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Optimizing Natural Gas Liquid Recovery:
Efficient and Cost-Effective Methods for
Enhanced Performance

Godsday Idanegbe Usiabulu ¢, Ifeanyi Eddy Okoh ° & Kenneth John Okpeahior °

Abstract- The oil and gas industry, a cornerstone of the
modern economy for nearly a century and a half, is now
witnessing the full potential of the natural gas sector.
Historically, natural gas has often been an unwanted
byproduct of crude oil production, frequently vented or flared.
However, technological advancements are enabling more
effective and economical methods for capturing, processing,
transporting, and utilizing this valuable resource. This
research, crucial for the industry's future, focuses on the
challenges of safely processing, storing, and transporting
natural gas while maximizing output, particularly in the context
of natural gas liquids (NGLs). The primary objective of this
study is to explore various methods for enhanced NGL
recovery from natural gas, highlighting the growing demand
for these valuable components. Key findings indicate that
several existing processes, including absorption, cryogenic
separation, and membrane technology, offer significant
potential for deep NGL recovery. Membrane technology
stands out due to its efficiency and cost-effectiveness. These
findings suggest that optimizing NGL recovery processes can
play a crucial role in meeting the world's increasing demand
for cleaner energy and specialty chemicals. The
recommendations for future research underscore the need for
further exploration of membrane technology's application in
NGL recovery and the importance of continued innovation in
separation processes to enhance overall efficiency and
sustainability in the natural gas industry.

Keywords: natural gas liquids, NGL recovery, membrane
technology, lean oil absorption, chemical impacts.

[. INTRODUCTION

he oil and gas industry's primary objective today
are to increase hydrocarbon production in an

economical and environmentally friendly manner. A
significant challenge in this endeavour is reducing the
hydrocarbon dew point of natural gas for pipeline
transportation, particularly as large intrastate, interstate,
and international pipelines have developed. The
complications  surrounding the processing and
transportation of substantial quantities of natural gas are
numerous and interconnected. This research aims to
review major natural gas liquids (NGL) recovery
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methods, including refrigeration, chemical, physical
methods, and combined heat and power (CHP)
systems, while discussing the advantages and

disadvantages of each.

Natural gas produced from wells is often
saturated with heavy hydrocarbons (HCs) and water
vapor. NGLs, a group of light hydrocarbons that exist as
liquids under surface conditions, primarily consist of
ethane, propane, butane, and pentanes, all of which
have boiling points higher than that of methane, the
main component of natural gas (Ma et al., 2010; Song et
al., 2014). The separation of these heavy HCs from the
natural gas stream, known as NGL recovery, typically
occurs through condensation or absorption processes
at natural gas processing plants (Rahbari et al., 2013).
Although chemically similar to crude oil, NGLs have
lower boiling points, which facilitates their separation
and utilization.

Cryogenic processes are the most prevalent
method for NGL recovery in the natural gas industry
(Getu et al., 2018). The number of NGL recovery plants
has been increasing in recent years due to the rising
demand for these valuable products (Alabdulkarem et
al., 2011). The high price of natural gas condensate,
along with the need to correct the natural gas dew point,
has driven the establishment of NGL recovery systems.
Various methods exist for NGL recovery, including
cryogenic refrigeration, Joule—-Thomson (JT) processes,
turbo-expanders, vortex tubes, and supersonic
separators (3S) (Shoghl et al., 2019).

Conventional separation methods, such as the
JT process, often require large equipment and entail
high operating and capital costs, alongside significant
pressure drops and environmental concerns due to
chemical inhibitors. The novel 3S technology addresses
many of these limitations, offering a compact design
and simple configuration suitable for offshore plants and
unmanned operations (Oliveira et al., 2017). A crucial
question that arises is the comparative advantages and
disadvantages of using the 3S versus conventional
processes like the JT method. Studies have shown that
the 3S exhibits superior cooling performance compared
to other self-cooling systems, including turbo-expanders
and JT processes (Shoghl et al., 2019).

The initial engineering efforts related to this
technology originated from Twister BV, followed by
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contributions  from  Russian engineering teams,
highlighting the growing interest in 3S technology within
the ol and gas sector. To effectively replace
conventional separation processes with the 3S,
structural optimizations such as profiling the wall,
refining swirler structures, and adjusting dimensions
must be undertaken (Yang et al., 2017). Recent research
has focused on enhancing the structure and separation
performance of the 3S. For instance, Jiang and Bian
utilized discrete particle methods and field experiments
to improve the expanding section’s length and reduce
the expanding angle (Wen et al., 2012). Liu et al.
optimized the 3S's separation performance by
examining the relationship between shockwave position
and pressure effects (Jassim et al., 2008). Furthermore,

studies have investigated how various parameters, such
as vorticity and nozzle structure, influence the
performance of the 3S using computational fluid
dynamics (CFD) modeling (Wen et al., 2011).

This research will synthesize existing literature to
highlight the importance of NGL recovery and the
challenges that remain. By emphasizing the novelty of
the study and its contributions particularly regarding the
advantages of the 3S technology over conventional
methods this research aims to provide valuable insights
into optimizing NGL recovery processes. Figures 1 and
2, illustrates the configuration of natural gas plants and
the role of various technologies, further enhancing the
reader's understanding of the context and significance
of this research.

Natural Gas Plant Facility Licensing in Nigeria
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Fig. 1: Natural gas plant
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Fig. 2: Diagram of a natural gas processing plant

To replace the 3S with conventional separation
processes, the structure of it should be optimized first.
These optimizations can include the optimization of the
profile of the wall, swirler structures and the dimensions
of a 3S (Yang et al., 2017). In the last decade, some
researchers focused on the optimization of the structure
and the separation performance of the 3S. For example,
Jiang and Bian et al. employed the discrete particle

method and the field experiment for the optimization of
the 3S. They increased the length of the expanding
section and decreased the expanding angle to improve
the separation performance. (Wen et al., 2012)
optimized the structure of swirler and diffuser. Liu et al.
optimized the separation performance of the 3S using
the few properties and the relationship between the
shockwave position and pressure effect. (Jassim et al.
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2008) evaluated the influence of several parameters
including vorticity, nozzle structure and real gas
properties on the performance of the 3S using the
computational fluid dynamics (CFD) modelling. They
observed that the shockwave location varied
considerably when the natural gas state assumed real
rather than perfect. (Wen et al., 2011) investigated the
3S both numerically and experimentally and reported
that installing the inner body maintained the
conservation of angular momentum. (Yang et al., 2021)
studied the effect of a primary nozzle on the
performance of steam ejector taking into account the
phase change process. They reported that the first non-
equilibrium condensation occurred within the primary
nozzle, while second nucleation condensation occurred
in the steam ejector. (Yang et al, 2017) developed a
wet steam model using CFD analysis to investigate the
intricate feature of the steam condensation in the
supersonic ejector. They reported the expansion feature
of the primary nozzle was exaggerated by the dry gas
model compared to the wet stream model. Furthermore,
they observed that the dry gas model over-estimated a
higher entrainment ratio by 11.71% compared to the wet
steam model. (Wen et al., 2014) developed the single-
phase and two-phase model and analysed the
performance of steam ejector. The result of their
analysis showed that a single phase few models with
pass over the phase change provided an un-physical
steam temperature through the supersonic few. (Liu
et al., 2014) employed the Discrete particle method to
predict droplet behaviour inside the 3S. They assumed

that the droplet diameter varied from 10 to 50 um, while
the proper droplet diameter in the 3S was about 0.1-
2 um33. Wen et al.19 investigated the influence of

different structural parameters of diffuser on the
shockwave  position and  pressure  recovery
performance. They reported that for natural gas

dehydration, the conical diffuser showed the best
pressure recovery performance. Wen et al.34
investigated the influence of three delta wings with
different sizes on the natural gas swirling few. They
reported that for 2 um droplets, a collection efficiency of
70% can be obtained for the large delta wing.

a) Types of Natural Gas Liquid Products and the
Economic Importance
Natural gas liquids (NGLs) are composed of
ethane, propane, butane, propane, isobutane, pentane
and isopentane that are condensed and recovered (E/A.,
20174). The uses for those components are illustrated in
the Table below. NGL recovery attracts many
processing companies due to three reasons. The first
reason is to produce a transportable gas stream. This is
done to avoid condensation problems during the flow of
the two-phase fluid. The second reason is to meet the
sales gas specifications. In fact, the main specification
for the sales gas is to meet the minimum gross heating
value (GHV) while satisfying the hydrocarbon dew point
requirement. The third reason is to maximize NGL
recovery which is associated with the market trends
(Kherbeck et al, 2014.). Table 1 below gives the
composition of natural gas.

Table 1: Natural Gas Composition

Natural Gas Molecular Specific \ézg:iur Boiling Ignition Flash
Composition Weight Gravity Air—zy Point°C | Temp.°C Point °C
Methane 16 0.553 0.56 -160 537 -221
Ethane 30 0.572 1.04 -89 515 -135
Propane 44 0.504 1.50 -42 468 -104
Butane 58 0.601 2.11 -1 405 -60
Pentane 72 0.626 2.48 36 260 -40
Hexane 86 0.659 3.00 69 225 -23
Benzene 78 0.879 2.80 80 560 -1
Heptane 100 0.668 3.50 98 215 -4
Octane 114 0.707 3.90 126 220 13
Toluene 92 0.867 3.20 161 533 4
Ethyl benzene 106 0.867 3.70 136 432 15
Xylene 106 0.861 3.70 138 464 17

b) Types of Natural Gas Liquid Products

The NGL product spectrum encompasses
various hydrocarbons, each with distinct properties and
applications:

o Fthane (C:Hes): A critical feedstock in the
petrochemical industry. Ethane undergoes a
cracking process to produce ethylene (C:Hs), a
fundamental building block for countless plastic
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products like polyethylene terephthalate (PET) used
in plastic bottles. (Akubuike et al., 2010)

e Propane (CsHs): A clean-burning and versatile fuel
commonly employed for cooking, heating homes
and buildings, and industrial applications like
powering forklifts [z [Singh et al., 2010)

e Butane (C.Hw): Used as a fuel source for cigarette
lighters, camping stoves, and a blending
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component in gasoline to improve its volatility
during cold starts (Yu et al., 2011)

Isobutane (C.H.o): While sharing the same chemical
formula as butane, isobutane possesses a
branched molecular structure, leading to different
properties. It finds applications as a refrigerant due
to its low boiling point and as a high-octane
gasoline blending component to improve engine
performance (Rahmani et al., 2013)

Pentanes (CsH.-+) and Natural Gasoline: Heavier
NGL fractions grouped under pentanes often
include pentane (CsHi2) itself, hexane (CsHis), and
heptane (C-His). These components serve as
blending components in gasoline to meet specific
volatility  requirements and as diluents for
transporting heavy oil, reducing its viscosity and
facilitating pipeline flow. (Han et al., 2018)

Natural Gas Constituents

METHANE

ETHANE

PROPANE
BUTANE

NATURAL
GAS

LPG NGL’s

PENTANE/HEAVIER C5+
(GASOLINE/CONDENSATE)

NON-H/C'S: N,, H,0, CO,, H,S, Hg etc.

LPG - Liquefied Petroleum Gas
LNG - Liquefied Natural Gas

NGL - Natural Gas Liquids

Fig. 3: Natural gas constituents

c) Economic Importance of Natural Gas Liquids

NGLs hold significant economic value for

several reasons table 2 below summarizes them:

Value-Added Products: They represent valuable
byproducts from natural gas production, generating

Petrochemical Feedstocks: Ethane is a crucial
component for the petrochemical industry, fuelling
the production of numerous plastic products and
other essential materials.

Global Market: NGLs are traded internationally, with

additional - revenue streams beyond just the their prices often linked to crude oil prices,
methane component. influencing the global energy market.
Fuel Sources: Propane and butane offer clean and
efficient fuel alternatives for various applications,
contributing to energy security and diversification.
Table 2: Natural gas liquid attribute summary NGL Attribute summary
Natural gas liquid | Chemical formula Applications End use products | Primary sectors
Ethylene for plastic Plastic bags, plastic
Ethane C,Hg production, petrochemical it déter ent Industrial
feed stock anti-freeze, g
Residential and commercial Home heating, small Industrial,
Propane CsHg heating, cooking fuel, stoves and residential and
petrochemical feedstock barbeques, LPG commercial
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Butane C.H Ele;ﬁzgrwﬁﬁ Igre(;as;t;c;, Synthetic rubber for Industrial,
4o : tires, LPG, lighter fuel transportation
gasoline
lsobutane CuHi Reflnery.feedstock, Alkylate fgr ggsolme, Industrial
petrochemical feedstock aerosals; refrigerant
Pentane C.H,, Natural gasoline, blowing Gasoline; Transportation
agent for polystyrene foam polystyrene, solvent
The mixture of Blending with vehicle fuel, Gasoline ethanol
Pentanes plus C;H,,and heavier exported for bitumen blend; oil sands Transportation
hydrocarbon production in oil sands production

C indicates carbon, and H for hydrogen. Ethane contains 2 carbons and 6 hydrogen atoms. Pentane Plus, known as natural

gasoline, contains pentane and heavier hydrocarbons.

[I. NATURAL GAS LiQuiDs RECOVERY

METHODS

Many Natural Gas Liquids (NGL) and methane
recovery systems are currently available in the market,
designed to work in tandem, allowing for the
simultaneous recovery of NGLs while extracting
methane. Each recovery method has distinct
advantages and disadvantages, which are essential to
consider when selecting the most appropriate
technology for a specific application (Olsen et al., 2012).

a) The Refrigeration Recovery Methods

NGL recovery methods such as turbo-
expanders, lean oil absorption, and cryogenic
refrigeration typically require extensive equipment and
supporting facilities, as well as large quantities of
chemicals. These methods are effective but can be
resource-intensive.

In the early 1930s, the initial method of
processing gas was refrigeration, and ever since it has
greatly advanced (Inguscio et al., 2022). The use of a
flowing refrigerating liquid/vapor to take heat from a cold
location and transmit it to a warm area where it is sent to
a thermal sink is the basis of refrigeration. A typical
modern system uses propane, lithium, ammonium,
Freon, or bromides as the flowing operational liquid.
While decreasing the quantity of energy and implements
necessary to restore the NGLs, the aim of refrigeration
units presently is to expand the restoration levels of
NGL. The usage of cold remaining reflux & recycle split
steam process is an optimization method, basically
using cold liquids in many stages again, giving the
necessary advantage to processors of gas to use for
refrigeration. Joule-Thompson cryogenics & cooling are
the most general methods of refrigeration (Qyyum, et al.,
2018).

i. The Joule-Thompson Cooling Recovery Method

The process entails a high-pressure gas
expanding over a small aperture to increase velocity
while lowering pressure. JT cooling is the term for the
temperature drop that occurs as a result of this process.
Most gases are cool as they expand. Operators avoid
the use of JT cooling as an initial base of recovery for
NGLs due to rising fuel gas prices and the inefficiency of

© 2024 Global Journals

pressure recovery (Inguscio et al., 2022). JT cooling is
notoriously difficult to process and transport. The lost
pressure is recovered by chiling with a booster
compressor or by being close to the final user because
there is no pressure recovery mechanism. However, this
does not address the issue of effectively and efficiently
transferring moist gas. In transport pipelines, there are
few techniques for recovering lost energy as pressure
drops, and is mostly seen as an issue (Qyyum, et al.,
2018). When gas passes through distribution stations,
an increase occurs, and in other to prevent a two-phase
flow that adversely affects the accuracy of the meters
and generates potential destructive liquid slugs, this
increase needs to be countered. It is a simple recovery
method but inefficient, also, there is an increase in the
cost of fuel due to pressure drop, the damaging side
effect accompanying transporting and processing
stages is an issue, there is a need to install near end-
user and the need to heat the gas to prevent drastic
cooling.

ii. The Cryogenics Recovery Method

Cryogenics is a recovery process that uses both
propane and ethane as working fluids in a cascading
refrigeration plant to achieve extremely low temperatures
and high ethane recovery levels (Badami et al., 2018)
The cryogenic system is capital costly and hence an
essential capital investment due to the controls’
complexity and unique materials handling procedures
for the extreme cold (Claude et al., 2020). To employ
this approach, practically all the impurities in the gas
must be eliminated before the NGLs can be recovered.
To keep ice and prevent hydrate development, all water
must be eliminated. It has the advantage of providing an
ultra-low temperature and a high level of ethane
recovery (Qyyum, et al., 2018). However, Cryogenic
plants require significant capital expenditure, the
systems require special and care material handling
procedures due to the extremely cold operating
conditions, it requires complex control systems (Claude
et al., 2020). Also, all water must be removed from gas
before processing to avoid the formation of ice and
hydrates that could damage equipment and its systems
are slightly inefficient for NGL recovery above C2 (Carroll
etal., 2022), (W. Lin et al., 2004)
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b) The Physical Methods

i. The Membrane Technology Method

In this method, large molecules of organic
compounds are eradicated through membranes from
the air. Smaller and even smaller organic molecules can
be taken out of gas as technological advancement took
place in the areas of materials manufacturing, resulting
in the production of ever more exotic membranes.
Membranes are one of the easiest, most cost-effective
of conventional processes (Tabe-Mohammadi et al.,
2007). In recent times, membrane technology can
eradicate NGLs, carbon dioxide, water, nitrogen, and
hydrogen sulphide out of the gas streams. However,
Membrane fouling frequently occurs at high driving force
and there is an occurrence of concentration polarization
(Handojoet al., 2019)

ii. The Turbo Expander Method

A high-energy gas is injected into a turbine, and
as it expands through the turbine, it exerts a force on the
blades and rotates the shaft while lowering the
temperature and pressure. The shaft power generated
by the natural gas extension is used to power a
comparable turbine, rather than compressing gas later
in the process. Although turbo expanders have massive
equipment to further cool the gas and segregate the
NGLs for shipping, they have a substantial cooling
impact similar to the JT expansion method, where the
gas is cooled as it expands. It was created in the 1960s
and is one of the most innovative NGL recovery
technologies However, they require a huge capital
investment, a large number of auxiliary equipment to
function, and turbines embedded in turboexpanders
require extensive and regular preventive maintenance
(Qyyum, et al., 2018).

iii. The Supersonic Nozzle Method

The supersonic nozzle method works by
deflecting a high-energy gas over a fixed curved blade,
resulting in the formation of a vortex. A supersonic
vortex can be created inside static equipment using a
nozzle. The vortex tube was developed to improve the
separation of natural gas and NGLs while lowering the
cost and complexity of the operation (Qyyum, et al.,
2018). The vortex tube can accomplish this while still
retaining most of the the gas's pressure. The pressure
drop of this model separation device is only 25-35% of
the gas's inlet pressure. The Twister TM is an example of
a vortex tube, and it was developed by Shell and uses
supersonic flow that has veins at the inlet to create a
swirling motion in the gas. The supersonic nozzle
method does not require extensive maintenance, gas
pressure is sharply maintained hence no need for
booster compressor, operations can be unmanned,
equipment is competitive in terms of cost, and it is
capable of processing both small and medium scale
volumes of gas (Qyyum, et al., 2018), (Cao et al., 2019).

iv. Combined Heat and Power Systems

This is based on the use of a single fuel source
to generate two types of power, lowering the system's
production losses  (Murugan et al., 2016).
Cogenerations are a type of combined heat and power
system (Jayakumar et al., 2016). The waste heat from a
compressor engine is used to power a refrigeration unit
that cools low-pressure gas. The 'Btus' produced as a
by-product of combustion can be utilized instead of
being released into the atmosphere by collecting the
waste heat from a compressor engine. The attributed
heat causes a refrigerant mixture to evaporate, which is
subsequently distilled and employed in an evaporator to
remove heat from the cold room. The combined heat
and power systems use waste heat to provide power to
the refrigeration system; they require a small amount of
auxiliary equipment and support facilities, have low
maintenance costs, can generate distributed power, are
a well-established and advanced technology, and can
be used in small and medium-scale gas utilization
schemes (Murugan et al., 2016), (Jayakumar et al.,
2016).

c) The Chemical Methods

i. The Lean Oil Absorption Method

The lean oil absorption method, regarded as a
chemical approach since its development in the early
1910s (Qyyum et al., 2018), has undergone significant
advancements over the years. Originally designed to
absorb natural gas liquids (NGLs) from moist gas
streams, this method has seen improvements in
efficiency and equipment design, enhancing its viability
in modern applications. The principal role of this
process is to allow a moist natural gas stream to interact
with lean oil, facilitating the absorption of NGLs. As
NGLs are absorbed, the lean oil transforms into rich ail,
which is subsequently delivered to a distillation tower for
the separation of its constituents. To maintain process
consistency, the separated NGLs are removed from the
system, while the ethane, methane, and lean oil are
recovered and cycled back through the process.

This procedure, however, requires substantial
equipment and significant physical space, which can be
a limitation in certain operational contexts. While
alternative recovery methods exist that are more
effective, efficient, and compact, the lean oil absorption
method uniquely enables the extraction of both light and
heavy NGLs, as well as non-hydrocarbon gases like
nitrogen (Hassanean et al., 2016; A. A. Mohammed et
al., 2016).

At a molecular level, the absorption process
relies on the interaction between the gas and the liquid
absorbent. The solvent selectively captures NGLs, with
optimal  conditions  typically  requiring  specific
temperatures and pressures to maximize absorption
efficiency. The re-boiled absorber column, a critical
component of this method, contains multiple trays that
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enhance the contact area between the gas and liquid
phases, thus improving the extent of absorption (I.
Torres Pineda et al., 2012).

In comparing the lean oil absorption method
with other recovery techniques, it is essential to evaluate
key parameters such as efficiency, cost, environmental
impact, and scalability. For instance, turbo-expansion
processes, while effective, may incur higher energy
costs and require different infrastructure compared to
chemical methods. Additionally, recent innovations in
chemical recovery, including the development of
advanced absorbents and enhancements in distillation
technology, have improved efficiency and reduced
operational costs.

The environmental and economic implications
of chemical methods are also noteworthy. The use of
large equipment can have a significant environmental
footprint; however, advancements in technology have
the potential to mitigate these impacts by optimizing
equipment size and improving energy efficiency.

Given the increasing relevance of methane and
NGL in today’s energy landscape, this study focuses on
optimizing the recovery of these valuable components
through the use of plates in the absorption column. By
enhancing the design and operation of the absorption
process, this research aims to improve the overall
efficiency of NGL recovery in gas processing plants.

ii. Comparisons, Advantages and Disadvantages of
Each Natural Gas Liquids Recovery Methods

1. The Cryogenics Recovery Method

An external refrigeration process has the
advantage of being a simple and a flexible process.
However, this process occupies a large area, and the
equipment involved in such systems is heavy with
respect to other NGL recovery alternatives such as the
turbo expansion process (Lokhandwala et al., 2000).
The energy requirements are also considerable
especially for the cascade arrangement where extremely
low temperatures are required. In addition, 8 this
process involves several pieces of equipment, which
requires a high maintenance cost and a high utility
requirement. Propane refrigeration becomes
inappropriate for feed throughputs of less than 25
million standard cubic feet per day (MMSCFD)
(Lokhandwala et al, 2000). For deep-cut recovery
purposes, the amount of C02 in the feed must be as low
as temperatures of the process can cause freezing of
C02e In addition, if the feed gas contains a large
number of inert components, the efficiency of process
will be reduced due to the interference of the inert.

2. The Turbo Expander Method
The turbo expander is compact with a low
weight and low space requirement compared with
absorption equipment or external refrigeration systems.
The operational as well as capital costs are relatively low
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(Lokhandwala et al., 2000).These features make turbo
expanders very attractive for an offshore plant. In
addition, gas compression requirements on the plant
can be reduced by energy recuperated from the gas
expander. 10 Variation in pressure and composition of
the gas can significantly affect the operation of the turbo
expander (Lokhandwala et al, 2000). Another
disadvantage of this process is the height ' required for
the de-methanizer tower. The installation of an elevated
tower is extremely difficult on offshore plants and could
also present operational problems due to the common
strong winds in the sea, especially in the Atlantic
Canada. When ethane is not recovered, the height of the
tower is reduced. Another drawback is the lack of
tolerance to wet gas in the feed since it can damage the
mechanical system. Nevertheless, a certain amount of
liquid can be managed in the exit of the equipment.
Another important limitation of the turbo expander is the
elevated maintenance cost. In addition, the operation of
this equipment represents a major issue in terms of
safety.

3. The Lean Oil Absorption Method

This process is selective to propane, and a low
ethane recovery is achieved. The process can be used
for feed gases containing C02 since the minimum
temperature within the process is above the freezing
point of even pure C02¢ Inert gases in the feed gas do
not interfere with the process of the absorption of the
hydrocarbon and pre-treatment of the gas is not
needed. This is also true for feeding gas with water. For
offshore applications, the height of the distillation
column must be restricted because the wind in the open
sea can cause serious damage. Some areas are
extremely windy, and this factor needs to be considered
in the equipment design on the platform. In the case of
associate gas treatment, this process is rarely used
(Lokhandwala et al., 2000).There are also the possible
environmental impacts of chemical use including spills,
storage of virgin/waste oil, etc. For feed pressures below
2,800 kPa absorption systems operate well, but for
higher pressures a dual pressure absorber column with
high- and low-pressure sections is 12 required. Above
8,500 kPa the efficiency of the absorption system will be
reduced. The efficiency of the absorption process is
improved with rich gases. In the cases of lean gases
solvent make up is required due to solvent evaporation.
The absorption systems also suffer from the high-energy
costs needed to run solvent circulating pumps and
regeneration of ail.

4. Adsorption Method
An adsorption process requires an enormous
amount of energy due to the regeneration process. In
addition, the equipment involved is heavy and
expensive, which is unattractive for offshore plants.
Safety is a considerable issue for this process since the
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high temperature with the hydrocarbon solids could
produce a fire or related accident.

5. The Membrane Technology Method

Membranes require smaller space and are
relatively light, which are desired characteristics for
offshore applications. In addition, membranes typically
have lower installation, operation, and maintenance
costs compared with other technologies. For example,
the installed cost to treat 10 MMSCFD of lean gas (3.9
GPM, 1185 Btu/SCF) for a membrane system is $1.1
million while for propane refrigeration system is $1.6
million. In addition, the relative processing cost (which
includes capital cost) for membranes compared to
propane refrigeration is 0.594 (Lokhandwala et al., 2000)
Additionally, membranes are operationally simple and

principal operating cost is the replacement of the
polymeric membrane element (Lokhandwala et al.,
2000)

Another advantage of membrane is the flexibility
of its operations. This means production 15 conditions
can be modified, and the membrane process can be
easily adapted to it. The membranes are arranged in
modules, which can be orientated in horizontal or
vertical positions. However, the membrane separation
technologies are appropriate for small to medium
production, around 10 to 100 MSCFD since beyond
these values the cost is prohibit.

A comparative analysis of these recovery
methods reveals key differences in energy efficiency,
cost, environmental impact, and operational complexity.
Table 3 summarizes these parameters:

do not require additional separation agents. The
Table 3: Summary of Parameters
Method Enerllgy o Environmental Opera'liol:lal
Efficiency Impact Complexity
Turbo-expanders Moderate High Moderate High
Lean oil ) )
) High High Moderate Moderate
absorption
Cryogenic . . . o .
) i High High Higher emissions High
refrigeration
Joule-Th
ouerThomson Moderate Low Lower emissions Low
Process
Ammonia
refrigeration + High Moderate | Lower emissions Moderate
CHP

iii. Historical Context and Advancements

The historical context of refrigeration methods is
valuable for understanding their evolution. Over the
years, technological advancements have significantly
improved the efficiency and reduced the costs
associated with these methods. Recent studies by
Inguscio et al. (2022) and Qyyum et al. (2018) highlight
current trends and innovations in NGL recovery,
showcasing how modern technologies are reshaping
the landscape of natural gas processing.

iv. Environmental and Economic Considerations
The environmental and economic implications
of each recovery method are critical to assess. For
instance, various refrigeration techniques impact

greenhouse gas emissions differently. Methods that
require less energy and fewer chemicals, such as the JT
process and ammonia refrigeration combined with CHP,
tend to have a more favorable environmental profile and
cost-effectiveness, making them attractive options for
NGL recovery.

1. CONCLUSION

The market for natural gas is rapidly expanding,
establishing it as a vital source of energy worldwide. As
a cleaner-burning fuel compared to other fossil fuels,
natural gas minimizes environmental impacts, making its
recovery and utilization increasingly important. This
research highlights the significance of Natural Gas
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Liquids (NGLs), which are primarily composed of
methane and heavier fractions, serving as essential
feedstock for petrochemical processes and as fuel for
industrial and domestic applications.

The recovery of NGLs is typically conducted at
onshore oil and gas operations, where space and
weight constraints are less critical. However, the limited
space on offshore platforms presents unique challenges
for NGL recovery. In the Newfoundland and Labrador
Offshore, associated gas is often re-injected and used
for power generation, with some gas flared due to the
difficulties associated with storage and transport in this
remote location. Given that this associated gas contains
high levels of NGLs, recovering them presents both
economic and environmental opportunities.

This research provides a comprehensive review
of various NGL recovery methods, including turbo-
expanders, absorption, adsorption, external
refrigeration, and membranes. The comparison reveals
that while each method has its advantages and
disadvantages, membrane technology stands out as a
feasible and efficient option for NGL recovery.
Membranes offer several benefits, such as lower energy
consumption and reduced environmental impact,
particularly when compared to conventional methods
like absorption and external refrigeration.

The implications of these findings for the natural
gas industry are significant. Implementing membrane
technology in offshore platforms could enhance NGL
recovery, improve economic efficiency, and reduce
environmental footprints. Future research should focus
on optimizihg membrane systems for offshore
applications, exploring advancements in materials and
designs that could further enhance performance and
reliability.

In conclusion, the future prospects for NGL
recovery technologies, particularly membrane
processes, are promising. Continued innovation in this
field may address current challenges, making NGL
recovery more viable and sustainable in offshore
environments. This study underscores the importance of
prioritizing NGL recovery as a means to meet rising
energy demands while promoting environmental
stewardship.
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