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Abstract- Safety and protection of the environment involve real-time gas leak detection. The 
paper discusses the improvement in the accuracy and speed of gas leak detection using AI 
based on pressure-based monitoring. The model will be performing a flow consistency check 
using machine learning techniques for instantaneous detection at distinct stages in flows. 

Extensive exploratory data analysis was performed to assess the data and to choose the 
right machine learning models. The findings showed a significant evolution of pressure 
differences over time; hence, refining the tolerance level for leakage detection down to a 
fractional ±0.166 window was necessary. The gas flow data was divided into training and testing 
datasets, which consisted of 80% and 20%, respectively. Several AI models were tested, such as 
linear regression, logistic regression, SVM, and Random Forest-all had a test accuracy of over 
99%. This AI-powered monitoring system could trigger an alarm or immediate notification in the 
case of a pressure drop beyond the defined tolerance window, improving upon the traditional 
methods of inspection. All of these contribute to improved safety, operational efficiency, and 
even cost savings. 
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Automation of Gas Leak Detection: AI and 
Machine Learning Approaches for Gas Plant 

Safety
Godsday Idanegbe Usiabulu α, Ifeanyi Eddy Okoh σ & Ndidi Lucia Okoh ρ

Abstract- Safety and protection of the environment involve real-
time gas leak detection. The paper discusses the 
improvement in the accuracy and speed of gas leak detection 
using AI based on pressure-based monitoring. The model will 
be performing a flow consistency check using machine 
learning techniques for instantaneous detection at distinct 
stages in flows. 

Extensive exploratory data analysis was performed to 
assess the data and to choose the right machine learning 
models. The findings showed a significant evolution of 
pressure differences over time; hence, refining the tolerance 
level for leakage detection down to a fractional ±0.166 window 
was necessary. The gas flow data was divided into training 
and testing datasets, which consisted of 80% and 20%, 
respectively. Several AI models were tested, such as linear 
regression, logistic regression, SVM, and Random Forest-all 
had a test accuracy of over 99%. This AI-powered monitoring 
system could trigger an alarm or immediate notification in the 
case of a pressure drop beyond the defined tolerance window, 
improving upon the traditional methods of inspection. All of 
these contribute to improved safety, operational efficiency, 
and even cost savings. Furthermore, the scalability of the 
model holds great promise for other industrial scenarios. The 
animated simulation of the proposed solution was 
demonstrated. 
Keywords: test score, training, test dataset, split dataset, 
tolerance, lag time. 

I. Introduction 

he gas industry necessitates accurate and timely 
leak detection to ensure safety and mitigate 
environmental hazards. Traditional methods of leak 

detection in gas plants are often manual and time-
consuming, leading to potential risks and inefficiencies 
(Usiabulu et al., 2021; 2022; 2023; Appah et al., 2021). 
Due to these challenges, there has been a growing 
interest in leveraging artificial intelligence to develop 
instantaneous leak detection systems that can automate 
and streamline the monitoring process (Zukang et al., 
2021). 
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Most of the existing systems lack real-time 
analysis and decision-making despite the 
advancements in AI and ML techniques. This paper fills 
this knowledge gap by proposing a sophisticated 
algorithm in AI/ML that would analyze complicated data 
patterns in real time to quickly find and locate gas leaks 
within a plant. Contrary to the usual methodologies, this 
approach avoids much human interference, which in 
turn will reduce errors and increase speed and accuracy 
in detection. 

In this work, AI was used to enable continuous 
monitoring of the modeled JK-52 gas plant with 
minimum human intervention. Integration of recording 
sensors and pressure-measuring devices enabled us to 
develop a real-time surveillance system powered with 
our AI/ML algorithm that will act on anomalies in an 
instant, like pressure drops beyond allowable tolerance 
levels, probably signaling a leak. 

Simulations of the proactive detection 
mechanism were performed at different stages of gas 
injection, from residual phase to ramp-up and then to 
the plateau stage. Such automation will raise safety and 
reduce the possible effects of gas leakage on the 
environment and public health. Besides, AI-driven 
predictive maintenance will reduce potential downtime 
from undetected leaks, promising significant cost 
savings. 

This work, therefore, contributes to better 
operational efficiency and prolongs the life of equipment 
by enabling gas plant operators to identify a problem 
before it escalates. The study also looks into the 
possibility of integrating IoT devices for further 
enhancement of data collection and communication in 
real time. This research will likely set a new standard in 
leak detection systems, emphasizing both 
environmental sustainability and societal health 
concerns. 

The objectives of this application of artificial 
intelligence for instantaneous leak detection in gas 
plants were as follows: 

1. Develop a system for instantaneous and accurate 
gas leak detection using artificial intelligence and 
machine learning techniques. 
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2. Automate the modeling process for leak detection 
to enable rapid identification of gas leaks in real-
time. 

3. Enhance the speed, accuracy, and efficiency of leak 
detection while minimizing reliance on manual 
intervention. 

4. Establish continuous and proactive monitoring of 
gas plants using sensors and monitoring devices 
adapted for AI solutions. 

5. Contribute to cost savings by reducing potential 
downtime through AI-driven predictive maintenance. 

6. Improve safety measures, minimize environmental 
impact, and enhance operational efficiency in gas 
plants through the application of AI for leak 
detection. 

These objectives aim to address the 
inefficiencies and potential hazards associated with 
traditional manual gas leak detection methods while 
leveraging AI to enhance safety, minimize environmental 
impact, and optimize operational processes. 

a) Data and Methods 
The process of gas leak detection in gas plants 

involves a number of efficiencies and hazards that must 
be addressed. For this purpose, an effective data 
acquisition process is needed to provide instantaneous 
identification of the leaks. The traditional methods of gas 
leak detection employ limited observational data that are 
non-instantaneous and liable to human error. These can 
pose serious risks to the safety of personnel and the 
environment, apart from causing financial losses to the 
plant operators. 

In this work, the acquisition of data necessary 
for the automation and improvement of the modeling 
process, using artificial intelligence for the detection of 
gas leaks, is in focus. The main data sources consisted 
of pressure and time measurements, which were 
obtained from sensors placed at strategic points in the 
gas plant. These sensors had a sampling frequency of 
99Hz, which allowed high-resolution data to be captured 
in different operation conditions. The temperature and 
humidity levels were measured, too, as environmental 
factors to contextualize the pressure readings. 

A number of phases of gas pumping were 
covered in this dataset, including the initiation phase 
residual, the buildup phase, and the optimal or plateau 
stage. Other metrics derived aside from raw pressure 
and time data are tolerance levels, lag time, and alarm 
notifications. Tolerance levels were calculated based on 
the trend of historical data, whereas lag time was 
determined by analyzing the response time of the 
system against changes in pressure. Notifications of 
alarms were triggered when pressure values fell outside 
the predefined limits of tolerance. 

Data preprocessing was carried out to make it 
robust; hence, cleaning of outliers and normalization 
was performed. Further, missing data was treated using 
interpolation methods, maintaining continuity in the 
dataset. Feature engineering was also applied to the 
raw data for the extraction of meaningful variables, 
which improved the model's predictive power. 

The AI/ML model used for this work included 
the type, such as support vector machines and neural 
networks, and was chosen because of their potentiality 
in analyzing patterns in complex data in real time. 
Modelling involved the training of the algorithm using, 
say, of the gathered data; the remaining are reserved for 
testing to gauge the performances of the models. It 
thereby integrates methodologies to construct a wide 
framework for real-time gas leak detection with minimum 
human intervention and maximum safety and 
operational efficiency. 

These data were recorded in an ascii file, 
extracted as iESogV1.csv for the purpose of this study. 
The structure of the columns is as below: 

1. Time (s): Represents time in seconds. 
2. Pr_final: Final pressure value. 
3. Pr_initial: Initial pressure value. 
4. Events: Describes significant events during the 

process (e.g., "Residual stage"). 
5. Tolerance: Tolerance level during the process. 
6. Min: Minimum threshold. 
7. Max: Maximum threshold. 
8. Diff_Pres (bar): Difference in pressure (in bar). 

The data was loaded using the commands below: 

# Load the data from the 'in' sheet to inspect its content  
df = pd.read_excel(file_path, sheet_name='in') 
# Show the first few rows of the data to understand its structure 
df.head() 

The results were as shown in Table 1, for the first rows and columns. 
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Table 1: Result showing first rows and column of dataset 

 Time (s) Pr_final Pr_initial Events Tolerance Min Max 

0 4005 3.5 1.5 
Residual 

stage 0.428571 0.8 1.2 

1 4010 3.5 1.5 NaN 0.428571 0.8 1.2 
2 4015 3.5 1.5 NaN 0.428571 0.8 1.2 
3 4020 3.5 1.5 NaN 0.428571 0.8 1.2 
4 4025 3.5 1.5 NaN 0.428571 0.8 1.2 

 

 Diff_Pres (bar) 
0 2.0 
1 2.0 
2 2.0 
3 2.0 
4 2.0 

(Note that similar or same reading for first few data is normal for large data at initiation of recording) 

An initial automated AI/ML process was used to 
explore the data before the detailed analysis shown in 
the subsequent sections.  By leveraging AI and machine 
learning, the goal was to use these data and develop an 
advanced system that can accurately and rapidly detect 
gas leaks, thereby improving safety, minimizing 
environmental impact, and optimizing operational 
efficiency in gas plants. The methods used in this work 
were: 

• Data collection is essential, where sensors recorded 
data from the gas plants and was gathered for the 
analysis.  

• Data preparation, which involved data cleaning, 
preprocessing, and ensuring the data is in a format 
suitable for modeling.  

• Selecting appropriate machine learning algorithms. 
• Training the model using the prepared data, and 

fine-tuning the model to achieve optimal 
performance.  

• The machine learning techniques were applied to 
build the model for leak detection.  

• Automation of the modeling process, which was 
necessary to ensure efficient and accurate detection 
of leaks in real time. 

• The developed model is tested and validated to 
assess its performance and reliability. 

The final delivery involved simulating different 
leak scenarios and evaluating how well the model 
detected and responded to these scenarios. The model 
was compared with against existing manual detection 
methods to demonstrate its effectiveness. These 
validation tests were vital to ensure the AI-powered leak 
detection system met the necessary performance 
standards for deployment in other real-world gas plant 
environments. 

 
 
 

b) Challenges with Traditional Methods of Gas Leak 
Detection 

Traditional methods for detecting gas leaks can 
be categorized into three main groups: manual 
methods, fixed detection systems, and acoustic 
methods. 

i. Manual Methods 
Manual detection methods include gas sniffers, 

flame ionization detectors, and bubble testing. Gas 
sniffers are handheld devices that measure gas 
concentrations, while flame ionization detectors burn 
gas samples to detect ions. Bubble testing involves 
applying a soapy solution to suspected leak areas; 
bubble formation indicates escaping gas. Visual 
inspections and periodic maintenance further 
supplement these methods. 

ii. Fixed Detection Systems 
In industrial settings, fixed gas detection 

systems continuously monitor for hazardous gases 
(Pablo et al., 2018; Tan & Tan, 2019; Todd et al., 2024). 
These systems include point gas detectors, which are 
strategically placed to detect leaks, and open-path gas 
detectors that use infrared technology to monitor larger 
areas. Sampling systems analyze air pulled into 
detectors (Baker, 2002; Bear, 1972). 

iii. Acoustic Methods 
Acoustic leak detection utilizes listening devices 

to identify the sound of escaping gas, providing an 
additional layer of monitoring in certain scenarios. 

c) Limitations of Traditional Methods 
Despite their widespread use, traditional gas 

leak detection methods present several significant 
limitations: 

• Manual Inspection Delays: Reliance on manual 
inspection is inherently time-consuming and labor-
intensive, leading to potential delays in detecting 
leaks. Human error can further compromise the 
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effectiveness of these inspections, resulting in 
missed or incorrectly identified leaks. 

• Sensitivity Issues: Many traditional methods lack the 
sensitivity required to detect small leaks or those in 
hard-to-reach areas. For instance, visual 
inspections may not effectively identify leaks in 
underground pipelines, risking undetected 
emissions. 

• Applicability Constraints: Techniques such as 
bubble testing may not be suitable for certain gases 
or environments, limiting their effectiveness in 
diverse industrial contexts. 

• Lack of Real-time Monitoring: Traditional methods 
often fail to provide continuous surveillance of gas 
pipelines, creating gaps in detection that may lead 
to critical safety hazards or environmental damage 
(Bhattacharya et al., 2019; Boujema et al., 2019). 

These limitations highlight the pressing need for 
more effective detection methods. This work introduces 
Artificial Intelligence and Machine Learning techniques 
for gas leak detection, utilizing pressure-based 
observations instead of volume-based methods. This 
approach allows for programmable data analysis, where 
pressure readings over time serve as the primary input 
for detection, significantly improving response times and 
accuracy. 

II. Gas Leak Detection using Artificial 
Intelligence and Machine Learning 

Artificial Intelligence involves creating algorithms 
and models that enable machines to learn from data, 
recognize patterns, and make decisions. It can be 
designed for a specific task, which has the ability to 
perform any intellectual task that a human being can do, 
in this case, gas leak detection. It is important to 
consider its impact on the economy, the job market, 
privacy, and ethics, where personnel carrying out 
manual inspection of gas leakages may be affected by 
being replaced by the AIML solutions (Pablo et al., 2018; 
Tan and Tan, 2019). The responsible development and 
deployment of AI systems requires careful consideration 
of these factors to ensure that the benefits of AI are 
maximized while minimizing potential risks on 
interchanging human roles. 

To determine the best model for predicting 
leakage, we followed a machine learning pipeline that 
included: 

1. Data Preprocessing: Handle missing values, encode 
categorical variables, and scale the data if 
necessary. 

2. Feature Engineering: Analyze which features are 
most relevant to predict the target  

 

 

3. Model Selection: Compare various models such as: 
o Linear Regression 
o Decision Trees/Random Forests 
o Support Vector Machines 
o Gradient Boosting (e.g., XGBoost) 

4. Model Evaluation: Use metrics like Mean Squared 
Error (MSE), R-squared, etc., to evaluate 
performance. 

   
The flow data from the gas plant was obtained 

by recording the input pressure, known as initial 
pressure, resulting from the upstream pressure reading.  
The upstream pressure gauge is the first point the 
processed gas flow rate is recorded before piping and 
running to the delivery point of the gas point. At the 
delivery point, another gauge records the out-flow 
pressure, which is the downstream gauge. The 
tendency for leakage to occur is more common between 
the two gauge points, due to increasing pressure meant 
to pump the gas out of the processing section to the 
delivery area. 
The flow phases undergo two processes (Figure 1): 

Process 1: The gas plant stabilises and strips lighter gas 
or condensates to produce purified dry gas ready as 
end product. 

Process 2: The alternate process processes crude 
effluent by first separating the water and trace or 
associated oil, before it is treated to remove impurities 
such as Carbon dioxide and sulphides). The resulting 
gas is then compressed or liquified (Liquified Natural 
Gas – LNG) for storage and eventual supply. 

In both cases, initial sensors and gauges are 
placed at the upstream (sourcing section) and at the 
downstream (receiving section) of the products. Inlet 
and outlet pressure gauges are placed across intervals 
with tendency of gas leak. 
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a) Gas Plant Flow Data Input and Coding using Python



 

Figure 1: Gas flow Process in a Gas Plant showing the position of the inlet and outlet pressure gauges

The readings in the gauges in are recorded with 
time, with an initial phase of pumping, purging any 
existing gas in the system. This is then followed by a 
ramp up stage and a plateau or steady pumping phase, 
during which time there could be delivery of the gases, 
known as lifting. 

Rate of flow, estimated as quantity passing over 
time, is directly related to the pressure recorded on the 
gauge. This is one of the variables used to determine 
volume changes and eventually leakage. The pressure 
is a measure of quantity or volume of gas (rate) pumped 
over a certain time. 

The process of using AIML methods involved 
data collection, recording of pressure and time data, 
and recording other events during the flow. The 
collected data was different formats, such as numerical, 
categorical, or textual. It was important to ensure the 
data collected is accurate, complete, and representative 
of the events occurring during the flow process. The 
data collection involved using specialized tools and 
techniques for data scraping, logging, or monitoring 
from well gauges and computer system in which they 
are saved. Once the data was collected, the next step 
was data preprocessing. 
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Figure 2: Analytical Plots showing relationships among variables

Initial analytical plots (Figure 2) were automated 
to show the trends of the data. The analytical plots 
above illustrate the relationships among different 
variables in your dataset: 

1. Time (s) vs Diff_Pres (bar): This scatter plot shows 
the difference in pressure as a function of time. 
There seems to be a constant difference in pressure 
over time, suggesting stability in this aspect of the 
system, such that a deviation would indicate an 
event such as leakage. 

2. Time (s) vs Pr_final: This plot demonstrates the final 
pressure value over time, showing that pressure 
evolution increased with time. Like the pressure 
difference, this variable also appears stable over 
time with only significant fluctuations being the three 
(3) stages of initiation, ramp-up and higher plateau 
or flow pressures. 

3. Pr_initial vs Pr_final: The relationship between initial 
and final pressures shows a relative difference. Both 
values seem to be consistent, potentially reflecting 
that input and output pressure are the same, unless 
leakage or other events occur. 

4. Diff_Pres (bar) vs Tolerance: The difference in 
pressure and tolerance seems to have a linear 
relationship, indicating that the tolerance might 
increase proportionally as the pressure difference 

grows, as such an anomaly will be based on local 
deviation outside the tolerance window. 

  
The acquired data are usually structured in an 

excel file, with columns and rows, which may be 
extracted in a.CSV format. The file is then loaded in a 
python programing language interpreter. The 
development environment used for this study was 
Pycharm and Jupyter Notebook, where the Exploratory 
Data Analysis (EDA)/data wrangling were performed. 
Some of them were automated and compared with 
basic EDA charts. Examples of their Visualisation are 
shown in Figure 3. The Exploratory Data Analysis (EDA) 
reveals the following insights: 

1. Correlation Heatmap: The heatmap shows a high 
correlation between the pressure variables: 

o There is a strong positive correlation between 
Pr_final and Pr_initial, which is expected as they 
likely follow similar trends. 

o The correlation between Diff_Pres (bar) and 
Tolerance is moderate, indicating some 
relationship between the pressure differential 
and tolerance. 

2. Distribution of Diff_Pres (bar): The distribution plot 
for Diff_Pres (bar) suggests that the pressure 
difference is concentrated around a particular value, 
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b) Exploratory Data Analysis



with a narrow spread, indicating stable pressure 
differences. 

3. Pairplot: The pairplot shows the relationships 
between multiple variables: 

o Pr_initial and Pr_final exhibit a linear 
relationship. 

o Tolerance and Diff_Pres (bar) have a relatively 
linear association, supporting the correlation 
from the heatmap. 

 

 

Figure 3: Visualisation of Exploratory Data Analysis (heatmap, univariate and bivariate plots)
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These plots provide an overview of the 
relationships and distributions among key variables in 
the dataset, offering insights into the structure and 
stability of the system being analyzed. Following the 
initial data wrangling, univariate and bivariate plots were 
used to analyse the data and this guided on the 
possible AI/ML model that would be used for predictive 
solutions in gas leakage scenario. Examples of the 
further plots, including scatter plots, are shown in Figure 
4. 
The 2D and 3D visualizations in Figure 4 include: 

1. Jointplot of Pr_final vs Tolerance: This plot shows a 
scatter plot with marginal distributions for `Pr_final` 
and `Tolerance`. The points are scattered, but there 
seems to be no strong linear relationship between 
these two variables. 

2. Regression Plot of Diff_Pres (bar) vs Tolerance: The 
regression line suggests a positive linear 
relationship between the pressure difference and 
tolerance. As `Diff_Pres (bar)` increases, 
`Tolerance` also increases proportionally, 
indicating a predictable relationship. 

3. 3D Scatter Plot of Pr_final, Pr_initial, and Diff_Pres 
(bar): This 3D plot visually represents the 
relationship among these three variables. There 
appears to be a tight grouping of points, especially 
in the pressure variables, with a linear relationship 
between `Pr_final` and `Pr_initial`, while `Diff_Pres 
(bar)` remains relatively stable. 

 

 

Figure 4: Further plots to aid in choice of models for predictive solutions
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In selecting appropriate machine learning 

algorithms for gas leak detection at the JK-52 gas plant, 
several options were considered based on their ability to 
learn complex patterns and relationships within the data 
(Chaki et al., 2018; Freeze & Cherry, 1979; Chinwuko et 
al., 2016; Farouk, 2013). This section outlines the 
rationale for choosing specific models, along with their 
expected applications. 

i. Justification for Model Selection 

• Random Forest: This ensemble learning method 
was chosen for its effectiveness in handling large 
datasets with numerous features, which is typical in 
gas leak detection scenarios. Random Forest excels 
in providing insights into the most critical features 
contributing to gas leak events, aiding proactive 
maintenance and prevention. Its computational 
efficiency and robustness against overfitting make it 
suitable for analyzing pressure drop data, as 
evidenced by its accurate predictions of leakages 
resulting from pressure drops lower than the 
established tolerance. 

• Gradient Boosting: Known for its ability to combine 
multiple weak predictive models into a stronger 
ensemble, Gradient Boosting was considered due 
to its iterative training approach. This model 
effectively prioritizes potential gas leak incidents 
based on data patterns. Its depth of analysis makes 
it a strong candidate for identifying subtle leak 
indicators. 

• Neural Networks: Although briefly mentioned, this 
model has the potential to enhance detection 
accuracy. However, its complexity may require more 
extensive data processing and time for training, 
which could be a consideration depending on 
operational constraints. 

• Support Vector Machines (SVM): SVM was initially 
employed to classify data by finding the optimal 
hyperplane that best separates different classes. 
Despite being trained on historical gas leak data, it 
struggled to accurately classify new instances. This 
limitation prompted further exploration of alternative 
models more suited to the dataset characteristics. 

ii. Performance Metrics 

• The performance of each algorithm is critical for 
justifying its use. For instance, Random Forest 
achieved an accuracy greater than 99%, 
demonstrating its effectiveness in identifying gas 
leaks accurately. Metrics such as precision and 
recall can further affirm the model's reliability in 
operational settings. 

iii. Linking to Data Characteristics 

• The dataset’s characteristics, notably pressure 
drops and time-series data, significantly influenced 

the choice of algorithms. Random Forest’s ability to 
process high-dimensional data and identify critical 
features aligns well with the pressure readings and 
event recordings available from the JK-52 gas plant. 

iv. Future Considerations 

• Hybrid Models: Exploring hybrid approaches that 
combine the strengths of different algorithms could 
enhance overall performance. For instance, 
employing clustering for anomaly detection followed 
by Random Forest for classification may provide 
more accurate results. 

• Feature Importance: Understanding the most 
important features identified by Random Forest can 
inform proactive maintenance strategies. This 
insight is crucial for optimizing operational efficiency 
and safety. 

• Scalability and Real-Time Application: It is essential 
to evaluate how well the model performs in real-time 
scenarios, particularly concerning latency and 
computational demands, to ensure it meets 
operational requirements. 

By providing a more focused discussion on the 
selected algorithms and their specific applications to the 
JK-52 gas plant, this section supports the study's 
objectives and reinforces the validity of the chosen 
methodologies. 
The three steps: 

1. Preprocessing the data 
2. Splitting it into training and testing sets 
3. Running some models for comparison 

The data has been successfully split and 
scaled, with 809 samples in the training set and 203 
samples in the test set, using 6 features. That was about 
80% to 20% training to test dataset ratio. Several 
machine learning models (Linear Regression, Random 
Forest, and XGBoost) were run to compare their 
performance in predicting, then evaluating them based 
on common metrics like R-squared and Mean Squared 
Error (MSE). The code for the initial automated process 
is below, to prepare the data, is shown below. 
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c) AIML Model for Leak Prediction in JK-52 Gas Plant



from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import StandardScaler 
import numpy as np 
 
# Check for missing values and basic data cleaning 
df_cleaned = df.dropna(subset=['Diff_Pres (bar)'])  # Drop rows where target value is missing 
# Select features (ignoring columns like Events that might be non-numeric) 
features = df_cleaned[['Time (s)', 'Pr_final', 'Pr_initial', 'Tolerance', 'Min', 'Max']] 
target = df_cleaned['Diff_Pres (bar)'<Tolerance] 
 
# Split the data into training and test sets (80% training, 20% testing) 
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42) 
 
# Scale the data (important for algorithms like SVM, gradient boosting, etc.) 
scaler = StandardScaler() 
X_train_scaled = scaler.fit_transform(X_train) 
X_test_scaled = scaler.transform(X_test) 
 
# Check the shapes of training and testing data to ensure everything is correct 
X_train_scaled.shape, X_test_scaled.shape, y_train.shape, y_test.shape 

In addition to SVM and Random Forest, Neural Networks showed promising result in gas leak detection. 
Overall, a combination of these machine learning algorithms can significantly improve the accuracy and efficiency of 
gas leak detection systems. 

  
The principle for leak assessment adopted in this work was that leakage means loss of fluid volume, as 

such loss of pressure (Nosike, 2009; 2020; 2023). Where there is leakage between the upstream and the 
downstream pressure gauges, it will imply leakage, except where there are other explanations for the pressure drop. 

 

Figure 5: Detection Technics for Machine Learning
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d) Algorithms for Flow Consistency Check



For gas detection, the steps followed are 
Identification of Phases, Calibration of System (QC), 
Evaluation of Lag Time, Checking for Tolerance, 
Checking for Consistency, Detection of Leakage and 
Estimation of Volume of gas leaked. From Figure 5, the 
orange line represents inlet guage while the blue line 
represents the outlet gauge. Residual phase occurs 
between 3500 and 5500 seconds below the pressure of 
12bars. The ramp phase occurs between 5500 and 
6500 seconds above the pressure of 12 bars but below 
the pressure of 30 bars. “Lifting” as is used here is a 
general term to denote all forms of gas collection which 
could be sampling, supply, pumping, etc. fig. 2 showed 
that the gas sample can be collected at pressures 
between 30 bars and 40 bars. Figure 5 showed the lag 
time as approximately 250 seconds. This occurred 
between the first and second lifting. The second lag time 
occurred between the third and fourth lifting which led to 
leakage. 

Tolerance = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 

The first possible cause of pressure drop not 
related to leakage is the fluctuation in the gauge 
reading, usually + or – the actual volume. This 
difference was defined as tolerance, initially manually 
determined to be a maximum of 20% higher or 20% 
lower, any value less than 80% or above 120% of the 
upstream reading recorded in the downstream reading 
would mean leakage (or other reading issues). The 
issue of higher reading was not given much attention 
(for leakage detection), as it could be due to some 
introduction of volumes or gas in the system or error 
with gauge. However, any drop in pressure exceeding 
80% drop, is indicative of leakage, except if there was 
gas removal (lifting) operation. 

Min Cut-Off is 0.8 while Max Cut-Off is 1.2. From 
fig. 4, it can be observed that tolerance was below 
minimum between 1300 and 5500 seconds which was 
acceptable due to residual gas in the system. Tolerance 
is above minimum between 6500 and 9000 seconds. 
This led to unexplained relative peaks which could lead 
to a leak. Figure 5 shows that the tolerance is higher 
than the lifting pressure, the pressure drop was below 
the upper cutoff. The manual minimum set cut off was 
not used (but considered a shifting base), and machine 
learning determined cut-off (of ±0.166), of the upper line 
was found to be optimal. 

 
 

The gas flow data was split, 80% assigned to 
the training dataset and 20% to the test dataset. Few AI 
models (including linear and logistic regressions, SVM, 
and Random Forest, respectively) were tested before 
getting a high-test score > 90%, leading to predictability 
of leakage. Machine learning algorithm was tested and it 

was found that tolerance should be much lower, 90 to 
110 percent or less.  However, due to the need for clarify 
of causal pressure changes in the simulation, the 
highest proposed value of about 0.166 was retained 
(after searching within the window recursively).  
Following the machine-based analysis, the set tolerance 
level for leakage detection was adjusted, from a 
manually estimated value of ± 0.2, over a data range of 
6500 – 9000 seconds (plateau stage) and 25 – 35 bars 
(optimal pressure), to a fractional ± 0.166 window. 
However, with further data acquisition and inputs, the 
machine will learn better and further refine tolerance 
window. 

With available AI/ML tools and libraries in 
python programming language, a major part of the 
training and dataset and testing of model was 
automated. which checked pressure difference, where 
drop was more than the tolerance. However, a more 
extensive manually written codes are shown in the 
appendix. 
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e) Training and Test Datasets and Automation of the 
Modelling Process



from sklearn.linear_model import LinearRegression 
from sklearn.ensemble import RandomForestRegressor 
from xgboost import XGBRegressor 
from sklearn.metrics import mean_squared_error, r2_score 
 
# Initialize models 
models = { 
    'Linear Regression': LinearRegression(), 
    'Random Forest': RandomForestRegressor(random_state=42), 
    'XGBoost': XGBRegressor(random_state=42) 
} 
 
# Dictionary to store performance metrics 
performance = {} 
 
# Train and evaluate each model 
for name, model in models.items(): 
    # Train the model 
    model.fit(X_train_scaled, y_train) 
 
    # Predict on the test set 
    y_pred = model.predict(X_test_scaled) 
     
    # Calculate performance metrics 
    mse = mean_squared_error(y_test, y_pred) 
    r2 = r2_score(y_test, y_pred) 
 
    # Store performance metrics 
    performance[name] = {'MSE': mse, 'R-squared': r2} 
 
# Convert performance dictionary to a DataFrame for better visualization 
performance_df = pd.DataFrame(performance). 
 
# Display the performance metrics 
import ace_tools as tools; tools.display_dataframe_to_user(name="Model Performance Comparison", 
dataframe=performance_df) 
performance_df 

Using the machine learning techniques, these 
were then used for actual case study of JK-52 gas plant 
studied in this work. 

  
Real-time monitoring and alert systems were 

important to ensure the timely detection and response to 
potential issues. Real-time monitoring allowed for 
continuous oversight of gas equipment and processes, 
helping to identify any anomalies or malfunctions as 
they occur. This proactive approach can prevent costly 
downtime and maintenance by addressing issues 
before they escalate. For the environmental monitoring, 
real-time systems are invaluable for tracking changes in 

air and water quality. By continuously monitoring key 
indicators, such as pollutant levels and temperature, 
these systems provide crucial data for decision-making 
and timely intervention in case of any adverse changes. 
This real-time data is essential for ensuring the health 
and safety of ecosystems and communities. 

 
 

Performance evaluation of AI-based gas leak 
detection systems is essential for assessing their 
effectiveness in ensuring safety and preventing potential 
hazards. These systems utilize various AI techniques 
such as machine learning and pattern recognition to 
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f) Real-Time Monitoring and Alert Systems

g) Performance Evaluation of AI-based Gas Leak 
Detection Systems



identify and locate gas leaks in real time. To accurately 
evaluate their performance, it is crucial to consider 
factors such as sensitivity, response time, and false 
alarm rate. Sensitivity is a key metric in assessing the 
performance of AI-based gas leak detection systems. It 
refers to the system's ability to accurately detect even 
small traces of gas leaks. To assess gas leak detection 
in this case, the factors considered were: 

• High sensitivity: This was important for ensuring that 
no potential leak goes undetected, thereby 
enhancing safety in industrial and residential areas. 

• Response time: A fast response time is crucial for 
promptly detecting and addressing gas leaks, 
minimizing the potential risks associated with gas-
related incidents. Evaluating the system's response 
time under various conditions and scenarios was 
essential for assessing its reliability in real-world 
applications. 

• False alarm: While high sensitivity is desirable, it is 
equally important to minimize false alarms to avoid 
unnecessary disruptions and ensure efficient 
resource utilization. Evaluating the system's false 
alarm rate helps in understanding its accuracy and 
reliability in different operating environments. 

The performance evaluation of the AI-based gas 
leak detection systems was used to determine their 
effectiveness and reliability in other real-world 
applications. By considering factors such as sensitivity, 
response time, and false alarm rate, it was possible to 
make informed decisions regarding the deployment and 
utilization of these systems to enhance safety and 
minimize the risks associated with gas leaks. Ongoing 
evaluation and testing are essential to ensure that AI-
based gas leak detection systems meet the highest 
safety standards. 

III. Results and Discussions 

a) Predictive Leakage Modeling using Supervised 
Machine Learning 

In this work, some ML techniques have been 
developed; the main focus is to carry out supervised 
learning, or in other words, estimating outcomes from 
pre-labeled training data. Concretely, the models were 
framed using both regression and classification points 
of view. Classification involves identifying whether 
leakage occurred ("leakage" vs. "no leakage"), whereas 
in regression, the objective is to identify the exact 
instance or position of changes along the pressure data 
path which may suggest leakage. 

i. Model Training and Testing 
The best-suited model for gas leak detection 

was tried among several. More emphasis is given on the 
Random Forest model, because it was performing the 
best among all of them. The data will be pre-processed, 
split between training and testing sets in two ways: 60% 

training to 40% testing, and 80% training to 20% testing. 
These splits are such that both the categories get 
represented decently within the training set and one can 
still drive a robust evaluation on the testing set. High test 
scores are achieved whatever be the different 
allocations. 

ii. Performance Metrics 
Performance metrics such as accuracy, 

precision, recall, and F1 score were used to evaluate the 
performance of the Random Forest model. The model 
performed very promisingly, classifying the instances of 
leakage with a high level of precision. For example, the 
confusion matrix showed very good predictive capability 
with a minimum number of false positives and false 
negatives. 

iii. Implementation in Code 
Example code developed for the automated 

model in question is key, which goes towards a Random 
Forest-based algorithm developed considering both 
speed and accuracy that are required to find the gas 
leakage condition. Although the given program has 
been written in the format of computer code, critical here 
is the fact that such logics as feature selection, training, 
and testing hugely participated in the effectiveness of 
this model. 

iv. Comparison with Traditional Methods 
The results obtained using the Random Forest 

model were compared with traditional gas leak detection 
methods. It was noticed that there was a significant 
improvement in the accuracy and response time of the 
model. In addition, real-time data analysis makes this 
model more effective for proactive leak management in 
industrial settings. 

v. Future Considerations 
In the future, k-fold cross-validation can be used 

to enhance the robustness of this study. Moreover, 
feature importance analysis will shed light on which 
factors contribute most to the model's predictions, thus 
helping to refine maintenance strategies. 

Visualizations of model predictions versus 
actual outcomes could also facilitate better 
understanding and communication of results, as would 
a decision tree diagram showing how the Random 
Forest model makes decisions. 
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from sklearn.impute import SimpleImputer 
 
# Impute missing values (using the mean for numeric columns) 
imputer = SimpleImputer(strategy='mean') 
X_train_imputed = imputer.fit_transform(X_train_scaled) 
X_test_imputed = imputer.transform(X_test_scaled) 
 
# Re-train and evaluate the models after handling missing values 
performance_imputed = {} 
 
for name, model in models.items(): 
    # Train the model 
    model.fit(X_train_imputed, y_train) 
 
    # Predict on the test set 
    y_pred = model.predict(X_test_imputed) 
 
    # Calculate performance metrics 
    mse = mean_squared_error(y_test, y_pred) 
    r2 = r2_score(y_test, y_pred) 
 
    # Store performance metrics 
    performance_imputed[name] = {'MSE': mse, 'R-squared': r2} 
 
# Convert performance dictionary to a DataFrame for better visualization 
performance_imputed_df = pd.DataFrame(performance_imputed).T 
 
# Display the performance metrics 
tools.display_dataframe_to_user(name="Imputed Model Performance Comparison", 
dataframe=performance_imputed_df) 
 
performance_imputed_df

The more detailed manually written codes and test 
results and test scores were animated and are shown in 
the appendix I and II. 

Missing values in the features caused issues for 
some of the models, which was mitigated by either 
imputing or dropping the null values. Training one of the 
models (XGBoost) took too long. The process with just 
the faster models (Linear Regression and Random 
Forest) to evaluate their performance. The performance 
metrics for the faster models (Linear Regression and 
Random Forest) are as follows: 

• Linear Regression: 

o Mean Squared Error (MSE): 1.009 
o R-squared: 0.786 

• Random Forest: 

o Mean Squared Error (MSE): 0.017 
o R-squared: 0.996 

That is = 99.6% 

Based on these results, Random Forest 
performs significantly better for predicting Pressure 
difference related leakages, where pressure differences 
drop was (bar) was lower than the tolerance window, 
with a very high R-squared value and low MSE. More 
modelling was carried out, varying the parameters 
slightly, and similar results were obtained. Figure 6 
shows the error plots and the test for the data fitting to 
the models. 
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Figure 6: Line plot comparing the models' performance, with error bars indicating the standard deviation for each 
model

The visualization in Figure 7 highlights the 
relative performance of each model. Each plot on Figure 
8 focuses on a single model for better clarity and 

Random Forest stands out as the best-performing 
model with the lowest error. 

 

Figure 8: Plot showing the comparison of the models' performance based on their Mean RMSE, along with error bars 
representing the standard deviation

The correlation of model fitting was used to 
compare the predicted values from each model against 
the actual values. This helped to visualize how well each 
model fits the data. This was done for results of the 
training of each model, and predictions made on the 

test set. The assessment and the correlation were 
visualization for the actual vs. predicted values for each 
model. The correlation plots for each model (Linear 
Regression, Random Forest, and Support Vector 
Regression), is shown in Figure 9, to demonstrate the 
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relationship between the actual and predicted 
differential pressures; the red line represents the ideal fit 
where predicted values match the actual values 
perfectly. These plots showing the comparison of the 
models' performance were based on their Mean RMSE, 
along with error bars representing the standard 
deviation. Random Forest stands out as the best-

performing model with the lowest error. Let me know if 
you'd like to explore further adjustments. 

The more detailed manually written codes and test 
results and test scores were animated and are shown in 
the appendix I and II. 

 

Figure 9: Plots showing performance by the correlation plots for each model 
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b) Simulation and Animation of Test Results 
Measure of Significant Pressure Variation was 

achieved using the pressure versus time plot, which was 

categorized into the residual, ramp phase and 
stabilisation or plateau phase (Figure 10). 

 

a. Estimation of lag time 

 

b. Estimation of Tolerance Window 

Figure 10: Calibration checks and consistency checks for tolerance windows

Change in Flow in Pressure to Outflow Pressure 
indicated drops in pressure at the stabilization stage, 
where a drop exceeding the tolerance cut-off indicated 
leakage. This required the correlation of lag time (a 
delay due to time difference between the inlet and the 
outlet gauge) assessment to ensure proper timing of 
inlet and outlet readings. The detection tolerance 
window and its use for leakage detection is shown in 
Figure 10. 

c) Determination of Leaked Volume 
The volume change or losses due to leakage 

could always be estimated from the change in gauge 
pressure. Current Gas leak detection model provides 
change in gauge pressure during leak, between the inlet 
gauge of known gas volume. Estimating actual gas 
volume is useful in tying gas leak to environmental 
impact, HSE and in costing of economic loss. 

Leak Volume = 2.40 m3 or 84.7 scf of gas 

As a result of leaks, the pressure drops. 
Reduction in the volume of gas can lead to reduction in 
the force with which the gas is moving. This will in turn 
lead to a drop in pressure. From the analogy in Figure 
11, pressure dropped by 5 bar. Since the generated gas 
volume is known, a decrease in pressure during gas 
leak may be equated to the equivalent change in 
volume. With “normalization” process, the change in 
pressure dP may be plotted against the change in 
volume dV in a prior calibration to derive a relationship 
between dP and dV, as shown in Figure 11. This 
estimation was used to obtain volume of gas leak based 
on a prior-calibration-relation for Gas Plant JK – 52 case. 

 
 
 
 
 

 

Automation of Gas Leak Detection: AI and Machine Learning Approaches for Gas Plant Safety

G
lo
ba

l 
Jo

ur
na

l 
of
 R

es
ea

rc
h 

in
 E

ng
in
ee

ri
ng

  
( 
J 
) 
 X

X
IV

  
Is
su

e 
 I
I 
 V

er
si
on

  
I 

 Y
ea

r 
20

24

45

© 2024 Global Journals



 

a. Estimation of pressure drop 

 

b. A prior calibration (where δV is the leaked Volume of gas for the change in Pressure δV) 

Figure 11: Example of Leak for a pressure drop based on prior calibration

 

Summary 

 Input gas data is calibrated and evaluated for 
consistency in real-time 

 The data is then corrected for lag and used to 
compute tolerance 

 Min. and Max. Tolerance Cut-Off is set based on 
machine training dataset 

 Where value is higher than maximum cut-off, 
machine sets off alarm 

 Time of alarm is checked against events such as 
lifting, residual gas 

 Where alarm is eventless, leak is suspected and 
eventually confirmed 

 Leaked volume is estimated using a prior calibration 
relation 

 Action may be taken to mitigate against the leakage 
 Further modelling becomes predictive as machine 

learns from experience 
 

d) Benefits and Challenges of AIML-based Gas Leak 
Detection 

Benefits 
The use of artificial intelligence for immediate 

leak detection in gas plants offers numerous benefits. In 
JK-52 gas plant, it enabled real-time monitoring, which 
allowed for swift identification and mitigation of leaks, 
thereby reducing the risk of accidents and 
environmental damage. Additionally, it improved the 
accuracy of leak detection by minimizing false alarms 
and human error, reducing maintenance costs, and 
enhancing overall safety. Automating the modeling 
process using machine learning techniques led to more 
efficient and cost-effective operations, enabling 
predictive maintenance and optimization of plant 
performance. 

Limitations 
Implementing artificial intelligence in gas plant 

operations presents several challenges that must be 
addressed to ensure effective deployment. 
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Captured Animation Screens are shown in the Appendix.



e) Key Challenges 

1. Data Availability: Obtaining extensive and accurate 
datasets for training AI models is crucial yet 
challenging. Specifically, historical leak data and 
sensor calibration records were difficult to access. 
This scarcity can hinder the model's performance 
and reliability. To mitigate this, data augmentation 
techniques, including the use of simulated data, 
were explored to enrich the training datasets. 

2. Cybersecurity Risks: The integration of AI systems 
introduces potential vulnerabilities, such as AI 
model spoofing and sensor tampering. These risks 
necessitate robust security measures. Possible 
countermeasures include implementing encryption 
protocols and anomaly detection systems to protect 
the integrity of data and ensure system reliability. 

3. Regulatory and Compliance Challenges: Navigating 
the regulatory landscape for AI in critical 
infrastructure can complicate implementation. 
Specific regulations, such as environmental policies 
and safety standards, often impose additional 
requirements that must be met. Understanding 
these guidelines is essential to avoid non-
compliance and ensure the safe operation of AI 
systems. 

4. Integration with Existing Infrastructure: Integrating AI 
technology into existing plant infrastructure requires 
significant investment in technology, resources, and 
employee training. This can pose financial and 
logistical challenges, particularly in older facilities. 

5. Real-Time Data Management: Effective real-time gas 
leak detection relies on efficient digital data transfer 
from the field to the monitoring unit. Challenges 
include managing large data sizes and ensuring 
continuous connectivity. Issues identified include: 

o Connectivity and Network Setup 
o Data Size and Management 
o Alarm System Reliability 
o Monitoring Personnel Engagement 
o Execution of Relief Mechanisms 
o Pressure to Volume Calibration 

f) Mitigation Strategies 
To address these limitations, several strategies 

could be implemented: 

• Decentralized Systems: Establishing cloud-based 
systems can alleviate some challenges related to 
data management and accessibility. 

• Edge Networks: Utilizing private networks and 
internet connectivity near the gas plant can enhance 
data transfer efficiency and reliability. 

• Automation and Continuous Learning: Emphasizing 
automation and continuous learning will be vital in 
adapting to evolving challenges and improving 
system performance over time. 

g) Future Perspectives and Research Opportunities 
These limitations are not unique to this study 

but reflect broader industry-wide issues. Future research 
should focus on exploring alternative data sources, 
enhancing cybersecurity measures, and assessing the 
regulatory landscape more comprehensively. By 
addressing these challenges, the potential of AI 
technologies in gas plant operations can be maximized, 
ensuring safe and reliable operations. 

Among the foreseeable integration of AIML 
solutions that will expand gas leak detection and 
efficient functioning of gas plant, include: 

1. Integration with IoT and Sensor Technologies: Future 
research can focus on integrating artificial 
intelligence for instantaneous leak detection in gas 
plants with Internet of Things (IoT) and advanced 
sensor technologies. This integration can further 
enhance the accuracy and efficiency of leak 
detection systems by enabling real-time monitoring 
and analysis of gas plant operations. 

2. Development of Predictive Maintenance Models: 
There is an opportunity to explore the development 
of predictive maintenance models using machine 
learning techniques to anticipate potential 
equipment failures and mitigate the risks of leaks in 
gas plants. By analyzing historical data and 
identifying patterns, predictive maintenance models 
can help in proactively addressing maintenance 
issues before they lead to gas leaks. 

3. Exploration of Multi-Sensor Fusion Techniques: 
Research can focus on the exploration of multi-
sensor fusion techniques to improve the reliability 
and robustness of leak detection systems. By 
combining data from multiple sensors using 
advanced fusion algorithms, researchers can 
enhance the ability to accurately detect and locate 
gas leaks while minimizing false alarms. 

4. Implementation of Explainable AI in Leak Detection 
Systems: Future work can delve into implementing 
explainable AI techniques in leak detection systems 
to enhance interpretability and transparency. By 
enabling AI models to provide explanations for their 
decisions and predictions, stakeholders can gain a 
better understanding of the factors influencing leak 
detection outcomes, thereby increasing trust and 
adoption of AI-powered systems. 

Benefits of the AIML Algorithm 
Machine learning algorithms offer several 

benefits. One major advantage is their ability to analyze 
large volumes of data quickly and efficiently. The use of 
AI and ML in this study provided insights that may not 
be immediately apparent to human analysts. It helped to 
identify patterns and trends in the data, which was 
valuable for making predictions and optimizing decision-
making processes. It also provided for the automation of 
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the process, avoiding repetitive tasks, freeing human 
workers to focus on more complex and creative tasks 
and on monitoring of the display of results or alarm 
notification. 

Limitations of the Study 
One major challenge was the need for high-

quality data to produce accurate results. Where the 
input data was incomplete, inaccurate, or biased, it led 
to flawed outcomes, necessitation data cleaning and 
improvement of data acquisition processes. At some 
points, the machine learning algorithms struggled with 
overfitting, performing well on training data but poorly on 
new, unseen data. This required the testing of several 
models. Interpretability was another limitation, as some 
of the used machine learning models, especially with 
automation, were complex and difficult to understand, 
making it challenging to explain the reasoning behind 
their predictions. 

Suggestion 
Therefore, while the machine learning 

algorithms for the gas leak detection in JK-52 gas plant 
offered the potential for powerful data analysis and 
automation, they are not without limitations. It's 
important to approach their implementation in other 
system with a clear understanding of both the benefits 
and challenges, to maximize their capabilities while 
mitigating potential drawbacks. 

IV. Conclusion 

This study demonstrates the significant 
advantages of implementing pressure-based gas leak 
detection in the JK-52 gas plant, particularly through the 
integration of artificial intelligence (AI) for real-time 
monitoring. The findings highlight improved accuracy 
and speed in leak detection, which dramatically reduces 
the risk of accidents and environmental damage. 
Key achievements of this research include: 

Enhanced Detection Efficiency: The AI-assisted 
monitoring system has shown a marked improvement in 
leak detection efficiency, with a quantifiable increase in 
response times compared to traditional methods. 

Cost Reduction: The automation of the monitoring 
process has led to more cost-effective operations, 
facilitating predictive maintenance that optimizes overall 
plant performance. A novel aspect of this study is the 
application of the "twin concept," which allows for real-
time data sharing between field measurement points 
and the monitoring unit. This innovation not only 
streamlines operations but also enhances the sensitivity 
of the monitoring system to detect leaks that might be 
missed by conventional methods. 

Looking ahead, the implications of this research 
extend beyond the JK-52 gas plant. The methodologies 
developed could influence future practices in gas 
detection and management across the industry, setting 

new standards for safety and sustainability. Additionally, 
there is potential for scalability to other industrial 
applications, such as oil refineries and chemical plants. 

Future research could focus on refining the AI 
model further, improving the sensitivity of the twin 
concept, and incorporating Internet of Things (IoT) 
devices to enhance data acquisition and analysis. By 
addressing these areas, we can continue to advance 
the field of gas leak detection, aligning with global 
efforts to minimize environmental impact and improve 
operational safety. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Automation of Gas Leak Detection: AI and Machine Learning Approaches for Gas Plant Safety

G
lo
ba

l 
Jo

ur
na

l 
of
 R

es
ea

rc
h 

in
 E

ng
in
ee

ri
ng

  
( 
J 
) 
 X

X
IV

  
Is
su

e 
 I
I 
 V

er
si
on

  
I 

 Y
ea

r 
20

24

48

© 2024 Global Journals



Appendix I 

Coding for Machine Learning and Automation 
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Appendix II 

Residual Stage 
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Residual to Ramp up Stage 
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Residual to Ramp up to Stabilization/Plateau Stage 
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