluid shear stress is contributed by both strain and vorticity. In mathematics, the computation of 
stress can be performed by strain only, vorticity only, or both. The computational results are exactly the same. The 
NSE equation adopts strain, which is symmetric and stress based on Stokes’s assumption. In [1], a new governing 
equation which is based on a new assumption that accepts that fluid stress has a linear relation with vorticity, which 
is anti-symmetric. According to the mathematical analysis, the new governing equation is identical to NS equations 
in numerical analysis, but in a physical sense, the new governing equation is just the opposite to NSEs as it 
assumes that fluid stress is proportional to vorticity, where both are anti-symmetric, but not strain, contrary to 
Stokes’s assumption and the current NSE. 

Although both NSEs and the new governing equation in [1] lead to the same computational results for 
laminar flow, the new governing equation has several advantages: 1. The vorticity tensor is anti-symmetric, which 
has three elements, but NSEs use the strain tensor, which has six elements. It is shown that the computational cost 
is reduced to half for the viscous term. 2. The anti-symmetric matrix is independent of the coordinate system change 
or Galilean invariant, but the symmetric matrix that NSE uses is not. 3. The physical meaning is clear that the viscous 
term is generated by vorticity, not by strain only. 4. The viscosity is obtained by experiments, which are based on 
vorticity but not strain, since both strain and stress are hard to measure experimentally. 5. Vorticity can be further 
decomposed to rigid rotation and pure anti-symmetric shear, which is very useful for further study turbulent flow. 
However, the NS equation has no vorticity term, which is an impediment for further turbulence research. [ref [27] in 
[1]] studied the mechanism of turbulence generation and concluded that shear instability and transformation from 
shear to rotation are the paths of flow transition from laminar flow to turbulent flow. Using Liutex and the third 
generation  of  vortex  identification methods, a lot of new physics has been found (see Dong et al., Liu et al., and Xu 
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et al. references 24-26 in [1]) In Ref.28 in [1], Zhou et al. elaborated the hydrodynamic instability induced turbulent 
mixing in wide areas, including inertial confinement fusion, supernovae, and their transition criteria. Since the new 
governing equation has a vorticity term, which can be further decomposed to shear and rigid rotation, the new 
governing equation would be helpful in studying flow instability and transition to turbulence. Turbulence is rotational 
and characterized by large fluctuations in vorticity and thus it is important to accurately define vorticity. In the vorticity 
equation the vortex stretching term can be argued to be one of the most important mechanisms in the turbulence 
dynamics. It represents the enhancement of vorticity by stretching and is the mechanism by which the turbulent 
energy is transferred to smaller scales. 

The purpose of this article is to refer to the periodic NS equations with high energy assumption as in the 
case of the continuum hypothesis being valid and can breakdown in finite time but with sufficient low energy scaling 
as in a fractal setting like for example on a Cantor set, the equations may not exhibit finite time blowup. It is known 
recently in the literature that the Cantor set with layers N (N can have up to two orders of magnitude) can be 
presented as a potential contender (analytical framework) for connecting the energy in a molecular level say 𝐶𝐶1 at 
some cutoff length scale 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐  to the energy at a continuum level 𝐶𝐶𝑁𝑁 with length scale L. The equipartition theorem of 
statistical mechanics has been used (Terrence Tao 2015) to relate the energy of a discrete block in say 𝐶𝐶1 (molecular 
scale) to the energy in 𝐶𝐶𝑁𝑁 (continuum scale). Additionally it has been shown that the ratio of the energy of the 
continuum scale to the molecular scale is a factor of 2^N. It then makes intuitive sense that the high energy PNS 
problem may breakdown in finite time. This article gives a general model using specific periodic special functions, 
that is degenerate elliptic Weierstrass P functions. See Figure 1. 
 
 
 

The definition of vorticity should be as defined in [1], which is that vorticity is a rotational part added to the 
sum of antisymmetric shear and compression and stretching. A vortex is recognized as the rotational motion of 
fluids. Within the last several decades, a lot of vortex identification methods have been developed to track the 
vortical structure in a fluid flow; however, we still lack unambiguous and universally accepted vortex identification 
criteria. It has been uncovered that the regions of strong vorticity and actual vortices are weakly related. It recently 
[1] has been concluded that a vorticity vector does not only represent rotation but also claims shearing and 
stretching components to be a part of the vortical structure, which is contaminated by shears in fluid. Satisfying a 
divergence free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing 
term 𝑓𝑓(𝑥𝑥, 𝑐𝑐)) which is smooth and spatially periodic, the existence of solutions of PNS which blowup in finite time can 
occur starting with the first derivative and higher with respect to time. On the other hand if 𝑐𝑐0 is not smooth, then 
there exist globally in time solutions on 𝑐𝑐 ∈ [0,∞) with a possible blowup at 𝑐𝑐 = ∞. The control of turbulence is
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II. Materials and Methods

Consider the incompressible 3D Navier Stokes equations defined on the three-Torus 𝕋𝕋3 = ℝ3

ℤ3� . The 
periodic Navier Stokes system is,

(P𝑁𝑁𝑁𝑁) �
∂𝑐𝑐𝑐𝑐 − Δ𝑐𝑐 + 𝑐𝑐 ⋅ ∇𝑐𝑐 = −∇𝑝𝑝 + 𝑓𝑓

div 𝑐𝑐 = 0
𝑐𝑐𝑐𝑐=0 = 𝑐𝑐0.

�

where 𝑐𝑐 = 𝑐𝑐(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑐𝑐) is velocity, 𝑝𝑝 = 𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑐𝑐) is pressure and 𝑓𝑓 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑐𝑐) is forcing vector. Here 𝑐𝑐 =
�𝑐𝑐𝑥𝑥 ,𝑐𝑐𝑦𝑦 ,𝑐𝑐𝑧𝑧�, where 𝑐𝑐𝑥𝑥 , 𝑐𝑐𝑦𝑦 , and 𝑐𝑐𝑧𝑧 denote respectively the 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 components of velocity.

Introducing Poisson's Equation (see [2], [3] and [5]), the second derivative 𝑃𝑃𝑧𝑧𝑧𝑧 is set equal to the second 
derivative obtained in the 𝒢𝒢𝛿𝛿1 expression further below, as part of 𝒢𝒢, and

𝑃𝑃𝑧𝑧𝑧𝑧 = −2𝑐𝑐𝑧𝑧∇2𝑐𝑐𝑧𝑧 − �
∂𝑐𝑐𝑧𝑧
∂𝑧𝑧

�
2

+
1
𝜂𝜂
∂
∂𝑧𝑧
�
∂𝑐𝑐𝑧𝑧
∂𝑥𝑥 +

∂𝑐𝑐𝑧𝑧
∂𝑦𝑦

� − 𝛿𝛿𝑐𝑐𝑥𝑥
∂2𝑐𝑐𝑧𝑧
∂𝑧𝑧 ∂𝑥𝑥 −𝛿𝛿𝑐𝑐𝑦𝑦

∂2𝑐𝑐𝑧𝑧
∂𝑧𝑧 ∂𝑦𝑦 + �

∂𝑐𝑐𝑥𝑥
∂𝑥𝑥

�
2

+ 2
∂𝑐𝑐𝑥𝑥
∂𝑦𝑦

∂𝑐𝑐𝑦𝑦
∂𝑥𝑥 + �

∂𝑐𝑐𝑦𝑦
∂𝑦𝑦

�
2

where the last three terms on rhs can be shown to be equal to −(𝑃𝑃𝑥𝑥𝑥𝑥 +��𝑃𝑃𝑦𝑦𝑦𝑦 �. [4] Along with Equations below the 
continuity equation in Cartesian coordinates, is ∇𝑖𝑖𝑐𝑐𝑖𝑖 = 0. The one parameter group of transformations on a critical 
space of PNS is given as,

Let  𝑐𝑐𝑥𝑥 = 𝑐𝑐𝑥𝑥∗

𝛿𝛿
; 𝑐𝑐𝑦𝑦 = 𝑐𝑐𝑦𝑦∗

𝛿𝛿
;  𝑐𝑐𝑧𝑧 = 𝑐𝑐𝑧𝑧∗

𝛿𝛿
; 𝑃𝑃 = 𝑃𝑃∗

𝛿𝛿2

𝑥𝑥 = 𝑥𝑥∗𝛿𝛿 ;  𝑦𝑦 = 𝑦𝑦∗𝛿𝛿;  𝑧𝑧 = 𝑧𝑧∗𝛿𝛿;  𝑐𝑐 = 𝑐𝑐∗𝛿𝛿2,

𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝛿𝛿−1 𝜕𝜕
𝜕𝜕𝑥𝑥∗

  ;  𝜕𝜕
𝜕𝜕𝑦𝑦

= 𝛿𝛿−1 𝜕𝜕
𝜕𝜕𝑦𝑦∗

;  𝜕𝜕
𝜕𝜕𝑧𝑧

= 𝛿𝛿−1 𝜕𝜕
𝜕𝜕 𝑧𝑧∗

, 𝜕𝜕
𝜕𝜕𝑐𝑐

= 𝛿𝛿−2 𝜕𝜕
𝜕𝜕𝑐𝑐∗

.

Furthermore the right hand side of the one parameter group of transformations are next mapped to 𝜂𝜂
variable terms, (note that 𝜂𝜂 and 𝛿𝛿 are not assumed to be arbitrarily small, they can be at most order one),

𝑐𝑐𝑖𝑖∗ =
1
𝜂𝜂 𝑣𝑣𝑖𝑖 ,𝑃𝑃

∗ =
1
𝜂𝜂2 𝑄𝑄, 𝑥𝑥𝑖𝑖∗ = 𝜂𝜂𝑦𝑦𝑖𝑖 , 𝑐𝑐∗ = 𝜂𝜂2𝑠𝑠, 𝑖𝑖 = 1,2,3.

The double transformation is used for notational clarity. Note that the original Navier Stokes equations are 
preserved and simply rearranged in the following forms and Navier Stokes Equations become,

𝒢𝒢(𝜂𝜂) = 𝒢𝒢(𝜂𝜂)𝛿𝛿1 + 𝒢𝒢(𝜂𝜂)𝛿𝛿2 + 𝒢𝒢(𝜂𝜂)𝛿𝛿3 + 𝒢𝒢(𝜂𝜂)𝛿𝛿4 = 0

where

𝒢𝒢(𝜂𝜂)𝛿𝛿2 =
𝑣𝑣3

𝜂𝜂6 �
∂𝑣𝑣3

∂𝑦𝑦3
�
∂𝑣𝑣3

∂𝑠𝑠 +
(𝑣𝑣3)2

𝜂𝜂6
∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑠𝑠
+

2 �∂𝑣𝑣1
∂𝑠𝑠 �𝑣𝑣3

∂𝑣𝑣3
∂𝑦𝑦1

+ 2 �∂𝑣𝑣2
∂𝑠𝑠 �𝑣𝑣3

∂𝑣𝑣3
∂𝑦𝑦2

+ 2 �∂𝑣𝑣3
∂𝑠𝑠 �𝑣𝑣3

∂𝑣𝑣3
∂𝑦𝑦3

𝛿𝛿𝜂𝜂6

𝒢𝒢(𝜂𝜂)𝛿𝛿3 =
1
𝜂𝜂3 × �� 

𝑁𝑁
 �

1
𝛿𝛿𝜌𝜌𝑣𝑣3

2∇𝑦𝑦1𝑦𝑦2𝑄𝑄 +
1
𝛿𝛿 �⃗�𝑣

1
𝜌𝜌 𝑣𝑣3

∂𝑄𝑄
∂𝑦𝑦3

� ⋅ 𝑛𝑛�⃗ 𝑑𝑑𝑁𝑁 −�  
Ω
  ∥
∥∥∂𝑣𝑣3
∂𝑠𝑠 𝑏𝑏

�⃗ ⋅ �𝑏𝑏�⃗ ⊗ ∇𝑣𝑣3�∥∥
∥

∥ 𝑏𝑏�⃗ ∥
𝑑𝑑𝑑𝑑�

possible to maintain when the initial conditions and boundary conditions are posed properly for (PNS) ([5]). The 
endpoint regularity in Onsager’s conjecture is addressed, and it is found that conservation of energy occurs when 
the H �̈�𝔬 lder regularity is exactly 1/3. Finally it is proposed that the periodic Liutex new equations[1] (The new 
equations referred to previously) do not exhibit finite time blow up. This is the focus of the ongoing work of the author 
to be presented in the near future.
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𝒢𝒢(𝜂𝜂)𝛿𝛿1 =
1
𝜂𝜂6

⎣
⎢
⎢
⎢
⎢
⎢
⎡
(𝛿𝛿−1 − 1) �

∂𝑣𝑣3

∂𝑠𝑠
�

2

+
𝜇𝜇 �∂𝑣𝑣3

∂𝑠𝑠 � �
∂2𝑣𝑣3
∂𝑦𝑦1

2 + ∂2𝑣𝑣3
∂𝑦𝑦2

2 + ∂2𝑣𝑣3
∂𝑦𝑦3

2 �

𝜌𝜌 +

(𝛿𝛿−1 − 1) �∂𝑣𝑣3
∂𝑠𝑠 �

∂𝑄𝑄
∂𝑦𝑦3

𝜌𝜌 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

(1− δ−1)



    

 
 

 

  
      

 
  

 

 

  

 

 
 

 

 
     

 

  

 

 

 

 

 
 

 
 

𝒢𝒢(𝜂𝜂)𝛿𝛿4 =
1
𝜂𝜂3 �𝛿𝛿

2𝐹𝐹𝑇𝑇����⃗ ⋅ ∇𝑦𝑦1𝑦𝑦2𝑣𝑣3
2 − 𝛿𝛿3𝑣𝑣3

∂𝑣𝑣3

∂𝑦𝑦3
𝐹𝐹𝑧𝑧 + 𝛿𝛿2�⃗�𝑣 ⋅ ∇(𝑣𝑣3𝐹𝐹𝑧𝑧)�

It has been shown in Moschandreou et al [5] that this decomposition holds and that,

𝒢𝒢(𝜂𝜂)𝛿𝛿1 + 𝒢𝒢(𝜂𝜂)𝛿𝛿2 + 𝒢𝒢(𝜂𝜂)𝛿𝛿4 = 3Φ(𝑠𝑠)

The function Φ(𝑠𝑠) is the surface integral of pressure terms minus the volume integral of tensor product term.

At the end of this paper, a proof that on a volume of an arbitrarily small sphere embedded in each cell of the 
lattice centered at (𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖) (centers of cells) we have,

𝒢𝒢(𝜂𝜂)𝛿𝛿1 + 𝒢𝒢(𝜂𝜂)𝛿𝛿2 + 𝒢𝒢(𝜂𝜂)𝛿𝛿4 = 0

From this equation we then can solve for ∂𝑄𝑄
∂𝑦𝑦3

algebraically and differentiating with respect to 𝑦𝑦3 and using 

Poisson’s equation (setting the representation of each of the two partial derivatives with respect to 𝑦𝑦3 equal to each 
other we obtain, 𝐿𝐿 = 0, which is precisely the following PDE,

𝐿𝐿 = �
∂𝑣𝑣3

∂𝑠𝑠
�

2

𝜇𝜇(𝛿𝛿 − 1)
∂3𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦1
2 + �

∂𝑣𝑣3

∂𝑠𝑠
�

2

𝜇𝜇(𝛿𝛿 − 1)
∂3𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦2
2 + �

∂𝑣𝑣3

∂𝑠𝑠
�

2

𝜇𝜇(𝛿𝛿 − 1)
∂3𝑣𝑣3

∂𝑦𝑦3
3 +

�
∂𝑣𝑣3

∂𝑠𝑠
� (𝑣𝑣3)2 �

∂3𝑣𝑣3

∂𝑦𝑦3
2 ∂𝑠𝑠

�𝛿𝛿𝜌𝜌 − (𝑣𝑣3)2 �
∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑠𝑠
�

2

𝛿𝛿𝜌𝜌 −

2𝜌𝜌��
𝛿𝛿
2
−

1
2
� �
∂𝑣𝑣3

∂𝑠𝑠
�

2

− 𝑣𝑣3 �
∂𝑣𝑣3

∂𝑠𝑠
��
∂𝑣𝑣3

∂𝑦𝑦3
�𝛿𝛿 + �𝑣𝑣3 �𝐹𝐹𝑇𝑇1

(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠) +
∂𝑣𝑣1

∂𝑠𝑠
�
∂𝑣𝑣3

∂𝑦𝑦1
+��

��𝑣𝑣3 �𝐹𝐹𝑇𝑇2
(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠) +

∂𝑣𝑣2

∂𝑠𝑠
�
∂𝑣𝑣3

∂𝑦𝑦2
+
Λ(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑠𝑠)

2 +
Φ(s)

2
�𝛿𝛿�

∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑠𝑠
+

��(𝛿𝛿 − 1)(𝛿𝛿𝑣𝑣1(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠)− 1)
∂𝑣𝑣3

∂𝑠𝑠 + 2𝑣𝑣3𝜌𝜌𝛿𝛿 �𝐹𝐹𝑇𝑇1
(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑠𝑠) +

∂𝑣𝑣1

∂𝑠𝑠
��

∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦1
+�

�(𝛿𝛿 − 1)(𝑣𝑣2(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑠𝑠)𝛿𝛿 − 1)
∂𝑣𝑣3

∂𝑠𝑠 + 2𝑣𝑣3𝜌𝜌𝛿𝛿 �𝐹𝐹𝑇𝑇2
(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑠𝑠) +

∂𝑣𝑣2

∂𝑠𝑠
��

∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦2
+

3𝑣𝑣3 �−
2
3

+ �𝜌𝜌 +
2
3
�𝛿𝛿��

∂𝑣𝑣3

∂𝑠𝑠
�
∂2𝑣𝑣3

∂𝑦𝑦3
2 + 2𝑣𝑣3 �

∂𝑣𝑣3

∂𝑠𝑠
� (𝛿𝛿 − 1)

∂2𝑣𝑣3

∂𝑦𝑦1
2 + 2𝑣𝑣3 �

∂𝑣𝑣3

∂𝑠𝑠
� (𝛿𝛿 − 1)

∂2𝑣𝑣3

∂𝑦𝑦2
2 +

�(−1 + (3𝜌𝜌 + 1)𝛿𝛿) �
∂𝑣𝑣3

∂𝑦𝑦3
�

2

+ (𝛿𝛿 − 1) ��
∂𝑣𝑣1

∂𝑦𝑦1
�

2

+ 2 �
∂𝑣𝑣1

∂𝑦𝑦2
�
∂𝑣𝑣2

∂𝑦𝑦1
+ �

∂𝑣𝑣2

∂𝑦𝑦2
�

2

��
∂𝑣𝑣3

∂𝑠𝑠 +

2𝜌𝜌���𝐹𝐹𝑇𝑇1
(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠) +

∂𝑣𝑣1

∂𝑠𝑠
�
∂𝑣𝑣3

∂𝑦𝑦1
+ �

∂𝑣𝑣3

∂𝑦𝑦2
� �𝐹𝐹𝑇𝑇2

(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑠𝑠) +
∂𝑣𝑣2

∂𝑠𝑠
��
∂𝑣𝑣3

∂𝑦𝑦3
+�

��𝑣𝑣3 �
∂𝑣𝑣3

∂𝑦𝑦1
�
∂𝐹𝐹𝑇𝑇1

∂𝑦𝑦3
+ 𝑣𝑣3 �

∂𝑣𝑣3

∂𝑦𝑦2
�
∂𝐹𝐹𝑇𝑇2

∂𝑦𝑦3
+

1
2
∂Λ(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠)

∂𝑦𝑦3
�𝛿𝛿�

∂𝑣𝑣3

∂𝑠𝑠 = 0

(1)
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2�
∂2𝑣𝑣1

∂𝑦𝑦3 ∂𝑠𝑠
� 𝑣𝑣3 �

∂𝑣𝑣3

∂𝑦𝑦1
�𝜌𝜌𝛿𝛿 + 2�

∂2𝑣𝑣2

∂𝑦𝑦3 ∂𝑠𝑠
�𝑣𝑣3 �

∂𝑣𝑣3

∂𝑦𝑦2
�𝜌𝜌𝛿𝛿 +



  

 
  

 

  
  

  
 
 
 
 
 

 

 

  

 

   

 

and Λ(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑠𝑠) is given as,

Λ(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑠𝑠) = 2
𝑓𝑓0 (𝑠𝑠)𝐹𝐹(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3)𝑣𝑣3(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠)∂𝑣𝑣3

∂𝑦𝑦1
𝛿𝛿 + 2

𝑓𝑓0 (𝑠𝑠)𝐺𝐺(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3)𝑣𝑣3(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠)∂𝑣𝑣3
∂𝑦𝑦2

𝛿𝛿 −

𝛿𝛿3𝑣𝑣3 �
∂𝑣𝑣3

∂𝑦𝑦3
�𝐹𝐹𝑠𝑠𝑧𝑧(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠) + 𝛿𝛿2 ��

∂𝑣𝑣3

∂𝑦𝑦3
�𝐹𝐹𝑠𝑠𝑧𝑧(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑠𝑠) + 𝑣𝑣3

∂𝐹𝐹𝑠𝑠𝑧𝑧
∂𝑦𝑦3

�

where 𝑓𝑓 = �𝐹𝐹𝑇𝑇1,,𝐹𝐹𝑇𝑇2 ,𝐹𝐹𝑠𝑠𝑧𝑧� is the forcing vector and �⃗�𝑣 = (𝑣𝑣1,𝑣𝑣2,𝑣𝑣3) is the velocity in each cell of the 3-Torus.

For the three forcing terms, set them equal to products of reciprocals of degenerate Weierstrass P functions 
shifted in spatial coordinates from the center (𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ,𝑐𝑐𝑖𝑖),𝑖𝑖 = 1. .𝑁𝑁.

Here the (𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖) is the center of each cell of the lattice belonging to the flat torus. Upon substituting the 
Weierstrass P functions and their reciprocals (unity divided by P-function) into Eq.(1) together with the forcing terms 
given by Λ, it can be observed that in the equation that terms in it are multiplied by reciprocal Weierstrass P functions 
which touch the centers of the cells of the lattice, thus simplifying Eq.(1). The initial condition in 𝑣𝑣3 at 𝑐𝑐 = 0 is instead 
of a product of reciprocal degenerate Weierstrass P functions for forcing, is a sum of these functions. The parameter 
𝑚𝑚 in the degenerate Weierstrass P function, if chosen to be small gives a ball,

𝐵𝐵𝑟𝑟 = {𝑦𝑦 ∈ ℝ3: �|𝑦𝑦|�
2 = (|𝑦𝑦1|2 + |𝑦𝑦2|2 + |𝑦𝑦3|2)

1
2 ≤ 𝑟𝑟}

Here we are in Cartesian space ℝ3 with 2-norm 𝐿𝐿2 . Since the terms are squared in length in the initial 
condition for 𝑣𝑣3 we require to multiply by dynamic viscosity 𝜇𝜇 to obtain units of velocity. In the above, the forcing is 
taken to be different than the gradient of pressure.

Introducing the space ℑ(𝑦𝑦3, 𝑠𝑠) = �𝑠𝑠 ∈ ℝ+, 𝑦𝑦3 ∈ 𝐵𝐵 �𝑦𝑦3𝑐𝑐𝑖𝑖
; 𝜀𝜀� : 2𝑦𝑦1𝑣𝑣1 + 𝑣𝑣2 = 0 &𝐴𝐴𝑦𝑦1 + 𝐵𝐵𝑦𝑦2 + 𝐶𝐶 = 0,∀𝑦𝑦1,𝑦𝑦2 ∈ 𝐼𝐼 ×

𝐼𝐼 (𝐼𝐼 ⊂ ℝ )&𝑦𝑦2 = 𝑦𝑦1
2& 𝑣𝑣3(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑠𝑠) ∈ 𝐶𝐶0(𝕋𝕋3)�,

where 𝐵𝐵 �𝑦𝑦3𝑐𝑐𝑖𝑖
; 𝜀𝜀� is the 1-dimensional 𝜀𝜀-ball centered at  𝑦𝑦3𝑐𝑐𝑖𝑖

, i=1,2,…N, ranging through the expanding lattice 

generated by the flat torus.. The point  𝑦𝑦3𝑐𝑐𝑖𝑖
coincides with the center point (𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ,𝑐𝑐𝑖𝑖) , where 𝑟𝑟 = (𝑦𝑦1 − 𝑎𝑎𝑖𝑖 , 𝑦𝑦2 −

𝑏𝑏𝑖𝑖 ,𝑦𝑦3 − 𝑐𝑐𝑖𝑖), 𝑖𝑖 = 1,2, …𝑁𝑁.

𝑋𝑋 = �(𝛿𝛿 − 1)𝑣𝑣1
𝜕𝜕𝑣𝑣3

𝜕𝜕𝑠𝑠 + 2𝜌𝜌𝑣𝑣3
𝜕𝜕𝑣𝑣1

𝜕𝜕𝑠𝑠
�

𝜕𝜕2𝑣𝑣3

𝜕𝜕𝑦𝑦3𝜕𝜕𝑦𝑦1
+ �(𝛿𝛿 − 1)𝑣𝑣2

𝜕𝜕𝑣𝑣3

𝜕𝜕𝑠𝑠 + 2𝜌𝜌𝑣𝑣3
𝜕𝜕𝑣𝑣2

𝜕𝜕𝑠𝑠
�

𝜕𝜕2𝑣𝑣3

𝜕𝜕𝑦𝑦3𝜕𝜕𝑦𝑦2

−
𝜕𝜕𝑣𝑣3

𝜕𝜕𝑠𝑠
�𝑣𝑣3

𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦1

𝜕𝜕2𝑣𝑣1

𝜕𝜕𝑦𝑦3𝜕𝜕𝑠𝑠
+ 𝑣𝑣3

𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑣𝑣2

𝜕𝜕𝑦𝑦3𝜕𝜕𝑠𝑠
−
𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦1

𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦3

𝜕𝜕𝑣𝑣1

𝜕𝜕𝑠𝑠 −
𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦2

𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦3

𝜕𝜕𝑣𝑣2

𝜕𝜕𝑠𝑠
�+ 𝑣𝑣3

𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦1

𝜕𝜕𝑣𝑣1

𝜕𝜕𝑠𝑠
𝜕𝜕2𝑣𝑣3

𝜕𝜕𝑠𝑠𝜕𝜕𝑦𝑦3
2

𝑋𝑋 = �(𝛿𝛿 − 1) 𝑣𝑣1
𝜕𝜕𝑣𝑣3
𝜕𝜕𝑠𝑠

+ 2𝜌𝜌𝑣𝑣3
𝜕𝜕𝑣𝑣1
𝜕𝜕𝑠𝑠
� 𝜕𝜕2𝑣𝑣3
𝜕𝜕𝑦𝑦3𝜕𝜕𝑦𝑦1

+ �(𝛿𝛿 − 1) 𝑣𝑣2
𝜕𝜕𝑣𝑣3
𝜕𝜕𝑠𝑠

+ 2𝜌𝜌𝑣𝑣3
𝜕𝜕𝑣𝑣2
𝜕𝜕𝑠𝑠
� 𝜕𝜕2𝑣𝑣3
𝜕𝜕𝑦𝑦3𝜕𝜕𝑦𝑦2

+𝜕𝜕𝑣𝑣3
𝜕𝜕𝑠𝑠
�𝜕𝜕𝑣𝑣3
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑣𝑣3
𝜕𝜕𝑦𝑦3

𝜕𝜕𝑣𝑣1
𝜕𝜕𝑠𝑠

+ 𝜕𝜕𝑣𝑣3
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑣𝑣3
𝜕𝜕𝑦𝑦3

𝜕𝜕𝑣𝑣2
𝜕𝜕𝑠𝑠
� +

�𝜕𝜕𝑣𝑣2
𝜕𝜕𝑠𝑠
�

2
𝑣𝑣3

𝜕𝜕𝑣𝑣3
𝜕𝜕𝑦𝑦2

�
𝜕𝜕𝑣𝑣3
𝜕𝜕𝑠𝑠
𝜕𝜕𝑣𝑣2
𝜕𝜕𝑠𝑠

�
𝑦𝑦3

+�𝜕𝜕𝑣𝑣1
𝜕𝜕𝑠𝑠
�

2
𝑣𝑣3

𝜕𝜕𝑣𝑣3
𝜕𝜕𝑦𝑦1

�
𝜕𝜕𝑣𝑣3
𝜕𝜕𝑠𝑠
𝜕𝜕𝑣𝑣1
𝜕𝜕𝑠𝑠

�
𝑦𝑦3

Next the sum of the two first vorticities is used together with the vorticity sum set to the sum of the first two 
components of the equivalent expression which is twice the angular velocity,

𝜔𝜔1 + 𝜔𝜔2 =
2𝑦𝑦2𝑣𝑣3 − 2𝑦𝑦1𝑣𝑣3 − 2𝑦𝑦3(𝑣𝑣2 − 𝑣𝑣1)

𝑦𝑦1
2 + 𝑦𝑦2

2 + 𝑦𝑦3
2

Thus using the definition of vorticity we have the following equation in the space ℑ(𝑦𝑦3, 𝑠𝑠),

The 𝑦𝑦3 points are along segments parallel to the 𝑦𝑦3-axis, throughout the lattice. For points belonging to the 
space ℑ(𝑦𝑦3,𝑠𝑠), the following part of Eq.(1) is exactly zero:

That is 𝑋𝑋 = 0 on the subspace ℑ(𝑦𝑦3,𝑠𝑠). 𝑣𝑣1,𝑣𝑣2 are linearly dependent in this space. In the second equivalent 
expression for 𝑋𝑋, in the space ℑ(𝑦𝑦3, 𝑠𝑠), 𝑋𝑋 = 0.

© 2023    Global Journ als 
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+ 𝑣𝑣3
𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦2

𝜕𝜕𝑣𝑣2

𝜕𝜕𝑠𝑠
𝜕𝜕2𝑣𝑣3

𝜕𝜕𝑠𝑠𝜕𝜕𝑦𝑦3



  
   

  
  

  
   

 

 
  

 

  

 
 

 
 

 
 
 

 

 

  

 

 

 

 

 

 

    

 

 

 

  
 

𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦1
−
𝜕𝜕𝑣𝑣3

𝜕𝜕𝑦𝑦2
=
𝜕𝜕𝑣𝑣1

𝜕𝜕𝑦𝑦3
−
𝜕𝜕𝑣𝑣2

𝜕𝜕𝑦𝑦3
− (𝜔𝜔1 + 𝜔𝜔2)

Multiplying both sides of this equation by 𝑦𝑦1
2 + 𝑦𝑦2

2 + 𝑦𝑦3
2 = 𝜀𝜀2 and letting 𝜀𝜀 approach zero gives,

2𝑦𝑦2𝑣𝑣3 − 2𝑦𝑦1𝑣𝑣3 − 2𝑦𝑦3(𝑣𝑣2 − 𝑣𝑣1) = 0

so

𝑣𝑣3 = −
𝑦𝑦3(𝑣𝑣2 − 𝑣𝑣1)
𝑦𝑦1 − 𝑦𝑦2

Introduce the following shifts, (𝑦𝑦1 − 𝑎𝑎1, 𝑦𝑦2 − 𝑎𝑎2,𝑦𝑦3 − 𝑎𝑎3) ranging over all the centers of cells in the expanding 
lattice, and we set:

𝑦𝑦3 − 𝑎𝑎3=(𝑦𝑦1 − 𝑎𝑎1)− (𝑦𝑦2 − 𝑎𝑎2)

Cancellation occurs between 𝑦𝑦3 and 𝑦𝑦1 − 𝑦𝑦2 terms leaving us with,

𝑣𝑣3 = −(𝑣𝑣2 − 𝑣𝑣1)

Here we see clearly that we have an isotropic condition on the finite time blowup of the velocities. If the first 
derivatives and higher of the third component of velocity blows up then so do the corresponding derivatives of 
𝑣𝑣1 and 𝑣𝑣2 respectively.

The third component of vorticity is calculated as twice the third component of angular velocity,

�2
(𝑟𝑟 × �⃗�𝑣)𝑦𝑦3

𝑦𝑦1
2 + 𝑦𝑦2

2 + 𝑦𝑦3
2� = 2

−𝑣𝑣1𝑦𝑦2 + 𝑣𝑣2𝑦𝑦1

𝑦𝑦1
2 + 𝑦𝑦2

2 + 𝑦𝑦3
2

𝜔𝜔3 =
𝜕𝜕𝑣𝑣1

𝜕𝜕𝑦𝑦2
−
𝜕𝜕𝑣𝑣2

𝜕𝜕𝑦𝑦1
= 2

−𝑣𝑣1𝑦𝑦2 + 𝑣𝑣2𝑦𝑦1

𝑦𝑦1
2 + 𝑦𝑦2

2 + 𝑦𝑦3
2

Substitute 𝑣𝑣2 = −2𝑦𝑦1𝑣𝑣1 into previous PDE,

𝜕𝜕𝑣𝑣1

𝜕𝜕𝑦𝑦2
+ 2𝑣𝑣1 + 2𝑦𝑦1

𝜕𝜕𝑣𝑣1

𝜕𝜕𝑦𝑦1
= 2

(−2𝑦𝑦1
2 − 𝑦𝑦2)
𝜀𝜀2 𝑣𝑣1

where the sphere of radius 𝜀𝜀 is introduced, at the center of each cell of the lattice.

Solving PDE, gives, for arbitrary function 𝐹𝐹1,

𝑣𝑣1 = 𝑦𝑦1
−1−

−𝑙𝑙𝑛𝑛(𝑦𝑦1)
2 +𝑦𝑦2
𝜀𝜀2 𝐹𝐹1 �

−ln (𝑦𝑦1)
2

+ 𝑦𝑦2,𝑦𝑦3, 𝑠𝑠� 𝑒𝑒−
𝑦𝑦1

2

𝜀𝜀2𝑒𝑒−
ln (𝑦𝑦1)2

4𝜀𝜀2

A particular maximal class of solutions is obtained by setting,

which is in the required form of the general function and where 𝑓𝑓 is an arbitrary function to be determined.
Back substituting 𝐹𝐹1 into the solution for 𝑣𝑣1, gives,

𝑣𝑣1 = 𝑒𝑒
−2𝑦𝑦2𝜀𝜀2−𝑦𝑦1

2−𝑦𝑦2
2

𝜀𝜀2 𝑓𝑓(𝑦𝑦3,𝑠𝑠)

Here 𝑣𝑣1 is Gaussian.

Substituting 𝑣𝑣1 into 𝑣𝑣2 = −2𝑦𝑦1𝑣𝑣1,  gives,

𝑣𝑣2 = −2𝑦𝑦1𝑒𝑒
−2𝑦𝑦2𝜀𝜀2−𝑦𝑦1

2−𝑦𝑦2
2

𝜀𝜀2 𝑓𝑓(𝑦𝑦3,𝑠𝑠)

which is double sided Gaussian.
Near the center of each cell of the lattice, the solutions are non singular in spatial variables.

However 𝑓𝑓(𝑦𝑦3,𝑠𝑠), is yet to be determined and related to 𝑣𝑣3 solution since 𝑣𝑣3 = −(𝑣𝑣2 − 𝑣𝑣1).
Now the general form was reduced to a particular maximal class of solutions since as 𝑦𝑦1 → 0 ,𝑣𝑣1 → 0, which 

is inadmissible according to a theorem of J.Y Chemin [6] (“Some remarks about the possible blowup for the Navier 
Stokes equations”) If there is finite time blowup then it is impossible for one component of velocity to approach zero 
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𝐹𝐹1 = 𝑒𝑒ln (𝑦𝑦1)−2𝑦𝑦2𝑒𝑒�
ln(𝑦𝑦1)

2𝜀𝜀� −𝑦𝑦2 𝜀𝜀� �
2

𝑓𝑓(𝑦𝑦3,𝑠𝑠)



 

   

 

   

  

 

 

  

 

  

 

 

 

  
   

  

  

 

  

 
 

  

 

   
  

    
 

 
      

  

 

 

too fast. So we will show further that 𝑣𝑣3 is not smooth. Thus 𝑣𝑣1,𝑣𝑣2 blow up at the center of cells of lattice if we can 
conclude that 𝐹𝐹(𝑠𝑠) = lim𝑦𝑦3→0 𝑓𝑓(𝑦𝑦3,𝑠𝑠) has finite time blowup. Again recall that 𝑣𝑣3 = −(𝑣𝑣2 − 𝑣𝑣1), where in ℑ(𝑦𝑦3,𝑠𝑠)𝑣𝑣3 =
−(−2𝑦𝑦1𝑣𝑣1 − 𝑣𝑣1) = (2𝑦𝑦1 + 1)𝑣𝑣1 ≠ 0 at the centers of cells of ℝ

3

ℤ3� since 2𝑦𝑦1 + 1 ≠ 0 there and 𝑣𝑣1 is also not zero 
there.

Define 𝐹𝐹(𝑠𝑠) = 𝑓𝑓(0, 𝑠𝑠) = ∫ 𝐻𝐻(𝑠𝑠) 𝑑𝑑𝑠𝑠,
where 𝑓𝑓(0, 𝑠𝑠) = lim𝑦𝑦3→0 𝑓𝑓(𝑦𝑦3,𝑠𝑠) and𝐻𝐻(𝑠𝑠) is the solution associated with 𝑣𝑣3 in the 𝜀𝜀 −ball as 𝜀𝜀 → 0.

−
𝜕𝜕𝑃𝑃
𝜕𝜕𝑦𝑦2

+ 𝑓𝑓2 = �−2
1
𝑃𝑃𝑦𝑦1

1
𝑃𝑃𝑦𝑦2

1
𝑃𝑃𝑦𝑦3

− 2�𝐻𝐻(𝑠𝑠)

 

The pressure gradient is oscillatory, that is it is written as a product of reciprocals of degenerate Weierstrass
P functions added to a constant as is the forcing.

Finally the surface S given by 𝑦𝑦3 = ±(𝐴𝐴𝑦𝑦1
2 + 𝐵𝐵𝑦𝑦1 + 𝐶𝐶), plotted in ℝ3 is such that by shifting and sweeping 

through 𝑦𝑦1 values and heights along 𝑦𝑦3 axis we can find intersection points between surface S and points or centers 
of cells (𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ,𝑐𝑐𝑖𝑖).

Equation (1) together with 𝑋𝑋 = 0 gives the following PDE which has viscosity in it and where in Eq.(8.21) we 
have condensed the PDE by collecting the terms that contribute to the Laplacian. Also the divergence theorem is 
applied to the volume integral of Eq(I) for the term with Laplacian multiplied by 𝑣𝑣3. The calculations are taking into 
account that density is large, (fluids like water and higher densities.)

� ∂3𝑣𝑣3
∂𝑦𝑦3 3 + ∂3𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦2 2 + ∂3𝑣𝑣3
∂𝑦𝑦3 ∂𝑦𝑦1 2�𝜇𝜇 + 2/3(𝑣𝑣3 �

∂2𝑣𝑣3
∂𝑦𝑦3 2 + ∂2𝑣𝑣3

∂𝑦𝑦2 2 + ∂2𝑣𝑣3
∂𝑦𝑦1 2� +

1/6 �3𝜌𝜌𝑣𝑣3
∂2𝑣𝑣3
∂𝑦𝑦3 2 + 3 �∂𝑣𝑣3

∂𝑦𝑦3
�

2
𝜌𝜌 − �∂𝑣𝑣3

∂𝑦𝑦3
�

2
+ ∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦1
+ ∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦2
� ∂𝑣𝑣3
∂𝑠𝑠

= 0

                                                                            

(I)

 

Finally the solutions for 𝑣𝑣1,𝑣𝑣2 satisfy the 𝑦𝑦1,𝑦𝑦2 momentum equations for PNS when − 𝜕𝜕𝑃𝑃
𝜕𝜕𝑦𝑦1

+ 𝑓𝑓1 = � 1
𝑃𝑃𝑦𝑦1

1
𝑃𝑃𝑦𝑦2

1
𝑃𝑃𝑦𝑦3

+ 1�𝐻𝐻(𝑠𝑠), 

for 𝜀𝜀 > 0 arbitrarily small and where 𝑓𝑓1, 𝑓𝑓2 are the forcing terms associated with the 𝑦𝑦1,𝑦𝑦2 momentum equations. It 
remains to prove that the derivatives of 𝐻𝐻(𝑠𝑠) blowup in finite time.
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In Equation (I) it is understood that in the top line with two expressions appearing there, that these both 

include a product of (𝛿𝛿 − 1) �∂𝑣𝑣3
∂𝑠𝑠
�

2
which has been set to a constant. Solving this implies that 𝑣𝑣3 is a linear function 

in 𝑠𝑠. As 𝛿𝛿 → 1, 𝑣𝑣3 approaches infinity from the right of a potential blowup point 𝑠𝑠 = 𝑠𝑠0. See Figure (1c) below,



  
  

 
  

   
  

 
 

 

 
 

 

 

  

   

 

 
 

Equation (I) is confirmed to provide the left hand limit at 𝑠𝑠 = 𝑠𝑠0. We have two problems here. One is the 
solution for the Euler equation when 𝜇𝜇 = 0. The solution is obtained by solving for one of the constants 𝐶𝐶6. There are 
six unknown constants in the solution of the above PDE when 𝜇𝜇 = 0. (𝐶𝐶𝑖𝑖 , 𝑖𝑖 = 1,2, … 6) We use the fact that in the 
space ℑ(𝑦𝑦3,𝑠𝑠), the set {1,𝑦𝑦1,𝑦𝑦1

2} is linearly independent, implying that all the constants are zero in the solution 
except 𝐶𝐶3 and 𝐶𝐶4 associated with variables 𝑦𝑦3, 𝑠𝑠 respectively. The solution is expressed as linear sums of the spatial 
and time variables. Now 𝑦𝑦3 is within an epsilon ball. The variable 𝜁𝜁 appears in the initial condition when solving for 
the unknown constant 𝐶𝐶6, and the initial condition for 𝑣𝑣3 is given as the sum of arbitrarily large data 𝜁𝜁 and sums of 
reciprocal degenerate Weierstrass P functions in the three directions for small 𝑚𝑚. We obtain the following solution,

𝐷$ = ln	 −6𝐶$	S𝐶:𝜁 − 6𝐶S	S𝐶:𝜁 − 6𝐶::𝜁 − 2𝐶$: − 2𝐶$	S𝐶S − 2𝐶$𝐶S	S − 2𝐶$𝐶:	S −

2𝐶S	: − 2𝐶S𝐶:	S + e¸�	
]¸¹¸º 𝐶:

𝐷S = 12(𝑠 + 𝜁/2)𝐶:	S + 12 𝐶$/6 + 𝐶S/6 𝐶: + 12𝑠 𝐶$	S + 𝐶S	S 𝐶$	S + 𝐶S	S + 𝐶:	S e_¸�	
]¸¹¸º

C:	:CmC¼ − C:
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Figure 1c: Linear functions in the form 𝑣𝑣3 = (−𝑎𝑎𝑏𝑏𝑠𝑠(𝑏𝑏) + (𝑚𝑚 ∗ 𝑠𝑠 − 600), 𝑚𝑚 > 0,𝑏𝑏, y-intercept. It is shown that the 
right side limit approaches infinity as 𝛿𝛿 → 1



 
 

  

 
  

  
   

 

 

      
 

 
 

 

 

 

𝑣:(𝜁, 𝑠) =
1

6𝐶: 𝐶$	S + 𝐶S	S + 𝐶:	S
−2𝐶$: − 2𝐶$	S𝐶S − 2𝐶$𝐶S	S − 2𝐶$𝐶:	S − 2𝐶S	: − 2𝐶S𝐶:	S +

e¸�]¸¹¸º𝑊 −exp	
𝐷$ + 𝐷S
𝐶:

+ e¸�	]¸¹¸º

where 𝑊𝑊 is the Lambert W function. We replaced 𝜁𝜁 by – 𝜁𝜁+large shifts and found that the solution for 𝑣𝑣3 for large 𝑠𝑠
(example 𝑠𝑠 = 600), the solution is locally H�̈�𝔬lder continuous with H�̈�𝑜lder constant 1/3 at arbitrary large values of 𝜁𝜁.
(specifically in plot shown, 𝜁𝜁 = 10000).

In this analysis there is no restriction on the largeness of the data, thereby proving that the solution is 
admissible for arbitrary large data. The solution as seen in Figure 2 is not smooth from the first and higher 
derivatives in of 𝜁𝜁. This is discussed further in the chapter as it pertains to the Onsager regularity problem particularly 
the endpoint regularity problem.

See the following Figure 2, where the dashed line is the solution for 𝑣𝑣3 and the non-dashed line is the H�̈�𝔬lder 
solution, given for example as

(-0.52+�10000− 𝜁𝜁)
1
3�

                        Figure 2: Locally H�̈�𝔬lder continuous functions. 𝐶𝐶3 = −0.052𝐶𝐶4 = 0.05
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III. On the Endpoint Regularity in Onsager’s Conjecture

In order to obtain the solution previously shown as 𝑣𝑣3(𝜁𝜁, 𝑠𝑠) we let epsilon approach zero for solutions 
𝑣𝑣3(𝜁𝜁,𝑦𝑦3,𝑠𝑠) in the space ℑ(𝑦𝑦3,𝑠𝑠). In this space a ball 𝐵𝐵 �𝑦𝑦3𝑐𝑐𝑖𝑖

; 𝜀𝜀� exists with 𝜀𝜀 > 0. Here 𝜀𝜀 is defined as a measure of 

how close one is to the center of a given cell in the lattice of the 3-Torus. Due to the definition of the space ℑ(𝑦𝑦3,𝑠𝑠), 
the set {1,𝑦𝑦1,𝑦𝑦1

2} is linearly independent, implying that all the constants are zero in the solution except 𝐶𝐶3 and 𝐶𝐶4
associated with variables 𝑦𝑦3, 𝑠𝑠 respectively. The constants 𝐶𝐶𝑖𝑖 ranging from 𝑖𝑖 = 1. .6 in the solution of the Euler 
Equation (I) appear in the solution and in particular as an argument of the Lambert W function and is expressed as 
the following linear sum in spatial and time variables,

𝑌𝑌 = 𝐶𝐶1𝑦𝑦1 + 𝐶𝐶2𝑦𝑦2 + 𝐶𝐶3𝑦𝑦3 + 𝐶𝐶4𝑠𝑠+ 𝐶𝐶5

Note that the solution can be obtained by solving Eq.(I) when 3 �∂𝑣𝑣3
∂𝑦𝑦3
�

2
𝜌𝜌 − �∂𝑣𝑣3

∂𝑦𝑦3
�

2
≈ 3 �∂𝑣𝑣3

∂𝑦𝑦3
�

2
𝜌𝜌, that is for 

𝜌𝜌 ≫ 100 𝑘𝑘𝑘𝑘
𝑚𝑚3. It is found that an exact solution is given by Maple 2023 software when this approximation is made for 

large enough density. It is also worthy to note that for lower densities when we retain both terms in the previous 
approximation, that for the locally H�̈�𝔬lder continuous functions in time 𝑠𝑠, with H�̈�𝔬lder  constant equal to exactly 1/3, 

the product term �∂𝑣𝑣3
∂𝑦𝑦3
�

2 ∂𝑣𝑣3
∂𝑠𝑠

in Eq.(I) becomes independent of time 𝑠𝑠 and is only dependent on the spatial variables.

The Onsager conjecture suggested the value 𝛼𝛼 = 1/3 for the case of the Euler equations but the conjecture 
was mainly considering only the H �̈�𝔬 lder regularity with respect to the space variables. Here we consider a 
combination of velocity-time conditions (𝜁𝜁, 𝑠𝑠), which depend precisely on the H�̈�𝔬lder exponent. As outlined in the 
introduction, P. Isett’s proof shows that if 𝛼𝛼 < 1/3 (strictly less than) then conservation of energy fails. The works of 
Eyink[7,8] and Constantin, E, Titi [9] on the Onsager conjecture describe results in a Fourier setting and in a space 
called a Besov space (slightly larger than H�̈�𝔬lder spaces), respectively. A well known result is that if the velocity is a 
weak solution to the Euler equations such that,

𝑐𝑐 ∈ 𝐿𝐿3(0,𝑇𝑇;𝐵𝐵3
𝛼𝛼,∞(𝕋𝕋3))⋂𝐶𝐶(0,𝑇𝑇; 𝐿𝐿2(𝕋𝕋3))

with 𝛼𝛼 > 1/3, (strictly greater than) then, ‖𝑐𝑐(𝑐𝑐)‖ = ‖𝑐𝑐0‖, for all 𝑐𝑐 ∈ [0,𝑇𝑇]. This result is also true in H�̈�𝔬lder spaces 
which was the setting that L. Onsager stated his conjecture rather than Besov spaces.

H�̈�𝔬lder continuous functions, as defined in Berselli [10] with a focus on space-time properties of functions 
with “homogeneous behavior”, that is the one of the H�̈�𝔬lder semi-norm [. ]𝛼𝛼 (to be defined) and denote by �̇�𝐶𝛼𝛼 the 
space of measurable functions such that this quantity is bounded. We say that,

𝑐𝑐 ∈ 𝐿𝐿𝛽𝛽 (0,𝑇𝑇; �̇�𝐶𝛼𝛼(𝕋𝕋3)),

if there exists 𝑓𝑓𝛼𝛼 : [0,𝑇𝑇] → ℝ+ such that 

1) |𝑐𝑐(𝑥𝑥, 𝑐𝑐)− 𝑐𝑐(𝑦𝑦, 𝑐𝑐)| ≤ 𝑓𝑓𝛼𝛼(𝑐𝑐)|𝑥𝑥 − 𝑦𝑦|𝛼𝛼 ,∀ 𝑥𝑥,𝑦𝑦 ∈ 𝕋𝕋3, for a.e.  𝑐𝑐 ∈ [0,𝑇𝑇],

2) ∫ 𝑓𝑓𝛼𝛼
𝛽𝛽 (𝑐𝑐)𝑑𝑑𝑐𝑐 < ∞𝑇𝑇

0

and 𝑓𝑓𝛼𝛼(𝑐𝑐) = [𝑐𝑐(𝑐𝑐)]𝛼𝛼 for almost all 𝑐𝑐 ∈ [0,𝑇𝑇].
The space is endowed with the semi-norm

‖𝑐𝑐‖𝐿𝐿𝛽𝛽 (0,𝑇𝑇;�̇�𝐶𝛼𝛼 �𝕋𝕋3�) ≔ �� 𝑓𝑓𝛼𝛼
𝛽𝛽 (𝑐𝑐)𝑑𝑑𝑐𝑐

𝑇𝑇

0
�

1/𝛽𝛽

Finally 

[𝑐𝑐]𝛼𝛼 ≔
𝑠𝑠𝑐𝑐𝑝𝑝
𝑥𝑥 ≠ 𝑦𝑦

|𝑐𝑐(𝑥𝑥) − 𝑐𝑐(𝑦𝑦)|
|𝑥𝑥 − 𝑦𝑦|𝛼𝛼

In Berselli [10], (see Theorem 4.2 there) it is proven that if 𝑐𝑐 is a weak solution to the Euler equation (in usual 
form), such that 𝑐𝑐 ∈ 𝐿𝐿1/𝛼𝛼(0,𝑇𝑇; �̇�𝐶𝜔𝜔𝛼𝛼(𝕋𝕋3)) with 𝛼𝛼 ∈ �1

3
, 1� (where �̇�𝐶𝜔𝜔𝛼𝛼(𝕋𝕋3) ⊂ 𝐶𝐶𝛼𝛼(𝕋𝕋3) is the slightly smaller space defined 

through the norm

‖𝑐𝑐‖𝐶𝐶𝜔𝜔𝛼𝛼 = max
𝑥𝑥∈𝕋𝕋3����

|𝑐𝑐(𝑥𝑥)| + [𝑐𝑐]𝜔𝜔 ,𝛼𝛼
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[𝑐𝑐]𝜔𝜔 ,𝛼𝛼 ≔
𝑠𝑠𝑐𝑐𝑝𝑝
𝑥𝑥 ≠ 𝑦𝑦

|𝑐𝑐(𝑥𝑥)−𝑐𝑐(𝑦𝑦)|
𝜔𝜔 (|𝑥𝑥−𝑦𝑦 |)|𝑥𝑥−𝑦𝑦 |𝛼𝛼 ,

with 𝜔𝜔: ℝ+ → ℝ+ a non-decreasing function such that lim𝑠𝑠→0+ 𝜔𝜔(𝑠𝑠) = 0.) then 𝑐𝑐 conserves the energy.

In our proof of the endpoint regularity of Onsager’s conjecture we are considering the H�̈�𝔬lder continuous 
functions in the space 𝐶𝐶𝛼𝛼(𝕋𝕋3).

∬𝐶𝐶2
∫ 𝑣𝑣3

2𝜀𝜀
𝑦𝑦3=−𝜀𝜀 (𝜁𝜁, 𝑦𝑦3, 𝑠𝑠)d𝑦𝑦3𝑑𝑑𝑦𝑦1𝑑𝑑𝑦𝑦2 =∭𝐶𝐶(𝑎𝑎�⃗ ;𝜀𝜀)𝑣𝑣3

2(0) 𝑑𝑑𝑦𝑦 = ∭𝐶𝐶(𝑎𝑎�⃗ ;𝜀𝜀)(𝜁𝜁 + (|𝑦𝑦1|2 + |𝑦𝑦2|2 + |𝑦𝑦3|2))2 𝑑𝑑𝑦𝑦

The integrals are carried out over a cube 𝐶𝐶(�⃗�𝑎; 𝜀𝜀) = [−𝜀𝜀, 𝜀𝜀]3 , centered about �⃗�𝑎 . For 𝜀𝜀 = 1/2 the scaled 
solutions and hence graphs are shown in Figure 3 and 4. It is seen that in either step in both figures that energy is 
conserved thereby proving the endpoint regularity in Onsager’s Conjecture. In Figure 3 and 4, the thicker part of 
curves hides the energy (E) at 𝑠𝑠 = 0, behind the solution curve. For 𝜁𝜁 > 0 there are two curves coinciding and the 
same is true for 𝜁𝜁 < 0.

The key empirical fact underlying the Onsager theory is the non-vanishing of turbulent energy dissipation in 
the zero-viscosity limit. The requirement for a non-vanishing limit of dissipation is that space-gradients of velocity 
must diverge. It is observed in experiment that when integrated over small balls or cubes in space the high-Reynolds 
limit of the the kinetic energy dissipation rate defines a positive measure with multifractal scaling. The solution for 
Euler’s equation given in this paper agrees with this fact that gradient of 𝑣𝑣3 with respect to spatial position 𝑦𝑦3 does in 
fact diverge. This is a short-distance/ultraviolet (UV) divergence in the language of quantum field-theory, or what 
Onsager himself termed a “violet catastrophe” [12]. Since the fluid equations of motion (I.1) contain diverging 
gradients, they become ill-defined in the limit. In order to develop a dynamical description which can be valid even 
as ν → 0, some regularization of this divergence must be introduced.

Figure 3: Energy of PNS system for arbitrarily large and positive data 𝜁𝜁

There are two steps here. First we set 𝑣𝑣3(𝑦𝑦3, 𝑠𝑠 ) equal to the variable 𝜁𝜁 appearing in the initial condition when 
solving for the unknown constant 𝐶𝐶6 where 𝜁𝜁 > 0 , and recall that the initial condition for 𝑣𝑣3 is given as the sum of 
arbitrarily large data 𝜁𝜁 and sums of reciprocal degenerate Weierstrass P functions in the three directions for small 𝑚𝑚. 
(By reciprocal we mean that unity is divided by the Weierstrass P functions with a bounded periodic result.) In the 
second step we solve for 𝑣𝑣3(𝜁𝜁,𝑦𝑦3,𝑠𝑠) for arbitrarily large negative data 𝜁𝜁 < 0. In both steps separately we keep 
𝑦𝑦3 ∈ 𝐵𝐵 �𝑦𝑦3𝑐𝑐𝑖𝑖

; 𝜀𝜀� and integrate the square associated with energy of solution 𝑣𝑣3(𝜁𝜁, 𝑦𝑦3, 𝑠𝑠), that is we will show that our 

solution satisfies conservation of energy, (for all times 𝑠𝑠 ∈ [0,𝑇𝑇)).
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Figure 4: Energy of PNS system for arbitrarily large and negative data 𝜁𝜁

In the book “Theory of unitary symmetry” by Rumer and Fet[12], the Laplacian is defined an integration over 
a 3D-ball, in particular an epsilon ball.

Therefore Eq(I) becomes:   

(II)

�
∂3𝑣𝑣3

∂𝑦𝑦3
3 +

∂3𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦2
2 +

∂3𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦1
2�𝜇𝜇(𝛿𝛿 − 1) +

1/6�3𝜌𝜌𝑣𝑣3
∂2𝑣𝑣3

∂𝑦𝑦3
2 + 3 �

∂𝑣𝑣3

∂𝑦𝑦3
�

2

𝜌𝜌 − �
∂𝑣𝑣3

∂𝑦𝑦3
�

2

+
∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦1
+

∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦2
�
∂𝑣𝑣3

∂𝑠𝑠 = 0

Equation (II) is integrated over an epsilon ball so we solve Eq.(II) in a neighborhood of epsilon =0 that is 
near the center of each cell of the lattice in the space ℑ(𝑦𝑦3, 𝑠𝑠). So we integrate Eq. (II) over an epsilon ball first and 
then take limit. We use the Fet theory on writing the Laplacian as an integral over an epsilon ball.

Here we know that there is an operator Δ𝜀𝜀𝑣𝑣3 = 3
4𝜋𝜋𝜀𝜀3 ∫ 𝑣𝑣3(𝑦𝑦)− 𝑣𝑣3(0)𝑑𝑑𝑦𝑦 such that in the limit as epsilon 

approaches zero, 10
𝜀𝜀2 Δ𝜀𝜀𝑣𝑣3=Δ𝑣𝑣3. Integral is over epsilon ball centered at �⃗�𝑎 = (𝑎𝑎,𝑏𝑏, 𝑐𝑐).

Proof:

We take the Taylor expansion around 0 (or center �⃗�𝑎 to second order, which gives terms proportional to 
𝑦𝑦1,𝑦𝑦1𝑦𝑦2 and 𝑦𝑦1

2, however due to the symmetry of the 𝑦𝑦1,𝑦𝑦1𝑦𝑦2 related terms these integrate to zero over the ball and 
thus we have that,

Δ𝜀𝜀𝑣𝑣3 = 3
4𝜋𝜋𝜀𝜀3 �

1
2
𝜕𝜕2𝑣𝑣3
𝜕𝜕𝑦𝑦1

2 ∫ 𝑦𝑦1
2 𝑑𝑑𝑦𝑦 + 1

2
𝜕𝜕2𝑣𝑣3
𝜕𝜕𝑦𝑦2

2 ∫𝑦𝑦2
2 𝑑𝑑𝑦𝑦 + 1

2
𝜕𝜕2𝑣𝑣3
𝜕𝜕𝑦𝑦3

2 ∫𝑦𝑦3
2 𝑑𝑑𝑦𝑦�+𝒪𝒪(𝜀𝜀3)

where all derivatives are evaluated at the center �⃗�𝑎. The integrals all give the same value,

∫𝑦𝑦1
2 𝑑𝑑𝑦𝑦 = 1

3
∫𝑦𝑦1

2+𝑦𝑦2
2+𝑦𝑦3

2 𝑑𝑑𝑦𝑦 = 4𝜋𝜋
3
∫ 𝑟𝑟4𝑑𝑑𝑟𝑟𝜀𝜀

0 = 4𝜋𝜋𝜀𝜀5

15

The viscous solution when 𝜇𝜇 is non-zero is subject to a rewriting of Eq (I) and to use this result first we 
integrate Eq.(I) over an 𝜀𝜀 −ball, centered at each center of cells of the lattice of 3-Torus. Next using the divergence 

theorem for the term of Eq(I),  that is specifically the expression 𝑣𝑣3 �
∂2𝑣𝑣3
∂𝑦𝑦3 2 + ∂2𝑣𝑣3

∂𝑦𝑦2 2 + ∂2𝑣𝑣3
∂𝑦𝑦1 2�, gives |∇𝑣𝑣3|2 𝑑𝑑𝑦𝑦𝑦𝑦∈𝐵𝐵𝜀𝜀 (𝑦𝑦)

∫ = 

0 where the surface integral is zero and since we are integrating a positive expression on an epsilon ball, at epsilon 
=0 the integral is zero.
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where the differential has been transformed to spherical coordinates in 3D. Substituting this into the main statement 
of the theorem, we obtain,

Δ𝜀𝜀𝑣𝑣3 =
3

4𝜋𝜋𝜀𝜀3
4𝜋𝜋𝜀𝜀5

15
1
2
�
𝜕𝜕2𝑣𝑣3

𝜕𝜕𝑦𝑦1
2 +

𝜕𝜕2𝑣𝑣3

𝜕𝜕𝑦𝑦2
2 +

𝜕𝜕2𝑣𝑣3

𝜕𝜕𝑦𝑦3
2 �+ 𝒪𝒪(𝜀𝜀3) =

𝜀𝜀2

10Δ𝑣𝑣3 + + 𝒪𝒪(𝜀𝜀3)

Finally we take the limit,

lim
𝜀𝜀→0

10
𝜀𝜀2 Δ𝜀𝜀𝑣𝑣3 = lim

𝜀𝜀→0
[Δ𝑣𝑣3 + 𝒪𝒪(𝜀𝜀)] = Δ𝑣𝑣3

In Eq.(II) the Laplacian is differentiated wrt to 𝑦𝑦3. Using Fet theory, where we integrate Δ𝜀𝜀𝑣𝑣3 on an epsilon 
ball centered at zero and generalized to the center of any cell center of the lattice of the 3-Torus, we obtain the 
following PDE for large density:

1/6 �3𝜌𝜌𝑣𝑣3
∂2𝑣𝑣3
∂𝑦𝑦3 2 + 3 �∂𝑣𝑣3

∂𝑦𝑦3
�

2
𝜌𝜌 + ∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦1
+ ∂2𝑣𝑣3

∂𝑦𝑦3 ∂𝑦𝑦2
� ∂𝑣𝑣3
∂𝑠𝑠

+ 𝜇𝜇(𝛿𝛿 − 1) 𝜕𝜕𝑣𝑣3
𝜕𝜕𝑦𝑦3

= 0                                                                        (III)

with solution:

𝑣𝑣3 = (1/3− 𝐶𝐶4𝐶𝐶1 − 𝐶𝐶4𝐶𝐶2 + (−(6𝐶𝐶1𝑦𝑦1 + 6𝐶𝐶2𝑦𝑦2 + 6𝐶𝐶3𝑦𝑦3 + 6𝐶𝐶4𝑠𝑠+ 6𝐶𝐶5)𝐶𝐶3𝐶𝐶4
2𝐶𝐶5𝜌𝜌+ 6𝐶𝐶3𝐶𝐶4

2𝐶𝐶6𝜌𝜌 −��

��18(𝐶𝐶1𝑦𝑦1 + 𝐶𝐶2𝑦𝑦 + 𝐶𝐶3𝑧𝑧+ 𝐶𝐶4𝑠𝑠+ 𝐶𝐶5)2𝐶𝐶3𝐶𝐶4𝜌𝜌 + 𝐶𝐶1
2𝐶𝐶4

2 + 2𝐶𝐶1𝐶𝐶2𝐶𝐶4
2 + 𝐶𝐶2

2𝐶𝐶4
2)1/2�/(𝐶𝐶3𝐶𝐶4𝜌𝜌)

 

𝐶𝐶3 = 0.052,𝐶𝐶4 = 0.05

for 𝜌𝜌 = 1000, 𝜁𝜁 = 10000, the following result follows in Figure 5.

Figure 5: Locally H�̈�𝔬lder continuous functions in 𝑠𝑠

where 𝐶𝐶𝑖𝑖 , i=1…6 are constants. Using the same initial condition in terms of 𝜁𝜁 as in the first part in Eq(I), we can 
determine 𝐶𝐶6 and on the space ℑ(𝑦𝑦3, 𝑠𝑠), all constants are zero and the only constants that survive are 𝐶𝐶3,𝐶𝐶4 and 
arbitrarily large 𝜁𝜁. When the two constants are as follows,
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Here it is clear that there exists a solution of PNS that is not smooth in time 𝑠𝑠 for the first and higher 
derivatives.

The Full Equation Proof for the Periodic Navier Stokes Equations

Integrating the Navier Stokes equations over an epsilon ball we obtain,

∫𝐵𝐵𝑦𝑦 ;𝜀𝜀
𝒢𝒢𝛿𝛿1 + 𝒢𝒢𝛿𝛿2 + 𝒢𝒢𝛿𝛿4 𝑑𝑑𝑦𝑦 = −∫𝐵𝐵𝑦𝑦 ;𝜀𝜀

𝒢𝒢𝛿𝛿3 𝑑𝑑𝑦𝑦                                                                                                                      (IV)

The first part of 𝒢𝒢3 becomes,

𝒢𝒢3 = ∇ ∙ ∇(Ξ),

where ∇(Ξ) = 1
𝜌𝜌
�𝑣𝑣3

2∇𝑦𝑦1𝑦𝑦2𝑃𝑃 + 𝑏𝑏�⃗ 𝑣𝑣3
𝜕𝜕𝑃𝑃
𝜕𝜕𝑦𝑦3
�

where 𝑃𝑃 is the pressure and 𝜌𝜌 is the density of the fluid.

Dividing Eq.(IV) by the measure or volume of the ball of radius epsilon centered at point 𝑎𝑎.

𝐵𝐵𝑎𝑎 ;𝜀𝜀

we know since Ξ is continuous everwhere on the 3-Torus (since integrals are continuous in inverting gradient), and in 
particular at the the center of the epsilon ball (note higher order derivatives of 𝑣𝑣3 blowup, not 𝑣𝑣3 and pressure), then,

                                                                                                                                    (V)

However using the Fet theory, we can see that the integral on the RHS of Eq.(IV) divided by the volume of 
the ball is related to the integral over the ball centered at 𝑎𝑎 of 1

4𝜋𝜋𝜀𝜀2 (Ξ(𝑦𝑦)− Ξ(a)). Using Eq.(V), we obtain a difference 
of exactly zero so that we are left with,

lim
𝜀𝜀→0

1
|𝐵𝐵𝑦𝑦 ;𝜀𝜀 |∫𝐵𝐵𝑎𝑎 ;𝜀𝜀

𝒢𝒢𝛿𝛿1 + 𝒢𝒢𝛿𝛿2 + 𝒢𝒢𝛿𝛿4 𝑑𝑑𝑦𝑦 = 0

∫𝐵𝐵𝑎𝑎 ;𝜀𝜀
𝒢𝒢𝛿𝛿1 + 𝒢𝒢𝛿𝛿2 + 𝒢𝒢𝛿𝛿4 𝑑𝑑𝑦𝑦 = 0                                                                                                                                          (VI)

Eq.(VI) is the PDE we obtained previously and occurs at an arbitrarily small epsilon ball centered at each cell 
of the lattice of the 3-Torus.

In reference [5], we showed that,

𝒢𝒢𝛿𝛿1 + 𝒢𝒢𝛿𝛿2 + 𝒢𝒢𝛿𝛿4 = 3Φ(𝑠𝑠)

Φ(𝑠𝑠) ≥ 0

and

𝒢𝒢𝛿𝛿1 + 𝒢𝒢𝛿𝛿2 + 𝒢𝒢𝛿𝛿4 ≥ 0

Also

Ξ2 =
‖𝑄𝑄‖
�𝑏𝑏�⃗ �

=
�𝜕𝜕𝑣𝑣3
𝜕𝜕𝑠𝑠 𝑏𝑏

�⃗ ∙ �𝑏𝑏�⃗ ⨂Δ𝑣𝑣3��

�𝑏𝑏�⃗ �

where

Ξ1 = Ξ + Ξ2

Recall that the three velocities are isotropic and they are continuous on 𝐵𝐵𝑎𝑎;𝜀𝜀 and Ξ2 is continuous on the 
epsilon ball. Also Ξ2 is independent of 𝑠𝑠 for H�̈�𝔬lder continuous functions at 𝛼𝛼 = 1/3.

Also if we specify the time, the solution is a H�̈�𝔬lder continuous function in the data 𝜁𝜁 with a H�̈�𝔬lder constant 
equal to one half.
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lim𝜀𝜀→0
1

|𝐵𝐵𝑦𝑦 ;𝜀𝜀 |
∫𝐵𝐵𝑎𝑎 ;𝜀𝜀

Ξ(𝑦𝑦) 𝑑𝑑𝑦𝑦 = Ξ(a)

Since the negative pressure gradients are greater than or equal to zero being reciprocal Weierstrass P 
functions and 𝑣𝑣3

2 ≥ 0 and 𝑣𝑣1 and 𝑣𝑣2 cancel in the space ℑ(𝑦𝑦3,𝑠𝑠) when integrating on the six faces of surface of a cell 
of 𝕋𝕋3, we have that,



 

  

 
 

 
 

 

 

    

  

 

   

  

 

 
     

 

 
Theorem
𝒢𝒢𝛿𝛿1 + 𝒢𝒢𝛿𝛿2 + 𝒢𝒢𝛿𝛿4 = 0 if and only if Ξ1 is continuous on the epsilon ball

𝐵𝐵𝑎𝑎;𝜀𝜀 .

Proof:
Apply (V) to Ξ1

IV. Conclusion

Satisfying a divergence free vector field and periodic boundary conditions respectively with a general spatio-
temporal forcing term 𝑓𝑓 which is smooth and spatially periodic, the existence of solutions which blowup in finite time 
for PNS can occur starting with the first derivative and higher with respect to time. P. Isett (2016) (see [13]) has 
shown that the conservation of energy fails for the 3D incompressible Euler flows with H�̈�𝔬lder regularity below 1/3.
(Onsager’s second conjecture) The endpoint regularity in Onsager’s conjecture has been addressed, and it is found 
that conservation of energy occurs when the H�̈�𝔬lder regularity is exactly 1/3. The solution for Euler’s equation given in 
this paper agrees with this fact that gradient of 𝑣𝑣3 with respect to spatial position 𝑦𝑦3 does in fact diverge. This is a 
short-distance/ultraviolet (UV) divergence in the language of quantum field-theory as L. Onsager proposed. Finally
very recent developed new governing equations of fluid mechanics are proposed to have no finite time singularities. 
This is the focus of the ongoing work of the author to be presented in the near future. Finally future work to conclude 
the nature of flows in a non-epsilon or arbitrary small ball for the 3-Torus will be carried out.
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