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Automation of Gas Leak Detection: Al and
Machine Learning Approaches for Gas Plant
Safety

Godsday Idanegbe Usiabulu ¢, Ifeanyi Eddy Okoh ° & Ndidi Lucia Okoh °

Abstract- Safety and protection of the environment involve real-
time gas leak detection. The paper discusses the
improvement in the accuracy and speed of gas leak detection
using Al based on pressure-based monitoring. The model will
be performing a flow consistency check using machine
learning techniques for instantaneous detection at distinct
stages in flows.

Extensive exploratory data analysis was performed to
assess the data and to choose the right machine learning
models. The findings showed a significant evolution of
pressure differences over time; hence, refining the tolerance
level for leakage detection down to a fractional =0.166 window
was necessary. The gas flow data was divided into training
and testing datasets, which consisted of 80% and 20%,
respectively. Several Al models were tested, such as linear
regression, logistic regression, SVM, and Random Forest-all
had a test accuracy of over 99%. This Al-powered monitoring
system could trigger an alarm or immediate notification in the
case of a pressure drop beyond the defined tolerance window,
improving upon the traditional methods of inspection. All of
these contribute to improved safety, operational efficiency,
and even cost savings. Furthermore, the scalability of the
model holds great promise for other industrial scenarios. The
animated simulation of the proposed solution was
demonstrated.

Keywords: test score, training, test dataset, split dataset,
tolerance, lag time.

[. INTRODUCTION

he gas industry necessitates accurate and timely
Tleak detection to ensure safety and mitigate

environmental hazards. Traditional methods of leak
detection in gas plants are often manual and time-
consuming, leading to potential risks and inefficiencies
(Usiabulu et al., 2021; 2022; 2023; Appah et al., 2021).
Due to these challenges, there has been a growing
interest in leveraging artificial intelligence to develop
instantaneous leak detection systems that can automate
and streamline the monitoring process (Zukang et al.,
2021).
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Most of the existing systems lack real-time
analysis and decision-making despite the
advancements in Al and ML techniques. This paper fills
this knowledge gap by proposing a sophisticated
algorithm in Al/ML that would analyze complicated data
patterns in real time to quickly find and locate gas leaks
within a plant. Contrary to the usual methodologies, this
approach avoids much human interference, which in
turn will reduce errors and increase speed and accuracy
in detection.

In this work, Al was used to enable continuous
monitoring of the modeled JK-52 gas plant with
minimum human intervention. Integration of recording
sensors and pressure-measuring devices enabled us to
develop a real-time surveillance system powered with
our Al/ML algorithm that will act on anomalies in an
instant, like pressure drops beyond allowable tolerance
levels, probably signaling a leak.

Simulations  of the proactive detection
mechanism were performed at different stages of gas
injection, from residual phase to ramp-up and then to
the plateau stage. Such automation will raise safety and
reduce the possible effects of gas leakage on the
environment and public health. Besides, Al-driven
predictive maintenance will reduce potential downtime
from undetected leaks, promising significant cost
savings.

This work, therefore, contributes to better
operational efficiency and prolongs the life of equipment
by enabling gas plant operators to identify a problem
before it escalates. The study also looks into the
possibility of integrating loT devices for further
enhancement of data collection and communication in
real time. This research will likely set a new standard in
leak  detection systems, emphasizing both
environmental sustainability and societal health
concems.

The objectives of this application of artificial
intelligence for instantaneous leak detection in gas
plants were as follows:

1. Develop a system for instantaneous and accurate
gas leak detection using artificial intelligence and
machine learning techniques.
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2. Automate the modeling process for leak detection
to enable rapid identification of gas leaks in real-
time.

3. Enhance the speed, accuracy, and efficiency of leak
detection while minimizing reliance on manual
intervention.

4. Establish continuous and proactive monitoring of
gas plants using sensors and monitoring devices
adapted for Al solutions.

5. Contribute to cost savings by reducing potential
downtime through Al-driven predictive maintenance.

6. Improve safety measures, minimize environmental
impact, and enhance operational efficiency in gas
plants through the application of Al for leak
detection.

These objectives aim to address the
inefficiencies and potential hazards associated with
traditional manual gas leak detection methods while
leveraging Al to enhance safety, minimize environmental
impact, and optimize operational processes.

a) Data and Methods

The process of gas leak detection in gas plants
involves a number of efficiencies and hazards that must
be addressed. For this purpose, an effective data
acquisition process is needed to provide instantaneous
identification of the leaks. The traditional methods of gas
leak detection employ limited observational data that are
non-instantaneous and liable to human error. These can
pose serious risks to the safety of personnel and the
environment, apart from causing financial losses to the
plant operators.

In this work, the acquisition of data necessary
for the automation and improvement of the modeling
process, using artificial intelligence for the detection of
gas leaks, is in focus. The main data sources consisted
of pressure and time measurements, which were
obtained from sensors placed at strategic points in the
gas plant. These sensors had a sampling frequency of
99Hz, which allowed high-resolution data to be captured
in different operation conditions. The temperature and
humidity levels were measured, too, as environmental
factors to contextualize the pressure readings.

The data was loaded using the commands below:

A number of phases of gas pumping were
covered in this dataset, including the initiation phase
residual, the buildup phase, and the optimal or plateau
stage. Other metrics derived aside from raw pressure
and time data are tolerance levels, lag time, and alarm
notifications. Tolerance levels were calculated based on
the trend of historical data, whereas lag time was
determined by analyzing the response time of the
system against changes in pressure. Notifications of
alarms were triggered when pressure values fell outside
the predefined limits of tolerance.

Data preprocessing was carried out to make it
robust; hence, cleaning of outliers and normalization
was performed. Further, missing data was treated using
interpolation methods, maintaining continuity in the
dataset. Feature engineering was also applied to the
raw data for the extraction of meaningful variables,
which improved the model's predictive power.

The Al/ML model used for this work included
the type, such as support vector machines and neural
networks, and was chosen because of their potentiality
in analyzing patterns in complex data in real time.
Modelling involved the training of the algorithm using,
say, of the gathered data; the remaining are reserved for
testing to gauge the performances of the models. It
thereby integrates methodologies to construct a wide
framework for real-time gas leak detection with minimum
human intervention and maximum safety and
operational efficiency.

These data were recorded in an ascii file,
extracted as iESogV1.csv for the purpose of this study.
The structure of the columns is as below:

1. Time (s): Represents time in seconds.
Pr_final: Final pressure value.
Pr_initial: Initial pressure value.

Events: Describes significant events during the
process (e.g., "Residual stage").

Tolerance: Tolerance level during the process.
Min: Minimum threshold.

Max: Maximum threshold.

Diff Pres (bar): Difference in pressure (in bar).

El SN

N OO

# Load the data from the 'in' sheet to inspect its content

df = pd.read_excel(file_path, sheet name='in')

# Show the first few rows of the data to understand its structure

df.head()

The results were as shown in Table 1, for the first rows and columns.
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Table 1: Result showing first rows and column of dataset

Time (s) Pr_final Pr_initial Events Tolerance Min Max
0 4005 35 15 Residual 0.428571 08 12
stage
1 4010 3.5 1.5 NaN 0.428571 0.8 1.2
2 4015 3.5 1.5 NaN 0.428571 0.8 1.2
3 4020 35 1.5 NaN 0.428571 0.8 1.2
4 4025 3.5 1.5 NaN 0.428571 0.8 1.2
Diff Pres (bar)

0 2.0

1 2.0

2 2.0

3 2.0

4 2.0

(Note that similar or same reading for first few data is normal for large data at initiation of recording)

An initial automated Al/ML process was used to
explore the data before the detailed analysis shown in
the subsequent sections. By leveraging Al and machine
learning, the goal was to use these data and develop an
advanced system that can accurately and rapidly detect
gas leaks, thereby improving safety, minimizing
environmental impact, and optimizing operational
efficiency in gas plants. The methods used in this work
were:

e Data collection is essential, where sensors recorded
data from the gas plants and was gathered for the
analysis.

e Data preparation, which involved data cleaning,
preprocessing, and ensuring the data is in a format
suitable for modeling.

e Selecting appropriate machine learning algorithms.

e Training the model using the prepared data, and
fine-tuning the model to achieve optimal
performance.

e The machine learning techniques were applied to
build the model for leak detection.

e Automation of the modeling process, which was
necessary to ensure efficient and accurate detection
of leaks in real time.

e The developed model is tested and validated to
assess its performance and reliability.

The final delivery involved simulating different
leak scenarios and evaluating how well the model
detected and responded to these scenarios. The model
was compared with against existing manual detection
methods to demonstrate its effectiveness. These
validation tests were vital to ensure the Al-powered leak
detection system met the necessary performance
standards for deployment in other real-world gas plant
environments.

b) Challenges with Traditional Methods of Gas Leak
Detection

Traditional methods for detecting gas leaks can

be categorized into three main groups: manual

methods, fixed detection systems, and acoustic
methods.
i. Manual Methods

Manual detection methods include gas sniffers,
flame ionization detectors, and bubble testing. Gas
sniffers are handheld devices that measure gas
concentrations, while flame ionization detectors burn
gas samples to detect ions. Bubble testing involves
applying a soapy solution to suspected leak areas;
bubble formation indicates escaping gas. Visual
inspections and  periodic  maintenance  further
supplement these methods.

ii. Fixed Detection Systems

In industrial settings, fixed gas detection
systems continuously monitor for hazardous gases
(Pablo et al., 2018; Tan & Tan, 2019; Todd et al., 2024).
These systems include point gas detectors, which are
strategically placed to detect leaks, and open-path gas
detectors that use infrared technology to monitor larger
areas. Sampling systems analyze air pulled into
detectors (Baker, 2002; Bear, 1972).

iii. Acoustic Methods
Acoustic leak detection utilizes listening devices
to identify the sound of escaping gas, providing an
additional layer of monitoring in certain scenarios.

c) Limitations of Traditional Methods

Despite their widespread use, traditional gas
leak detection methods present several significant
limitations:

e Manual Inspection Delays: Reliance on manual
inspection is inherently time-consuming and labor-
intensive, leading to potential delays in detecting
leaks. Human error can further compromise the
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effectiveness of these inspections,
missed or incorrectly identified leaks.

resulting in

o Sensitivity Issues: Many traditional methods lack the
sensitivity required to detect small leaks or those in
hard-to-reach  areas. For instance, visual
inspections may not effectively identify leaks in
underground  pipelines,  risking  undetected
emissions.

e Applicability Constraints: Techniques such as
bubble testing may not be suitable for certain gases
or environments, limiting their effectiveness in
diverse industrial contexts.

e lack of Real-time Monitoring: Traditional methods
often fail to provide continuous surveillance of gas
pipelines, creating gaps in detection that may lead
to critical safety hazards or environmental damage
(Bhattacharya et al., 2019; Boujema et al., 2019).

These limitations highlight the pressing need for
more effective detection methods. This work introduces
Artificial Intelligence and Machine Learning techniques
for gas leak detection, utilizing pressure-based
observations instead of volume-based methods. This
approach allows for programmable data analysis, where
pressure readings over time serve as the primary input
for detection, significantly improving response times and
accuracy.

II. GAS LEAK DETECTION USING ARTIFICIAL
[NTELLIGENCE AND MACHINE LEARNING

Avrtificial Intelligence involves creating algorithms
and models that enable machines to learn from data,
recognize patterns, and make decisions. It can be
designed for a specific task, which has the ability to
perform any intellectual task that a human being can do,
in this case, gas leak detection. It is important to
consider its impact on the economy, the job market,
privacy, and ethics, where personnel carrying out
manual inspection of gas leakages may be affected by
being replaced by the AIML solutions (Pablo et al., 2018;
Tan and Tan, 2019). The responsible development and
deployment of Al systems requires careful consideration
of these factors to ensure that the benefits of Al are
maximized while minimizing potential risks on
interchanging human roles.

To determine the best model for predicting
leakage, we followed a machine learning pipeline that
included:

1. Data Preprocessing: Handle missing values, encode
categorical variables, and scale the data if
necessary.

2. Feature Engineering: Analyze which features are
most relevant to predict the target

© 2024 Global Journals

3. Model Selection: Compare various models such as:

0 Linear Regression

0 Decision Trees/Random Forests
0 Support Vector Machines

o Gradient Boosting (e.g., XGBoost)

4. Model Evaluation: Use metrics like Mean Squared
Error (MSE), R-squared, etc.,, to evaluate
performance.

a) Gas Plant Flow Data Input and Coding using Python

The flow data from the gas plant was obtained
by recording the input pressure, known as initial
pressure, resulting from the upstream pressure reading.
The upstream pressure gauge is the first point the
processed gas flow rate is recorded before piping and
running to the delivery point of the gas point. At the
delivery point, another gauge records the out-flow
pressure, which is the downstream gauge. The
tendency for leakage to occur is more common between
the two gauge points, due to increasing pressure meant
to pump the gas out of the processing section to the
delivery area.

The flow phases undergo two processes (Figure 1):

Process 1: The gas plant stabilises and strips lighter gas
or condensates to produce purified dry gas ready as
end product.

Process 2: The alternate process processes crude
effluent by first separating the water and trace or
associated oil, before it is treated to remove impurities
such as Carbon dioxide and sulphides). The resulting
gas is then compressed or liquified (Liquified Natural
Gas — LNG) for storage and eventual supply.

In both cases, initial sensors and gauges are
placed at the upstream (sourcing section) and at the
downstream (receiving section) of the products. Inlet
and outlet pressure gauges are placed across intervals
with tendency of gas leak.
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Figure 1: Gas flow Process in a Gas Plant showing the position of the inlet and outlet pressure gauges

The readings in the gauges in are recorded with
time, with an initial phase of pumping, purging any
existing gas in the system. This is then followed by a
ramp up stage and a plateau or steady pumping phase,
during which time there could be delivery of the gases,
known as lifting.

Rate of flow, estimated as quantity passing over
time, is directly related to the pressure recorded on the
gauge. This is one of the variables used to determine
volume changes and eventually leakage. The pressure
is @ measure of quantity or volume of gas (rate) pumped
over a certain time.

The process of using AIML methods involved
data collection, recording of pressure and time data,
and recording other events during the flow. The
collected data was different formats, such as numerical,
categorical, or textual. It was important to ensure the
data collected is accurate, complete, and representative
of the events occurring during the flow process. The
data collection involved using specialized tools and
techniques for data scraping, logging, or monitoring
from well gauges and computer system in which they
are saved. Once the data was collected, the next step
was data preprocessing.
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Figure 2: Analytical Plots showing relationships among variables

Initial analytical plots (Figure 2) were automated
to show the trends of the data. The analytical plots
above illustrate the relationships among different
variables in your dataset:

1. Time (s) vs Diff Pres (bar): This scatter plot shows
the difference in pressure as a function of time.
There seems to be a constant difference in pressure
over time, suggesting stability in this aspect of the
system, such that a deviation would indicate an
event such as leakage.

2. Time (s) vs Pr_final: This plot demonstrates the final
pressure value over time, showing that pressure
evolution increased with time. Like the pressure
difference, this variable also appears stable over
time with only significant fluctuations being the three
(8) stages of initiation, ramp-up and higher plateau
or flow pressures.

3. Pr_initial vs Pr_final: The relationship between initial
and final pressures shows a relative difference. Both
values seem to be consistent, potentially reflecting
that input and output pressure are the same, unless
leakage or other events occur.

4. Diff Pres (bar) vs Tolerance: The difference in
pressure and tolerance seems to have a linear
relationship, indicating that the tolerance might
increase proportionally as the pressure difference

© 2024 Global Journals

grows, as such an anomaly will be based on local
deviation outside the tolerance window.

b) Exploratory Data Analysis

The acquired data are usually structured in an
excel file, with columns and rows, which may be
extracted in a.CSV format. The file is then loaded in a
python  programing language interpreter. The
development environment used for this study was
Pycharm and Jupyter Notebook, where the Exploratory
Data Analysis (EDA)/data wrangling were performed.
Some of them were automated and compared with
basic EDA charts. Examples of their Visualisation are
shown in Figure 3. The Exploratory Data Analysis (EDA)
reveals the following insights:

1. Correlation Heatmap: The heatmap shows a high
correlation between the pressure variables:

o0 There is a strong positive correlation between
Pr_final and Pr_initial, which is expected as they
likely follow similar trends.

o The correlation between Diff Pres (bar) and
Tolerance is moderate, indicating some
relationship between the pressure differential
and tolerance.

2. Distribution of Diff Pres (bar): The distribution plot

for Diff Pres (bar) suggests that the pressure
difference is concentrated around a particular value,
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with a narrow spread, indicating stable pressure
differences.

Pairplot:

The pairplot shows

between multiple variables:

Pr_final

Tolerance DIff_Pres (bar) Pr_initial

Pr_final Pr_initial

Pr_final
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Figure 3: Visualisation of Exploratory Data Analysis (heatmap, univariate and bivariate plots)
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These plots provide an overview of the
relationships and distributions among key variables in
the dataset, offering insights into the structure and
stability of the system being analyzed. Following the
initial data wrangling, univariate and bivariate plots were
used to analyse the data and this guided on the
possible Al/ML model that would be used for predictive
solutions in gas leakage scenario. Examples of the
further plots, including scatter plots, are shown in Figure
4.

The 2D and 3D visualizations in Figure 4 include:

1. Jointplot of Pr_final vs Tolerance: This plot shows a
scatter plot with marginal distributions for “Pr_final®
and “Tolerance". The points are scattered, but there

seems to be no strong linear relationship between
these two variables.
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Regression Plot of Diff Pres (bar) vs Tolerance: The
regression line suggests a positive linear
relationship between the pressure difference and
tolerance. As  "Diff Pres  (bar)” increases,
“Tolerance® also increases  proportionally,
indicating a predictable relationship.

3D Scatter Plot of Pr_final, Pr_initial, and Diff Pres
(par). This 3D plot visually represents the
relationship among these three variables. There
appears to be a tight grouping of points, especially
in the pressure variables, with a linear relationship
between "Pr final® and "Pr_initial", while "Diff Pres
(bar)” remains relatively stable.

Diff_Pres (bar) vs Tolerance Regression Plot
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Figure 4: Further plots to aid in choice of models for predictive solutions
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c) AIML Model for Leak Prediction in JK-52 Gas Plant

In selecting appropriate machine learning
algorithms for gas leak detection at the JK-52 gas plant,
several options were considered based on their ability to
learn complex patterns and relationships within the data
(Chaki et al., 2018; Freeze & Cherry, 1979; Chinwuko et
al., 2016; Farouk, 2013). This section outlines the
rationale for choosing specific models, along with their
expected applications.

i. Justification for Model Selection

e Random Forest: This ensemble learning method
was chosen for its effectiveness in handling large
datasets with numerous features, which is typical in
gas leak detection scenarios. Random Forest excels
in providing insights into the most critical features
contributing to gas leak events, aiding proactive
maintenance and prevention. lts computational
efficiency and robustness against overfitting make it
suitable for analyzing pressure drop data, as
evidenced by its accurate predictions of leakages
resulting from pressure drops lower than the
established tolerance.

e Gradient Boosting: Known for its ability to combine
multiple weak predictive models into a stronger
ensemble, Gradient Boosting was considered due
to its iterative training approach. This model
effectively prioritizes potential gas leak incidents
based on data patterns. Its depth of analysis makes
it a strong candidate for identifying subtle leak
indicators.

o Neural Networks: Although briefly mentioned, this
model has the potential to enhance detection
accuracy. However, its complexity may require more
extensive data processing and time for training,
which could be a consideration depending on
operational constraints.

e Support Vector Machines (SVM): SVM was initially
employed to classify data by finding the optimal
hyperplane that best separates different classes.
Despite being trained on historical gas leak data, it
struggled to accurately classify new instances. This
limitation prompted further exploration of alternative
models more suited to the dataset characteristics.

Performance Metrics

e The performance of each algorithm is critical for
justifying its use. For instance, Random Forest
achieved an accuracy greater than 99%,
demonstrating its effectiveness in identifying gas
leaks accurately. Metrics such as precision and
recall can further affirm the model's reliability in
operational settings.

iii. Linking to Data Characteristics

The dataset's characteristics, notably pressure
drops and time-series data, significantly influenced

the choice of algorithms. Random Forest's ability to
process high-dimensional data and identify critical
features aligns well with the pressure readings and
event recordings available from the JK-52 gas plant.

iv. Future Considerations

e Hybrid Models: Exploring hybrid approaches that
combine the strengths of different algorithms could
enhance overall performance. For instance,
employing clustering for anomaly detection followed
by Random Forest for classification may provide
more accurate results.

e Feature Importance: Understanding the most
important features identified by Random Forest can
inform proactive maintenance strategies. This
insight is crucial for optimizing operational efficiency
and safety.

e Scalability and Real-Time Application: It is essential
to evaluate how well the model performs in real-time
scenarios, particularly concerning latency and
computational demands, to ensure it meets
operational requirements.

By providing a more focused discussion on the
selected algorithms and their specific applications to the
JK-52 gas plant, this section supports the study's
objectives and reinforces the validity of the chosen
methodologies.

The three steps:

1. Preprocessing the data
2. Splitting it into training and testing sets
3. Running some models for comparison

The data has been successfully split and
scaled, with 809 samples in the training set and 203
samples in the test set, using 6 features. That was about
80% to 20% training to test dataset ratio. Several
machine learning models (Linear Regression, Random
Forest, and XGBoost) were run to compare their
performance in predicting, then evaluating them based
on common metrics like R-squared and Mean Squared
Error (MSE). The code for the initial automated process
is below, to prepare the data, is shown below.
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from sklearn.model_selection import train_test _split
from sklearn.preprocessing import StandardScaler
import numpy as np

# Check for missing values and basic data cleaning

df cleaned = df.dropna(subset=[Diff Pres (bar)]) # Drop rows where target value is missing
# Select features (ignoring columns like Events that might be non-numeric)

features = df_cleaned[[Time (s)', 'Pr_final', 'Pr_initial', Tolerance', ' Min', 'Max1]

target = df_cleaned[Diff Pres (bar)'<Tolerance]

# Split the data into training and test sets (80% training, 20% testing)
X _train, X test, y train, y test = train_test split(features, target, test_size=0.2, random_state=42)

# Scale the data (important for algorithms like SVM, gradient boosting, etc.)
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X _test scaled = scaler.transform(X_test)

# Check the shapes of training and testing data to ensure everything is correct
X train_scaled.shape, X test scaled.shape, y train.shape, y test.shape
In addition to SVM and Random Forest, Neural Networks showed promising result in gas leak detection.

Overall, a combination of these machine learning algorithms can significantly improve the accuracy and efficiency of
gas leak detection systems.

d) Algorithms for Flow Consistency Check

The principle for leak assessment adopted in this work was that leakage means loss of fluid volume, as
such loss of pressure (Nosike, 2009; 2020; 2023). Where there is leakage between the upstream and the
downstream pressure gauges, it will imply leakage, except where there are other explanations for the pressure drop.
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Figure 5: Detection Technics for Machine Leamning
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For gas detection, the steps followed are
Identification of Phases, Calibration of System (QC),
Evaluation of Lag Time, Checking for Tolerance,
Checking for Consistency, Detection of Leakage and
Estimation of Volume of gas leaked. From Figure 5, the
orange line represents inlet guage while the blue line
represents the outlet gauge. Residual phase occurs
between 3500 and 5500 seconds below the pressure of
12bars. The ramp phase occurs between 5500 and
6500 seconds above the pressure of 12 bars but below
the pressure of 30 bars. “Lifting” as is used here is a
general term to denote all forms of gas collection which
could be sampling, supply, pumping, etc. fig. 2 showed
that the gas sample can be collected at pressures
between 30 bars and 40 bars. Figure 5 showed the lag
time as approximately 250 seconds. This occurred
between the first and second lifting. The second lag time
occurred between the third and fourth lifting which led to
leakage.

Tolerance = -2guage
outletguage

The first possible cause of pressure drop not
related to leakage is the fluctuation in the gauge
reading, usually + or - the actual volume. This
difference was defined as tolerance, initially manually
determined to be a maximum of 20% higher or 20%
lower, any value less than 80% or above 120% of the
upstream reading recorded in the downstream reading
would mean leakage (or other reading issues). The
issue of higher reading was not given much attention
(for leakage detection), as it could be due to some
introduction of volumes or gas in the system or error
with gauge. However, any drop in pressure exceeding
80% drop, is indicative of leakage, except if there was
gas removal (lifting) operation.

Min Cut-Off is 0.8 while Max Cut-Off is 1.2. From
fig. 4, it can be observed that tolerance was below
minimum between 1300 and 5500 seconds which was
acceptable due to residual gas in the system. Tolerance
is above minimum between 6500 and 9000 seconds.
This led to unexplained relative peaks which could lead
to a leak. Figure 5 shows that the tolerance is higher
than the lifting pressure, the pressure drop was below
the upper cutoff. The manual minimum set cut off was
not used (but considered a shifting base), and machine
learning determined cut-off (of £0.166), of the upper line
was found to be optimal.

e) Training and Test Datasets and Automation of the
Modelling Process

The gas flow data was split, 80% assigned to
the training dataset and 20% to the test dataset. Few Al
models (including linear and logistic regressions, SVM,
and Random Forest, respectively) were tested before
getting a high-test score > 90%, leading to predictability
of leakage. Machine learning algorithm was tested and it

was found that tolerance should be much lower, 90 to
110 percent or less. However, due to the need for clarify
of causal pressure changes in the simulation, the
highest proposed value of about 0.166 was retained
(after searching within the window recursively).
Following the machine-based analysis, the set tolerance
level for leakage detection was adjusted, from a
manually estimated value of = 0.2, over a data range of
6500 — 9000 seconds (plateau stage) and 25 — 35 bars
(optimal pressure), to a fractional = 0.166 window.
However, with further data acquisition and inputs, the
machine will learn better and further refine tolerance
window.

With available Al/ML tools and libraries in
python programming language, a major part of the
training and dataset and testing of model was
automated. which checked pressure difference, where
drop was more than the tolerance. However, a more
extensive manually written codes are shown in the
appendix.
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from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor

from xgboost import XGBRegressor

from sklearn.metrics import mean_squared_error, r2_score

# Initialize models
models = {
'Linear Regression': LinearRegression(),

'Random Forest': RandomForestRegressor(random_state=42),

'XGBoost': XGBRegressor(random_state=42)
}

# Dictionary to store performance metrics
performance = {}

# Train and evaluate each model
for name, model in models.items():
# Train the model
model fit(X_train_scaled, y_train)

# Predict on the test set
y_pred = model.predict(X_test scaled)

# Calculate performance metrics
mse = mean_squared_error(y_test, y pred)

r2 = r2_score(y_test, y pred)

# Store performance metrics

performance[name] = {'MSE'": mse, 'R-squared': r2}

# Convert performance dictionary to a DataFrame for better visualization

performance df = pd.DataFrame(performance).

# Display the performance metrics

import ace tools as tools; tools.display dataframe to user(name="Model Performance Comparison',

dataframe=performance_df)
performance df

Using the machine learning techniques, these
were then used for actual case study of JK-52 gas plant
studied in this work.

) Real-Time Monitoring and Alert Systems

Real-time monitoring and alert systems were
important to ensure the timely detection and response to
potential issues. Real-time monitoring allowed for
continuous oversight of gas equipment and processes,
helping to identify any anomalies or malfunctions as
they occur. This proactive approach can prevent costly
downtime and maintenance by addressing issues
before they escalate. For the environmental monitoring,
real-time systems are invaluable for tracking changes in
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air and water quality. By continuously monitoring key
indicators, such as pollutant levels and temperature,
these systems provide crucial data for decision-making
and timely intervention in case of any adverse changes.
This real-time data is essential for ensuring the health
and safety of ecosystems and communities.

g) Performance Evaluation of Al-based Gas Leak
Detection Systems
Performance evaluation of Al-based gas leak
detection systems is essential for assessing their
effectiveness in ensuring safety and preventing potential
hazards. These systems utilize various Al techniques
such as machine learning and pattern recognition to
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identify and locate gas leaks in real time. To accurately
evaluate their performance, it is crucial to consider
factors such as sensitivity, response time, and false
alarm rate. Sensitivity is a key metric in assessing the
performance of Al-based gas leak detection systems. It
refers to the system's ability to accurately detect even
small traces of gas leaks. To assess gas leak detection
in this case, the factors considered were:

e High sensitivity: This was important for ensuring that
no potential leak goes undetected, thereby
enhancing safety in industrial and residential areas.

e Response time: A fast response time is crucial for
promptly detecting and addressing gas leaks,
minimizing the potential risks associated with gas-
related incidents. Evaluating the system's response
time under various conditions and scenarios was
essential for assessing its reliability in real-world
applications.

e False alarm: While high sensitivity is desirable, it is
equally important to minimize false alarms to avoid
unnecessary disruptions and ensure efficient
resource utilization. Evaluating the system's false
alarm rate helps in understanding its accuracy and
reliability in different operating environments.

The performance evaluation of the Al-based gas
leak detection systems was used to determine their
effectiveness and reliability in other real-world
applications. By considering factors such as sensitivity,
response time, and false alarm rate, it was possible to
make informed decisions regarding the deployment and
utilization of these systems to enhance safety and
minimize the risks associated with gas leaks. Ongoing
evaluation and testing are essential to ensure that Al-
based gas leak detection systems meet the highest
safety standards.

[1I. RESULTS AND DISCUSSIONS

a) Predictive Leakage Modeling using Supervised
Machine Learning

In this work, some ML techniques have been
developed; the main focus is to carry out supervised
learning, or in other words, estimating outcomes from
pre-labeled training data. Concretely, the models were
framed using both regression and classification points
of view. Classification involves identifying whether
leakage occurred ('leakage" vs. "'no leakage"), whereas
in regression, the objective is to identify the exact
instance or position of changes along the pressure data
path which may suggest leakage.

i. Model Training and Testing
The best-suited model for gas leak detection
was tried among several. More emphasis is given on the
Random Forest model, because it was performing the
best among all of them. The data will be pre-processed,
split between training and testing sets in two ways: 60%

training to 40% testing, and 80% training to 20% testing.
These splits are such that both the categories get
represented decently within the training set and one can
still drive a robust evaluation on the testing set. High test
scores are achieved whatever be the different

allocations.
ii. Performance Metrics
Performance metrics such as accuracy,

precision, recall, and F1 score were used to evaluate the
performance of the Random Forest model. The model
performed very promisingly, classifying the instances of
leakage with a high level of precision. For example, the
confusion matrix showed very good predictive capability
with a minimum number of false positives and false
negatives.

iii. Implementation in Code

Example code developed for the automated
model in question is key, which goes towards a Random
Forest-based algorithm developed considering both
speed and accuracy that are required to find the gas
leakage condition. Although the given program has
been written in the format of computer code, critical here
is the fact that such logics as feature selection, training,
and testing hugely participated in the effectiveness of
this model.

iv. Comparison with Tradlitional Methods

The results obtained using the Random Forest
model were compared with traditional gas leak detection
methods. It was noticed that there was a significant
improvement in the accuracy and response time of the
model. In addition, real-time data analysis makes this
model more effective for proactive leak management in
industrial settings.

v. Future Considerations

In the future, k-fold cross-validation can be used
to enhance the robustness of this study. Moreover,
feature importance analysis will shed light on which
factors contribute most to the model's predictions, thus
helping to refine maintenance strategies.

Visualizations of model predictions versus
actual outcomes could also facilitate better
understanding and communication of results, as would
a decision tree diagram showing how the Random
Forest model makes decisions.
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from sklearn.impute import Simplelmputer

# Impute missing values (using the mean for numeric columns)

imputer = Simplelmputer(strategy='mean)

X_train_imputed = imputer.fit_transform(X_train_scaled)
X _test imputed = imputer.transform(X test scaled)

# Re-train and evaluate the models after handling missing values

performance imputed = {}

for name, model in models.items():
# Train the model
model fit(X_train_imputed, y_train)

# Predict on the test set
y_pred = model.predict(X_test imputed)

# Calculate performance metrics
mse = mean_squared_error(y_test, y pred)
r2 = r2_score(y _test, y _pred)

# Store performance metrics

performance imputed[name] = {'MSE" mse, 'R-squared" r2}

# Convert performance dictionary to a DataFrame for better visualization
performance imputed df = pd.DataFrame(performance imputed).T

# Display the performance metrics

tools.display_dataframe _to_user(name="Imputed Model Performance Comparison",

dataframe=performance_imputed_df)

performance_imputed_df

The more detailed manually written codes and test
results and test scores were animated and are shown in
the appendix [ and II.

Missing values in the features caused issues for
some of the models, which was mitigated by either
imputing or dropping the null values. Training one of the
models (XGBoost) took too long. The process with just
the faster models (Linear Regression and Random
Forest) to evaluate their performance. The performance
metrics for the faster models (Linear Regression and
Random Forest) are as follows:

e Linear Regression:

0 Mean Squared Error (MSE): 1.009
0 R-squared: 0.786

e Random Forest:

0 Mean Squared Error (MSE): 0.017
0 R-squared: 0.996

That is = 99.6%
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Based on these results, Random Forest
performs significantly better for predicting Pressure
difference related leakages, where pressure differences
drop was (bar) was lower than the tolerance window,
with a very high R-squared value and low MSE. More
modelling was carried out, varying the parameters
slightly, and similar results were obtained. Figure 6
shows the error plots and the test for the data fitting to
the models.
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Model Performance Comparison (Mean RMSE with Std Deviation)

1.0

0.8F

0.6

Mean RMSE
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0.0 = L |
Linear Regression Random Forest Support Vector Regression
Model

Figure 6: Line plot comparing the models' performance, with error bars indicating the standard deviation for each
model

The visualization in Figure 7 highlights the
relative performance of each model. Each plot on Figure
8 focuses on a single model for better clarity and

Random Forest stands out as the best-performing
model with the lowest error.

Model Performance Comparison (Mean RMSE with Std Deviation)

1.0f

0.8

0.6}

Mean RMSE

0.2t

0.0

Linear Regression Random Forest Support Vector Regression
Model

Figure 8: Plot showing the comparison of the models' performance based on their Mean RMSE, along with error bars
representing the standard deviation

The correlation of model fitting was used to
compare the predicted values from each model against
the actual values. This helped to visualize how well each
model fits the data. This was done for results of the
training of each model, and predictions made on the

test set. The assessment and the correlation were
visualization for the actual vs. predicted values for each
model. The correlation plots for each model (Linear
Regression, Random Forest, and Support Vector
Regression), is shown in Figure 9, to demonstrate the
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relationship between the actual and predicted
differential pressures; the red line represents the ideal fit
where predicted values match the actual values
perfectly. These plots showing the comparison of the
models' performance were based on their Mean RMSE,
along with error bars representing the standard
deviation. Random Forest stands out as the best-

performing model with the lowest error. Let me know if
you'd like to explore further adjustments.

The more detailed manually written codes and test
results and test scores were animated and are shown in
the appendix [ and Il.
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Figure 9: Plots showing performance by the correlation plots for each model
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b) Simulation and Animation of Test Results

Measure of Significant Pressure Variation was
achieved using the pressure versus time plot, which was

GAS LEAK DETECTION

essure (Bars)

Residual Phase

categorized into the residual, ramp phase and

stabilisation or plateau phase (Figure 10).
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b. Estimation of Tolerance Window

Figure 10: Calibration checks and consistency checks for tolerance windows

Change in Flow in Pressure to Outflow Pressure
indicated drops in pressure at the stabilization stage,
where a drop exceeding the tolerance cut-off indicated
leakage. This required the correlation of lag time (a
delay due to time difference between the inlet and the
outlet gauge) assessment to ensure proper timing of
inlet and outlet readings. The detection tolerance
window and its use for leakage detection is shown in
Figure 10.

c) Determination of Leaked Volume

The volume change or losses due to leakage
could always be estimated from the change in gauge
pressure. Current Gas leak detection model provides
change in gauge pressure during leak, between the inlet
gauge of known gas volume. Estimating actual gas
volume is useful in tying gas leak to environmental
impact, HSE and in costing of economic loss.

Leak Volume = 2.40 m® or 84.7 scf of gas

As a result of leaks, the pressure drops.
Reduction in the volume of gas can lead to reduction in
the force with which the gas is moving. This will in tun
lead to a drop in pressure. From the analogy in Figure
11, pressure dropped by 5 bar. Since the generated gas
volume is known, a decrease in pressure during gas
leak may be equated to the equivalent change in
volume. With “normalization” process, the change in
pressure dP may be plotted against the change in
volume dV in a prior calibration to derive a relationship
between dP and dV, as shown in Figure 11. This
estimation was used to obtain volume of gas leak based
on a prior-calibration-relation for Gas Plant JK — 52 case.
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Figure 11: Example of Leak for a pressure drop based on prior calibration

Captured Animation Screens are shown in the Appendix.

Summary

% Input gas data is calibrated and evaluated for
consistency in real-time

« The data is then corrected for lag and used to
compute tolerance

% Min. and Max. Tolerance Cut-Off is set based on
machine training dataset

% Where value is higher than maximum cut-off,
machine sets off alarm

« Time of alarm is checked against events such as
lifting, residual gas

« Where alarm is eventless, leak is suspected and

eventually confirmed

Leaked volume is estimated using a prior calibration

relation

Action may be taken to mitigate against the leakage

Further modelling becomes predictive as machine

learns from experience
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d) Benefits and Challenges of AIML-based Gas Leak
Detection

Benefits

The use of artificial intelligence for immediate
leak detection in gas plants offers numerous benefits. In
JK-52 gas plant, it enabled real-time monitoring, which
allowed for swift identification and mitigation of leaks,
thereby reducing the risk of accidents and
environmental damage. Additionally, it improved the
accuracy of leak detection by minimizing false alarms
and human error, reducing maintenance costs, and
enhancing overall safety. Automating the modeling
process using machine learning techniques led to more
efficient and cost-effective operations, enabling
predictive maintenance and optimization of plant
performance.

Limitations

Implementing artificial intelligence in gas plant
operations presents several challenges that must be
addressed to ensure effective deployment.
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e) Key Challenges

1. Data Availability: Obtaining extensive and accurate
datasets for training Al models is crucial yet
challenging. Specifically, historical leak data and
sensor calibration records were difficult to access.
This scarcity can hinder the model's performance
and reliability. To mitigate this, data augmentation
techniques, including the use of simulated data,
were explored to enrich the training datasets.

2. Cybersecurity Risks: The integration of Al systems
introduces potential vulnerabilities, such as Al
model spoofing and sensor tampering. These risks
necessitate robust security measures. Possible
countermeasures include implementing encryption
protocols and anomaly detection systems to protect
the integrity of data and ensure system reliability.

3. Regulatory and Compliance Challenges: Navigating
the regulatory landscape for Al in critical
infrastructure can complicate implementation.
Specific regulations, such as environmental policies
and safety standards, often impose additional
requirements that must be met. Understanding
these guidelines is essential to avoid non-
compliance and ensure the safe operation of Al
systems.

4. Integration with Existing Infrastructure: Integrating Al
technology into existing plant infrastructure requires
significant investment in technology, resources, and
employee training. This can pose financial and
logistical challenges, particularly in older facilities.

5. Real-Time Data Management: Effective real-time gas
leak detection relies on efficient digital data transfer
from the field to the monitoring unit. Challenges
include managing large data sizes and ensuring
continuous connectivity. Issues identified include:

Connectivity and Network Setup
Data Size and Management

Alarm System Reliability
Monitoring Personnel Engagement
Execution of Relief Mechanisms
Pressure to Volume Calibration

O O0OO0OO0OO0Oo

) Mitigation Strategies
To address these limitations, several strategies
could be implemented:

e Decentralized Systems: Establishing cloud-based
systems can alleviate some challenges related to
data management and accessibility.

e [Edge Networks: Utilizing private networks and
internet connectivity near the gas plant can enhance
data transfer efficiency and reliability.

e Automation and Continuous Learning: Emphasizing
automation and continuous learning will be vital in
adapting to evolving challenges and improving
system performance over time.

g) Future Perspectives and Research Opportunities

These limitations are not unique to this study
but reflect broader industry-wide issues. Future research
should focus on exploring alternative data sources,
enhancing cybersecurity measures, and assessing the
regulatory landscape more comprehensively. By
addressing these challenges, the potential of Al
technologies in gas plant operations can be maximized,
ensuring safe and reliable operations.

Among the foreseeable integration of AIML
solutions that will expand gas leak detection and
efficient functioning of gas plant, include:

1. Integration with loT and Sensor Technologies: Future
research can focus on integrating artificial
intelligence for instantaneous leak detection in gas
plants with Internet of Things (loT) and advanced
sensor technologies. This integration can further
enhance the accuracy and efficiency of leak
detection systems by enabling real-time monitoring
and analysis of gas plant operations.

2. Development of Predictive Maintenance Models:
There is an opportunity to explore the development
of predictive maintenance models using machine
learning  techniques to anticipate potential
equipment failures and mitigate the risks of leaks in
gas plants. By analyzing historical data and
identifying patterns, predictive maintenance models
can help in proactively addressing maintenance
issues before they lead to gas leaks.

3. Exploration of Multi-Sensor Fusion Techniques:
Research can focus on the exploration of multi-
sensor fusion techniques to improve the reliability
and robustness of leak detection systems. By
combining data from multiple sensors using
advanced fusion algorithms, researchers can
enhance the ability to accurately detect and locate
gas leaks while minimizing false alarms.

4. Implementation of Explainable Al in Leak Detection
Systems: Future work can delve into implementing
explainable Al techniques in leak detection systems
to enhance interpretability and transparency. By
enabling Al models to provide explanations for their
decisions and predictions, stakeholders can gain a
better understanding of the factors influencing leak
detection outcomes, thereby increasing trust and
adoption of Al-powered systems.

Benefits of the AIML Algorithm

Machine learning algorithms offer several
benefits. One major advantage is their ability to analyze
large volumes of data quickly and efficiently. The use of
Al and ML in this study provided insights that may not
be immediately apparent to human analysts. It helped to
identify patterns and trends in the data, which was
valuable for making predictions and optimizing decision-
making processes. It also provided for the automation of
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the process, avoiding repetitive tasks, freeing human
workers to focus on more complex and creative tasks
and on monitoring of the display of results or alarm
notification.

Limitations of the Study

One major challenge was the need for high-
quality data to produce accurate results. Where the
input data was incomplete, inaccurate, or biased, it led
to flawed outcomes, necessitation data cleaning and
improvement of data acquisition processes. At some
points, the machine learning algorithms struggled with
overfitting, performing well on training data but poorly on
new, unseen data. This required the testing of several
models. Interpretability was another limitation, as some
of the used machine learning models, especially with
automation, were complex and difficult to understand,
making it challenging to explain the reasoning behind
their predictions.

Suggestion

Therefore, while the machine learning
algorithms for the gas leak detection in JK-52 gas plant
offered the potential for powerful data analysis and
automation, they are not without limitations. It's
important to approach their implementation in other
system with a clear understanding of both the benefits
and challenges, to maximize their capabilities while
mitigating potential drawbacks.

IV. CONCLUSION

This study demonstrates the significant
advantages of implementing pressure-based gas leak
detection in the JK-52 gas plant, particularly through the
integration of artificial intelligence (Al) for real-time
monitoring. The findings highlight improved accuracy
and speed in leak detection, which dramatically reduces
the risk of accidents and environmental damage.

Key achievements of this research include:

Enhanced Detection  Efficiency: The Al-assisted
monitoring system has shown a marked improvement in
leak detection efficiency, with a quantifiable increase in
response times compared to traditional methods.

Cost Reduction: The automation of the monitoring
process has led to more cost-effective operations,
facilitating predictive maintenance that optimizes overall
plant performance. A novel aspect of this study is the
application of the "twin concept," which allows for real-
time data sharing between field measurement points
and the monitoring unit. This innovation not only
streamlines operations but also enhances the sensitivity
of the monitoring system to detect leaks that might be
missed by conventional methods.

Looking ahead, the implications of this research
extend beyond the JK-52 gas plant. The methodologies
developed could influence future practices in gas
detection and management across the industry, setting
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new standards for safety and sustainability. Additionally,
there is potential for scalability to other industrial
applications, such as oil refineries and chemical plants.

Future research could focus on refining the Al
model further, improving the sensitivity of the twin
concept, and incorporating Internet of Things (loT)
devices to enhance data acquisition and analysis. By
addressing these areas, we can continue to advance
the field of gas leak detection, aligning with global
efforts to minimize environmental impact and improve
operational safety.
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APPENDIX [

Coding for Machine Learning and Automation

In [7]: | print('min Time value', df.Time.min())
print{‘max Time value®, df.Time.max())

min Time value 1068
max Time value 2008

In [8]: ##&# Select relevant colimns
relevant _df = df[['Time",'Pr_final®,'Pr_initial’, 'Tolerance',"Min", "Max']]
cleaned_df = relevant_df.dropna()
print(relevant_df.shape)
print({cleaned_df.shape)
print(‘'{} rows dropped from the table'.format(relevant_df.shape[@]-cleaned_df.shape[©]))

(1812, &)
(1081, &)
11 rows dropped from the table

In [2]: | cleaned df['Tolerance’] = cleaned_df['Tolerance’].astype(float)

Plotting

In [1@]: | # adding some nice colors

plt.rcParams[ "text.color'] = 'black®
plt.rcParams[ ‘axes.labelcolor’] = ‘blue’
plt.rcParams[ ‘xtick.color'] = ‘red’
plt.rcParams[ "ytick.color'] = ‘red’

fig, axs = plt.subplots(2, figsize=(12,1@))
fig.tight_layout{pad=1.88, h_pad=7, w_pad=None)

axs[@].plot(cleaned df.Time, cleaned df.Pr_final,'-p',
lw=1.5,
label="'pressure({final) in (Bars)’',
markersize=9,
markerfacecolor="white",
markeredgecolor="red",
markeredgewidth=1);
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import warnings
warnings.filterwarnings("ignore™)

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from pylab import cm

from matplotlib.ticker import MaxNLocator
from matplotlib.ticker import FormatStrFormatter

#pip install git+https://github.com/garrettj4e3/sciencePlots

plt.style.use(["science’, "no-latex", "grid'])

df = pd.read_csv('iEScg.csv"')

df.head()

Time Pr_final Pr_initial Events Tolerance Min Max
0 4005 3.5 1.5 Residual stage 0428571429 03 1.2
1 4010 3.5 1.5 NaM 0428571429 08 1.2

2 4015 3.5 1.5 NaM 0428571420 08 1.2
3 4020 3.5 1.5 NaN 0428571429 08 1.2
4 4025 3.5 1.5 MNaWN 0428571420 0.8 1.2

print({'min Time value', df.Time.min()})
print('max Time value', df.Time.max{))

min Time wvalue 1682
max Time value 9@@2

#azg Select relevant columns

relevant_df = df[['Time", 'Pr_final', Pr_initial", 'Tolerance', 'Min’, "Max"]]
cleaned_df = relevant_df.dropna()
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