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Calculation of Time-Varying Mesh Stiffness of 
Internal Gears based on Precise Tooth Profile 
and Dynamic Analysis of Planetary Systems  

with Root Cracks
Cao Dongjiang α, Qin Fengwei σ, Cao Lisong ρ & Chang Hongjjie Ѡ

Abstract- The internal meshing spur gear pair is the research object, and the potential energy method is applied to calculate the 
time-varying meshing stiffness of the internal gear. The internal gear tooth profile is divided into two parts: involute and transition 
curves, and the gear tooth stiffness is calculated by numerical integration based on accurate tooth profile, which improves the 
calculation accuracy. Analyzed the influence of different crack size parameters on the stiffness of internal meshing gears. A 
coupled dynamic model of a planetary system with internal gear crack faults was established, and the influence of cracks on the 
dynamic response of the planetary system was studied using Zoom-FFT spectrum and cepstrum analysis methods. The 
simulation results show that as the crack parameter size increases, the mesh stiffness of the internal gear pair gradually weakens, 
and the periodic vibration impact of the planetary-internal gear pair is also more severe. Cepstrum analysis can easily capture 
weak fault characteristic frequency information in the system and discover their variation patterns. The research results can 
provide a theoretical basis for the state monitoring and fault diagnosis of gear systems with crack defects. 
Keywords: precise tooth profile, potential energy method, internal meshing gear stiffness, planetary gear dynamics, 
Zoom FFT analysis, cepstrum analysis, fault diagnosis. 

I. Introduction 

nternal meshing gear transmission is widely used in power transmission equipment such as tank turrets, radar 
systems, and wind power gearboxes due to its compact structure and high torque to weight ratio. Planetary gear 
transmission is an important application of internal meshing transmission, widely used in industries, automobiles, 

aviation, aerospace and other fields. The gear system itself has a complex structure and is prone to faults when 
working in harsh environments[1], which affects the reliable operation and service life of the equipment. Therefore, 
monitoring and diagnosing the operating status of the gear system is of great significance[2]. Reasonable modeling 
and theoretical analysis of gear system dynamics are the prerequisite and foundation for effective gear fault 
monitoring and diagnosis, and accurate calculation of gear mesh stiffness is an essential part of analyzing system 
dynamics. Therefore, studying the time-varying meshing stiffness of internal meshing gears with root crack defects, 
analyzing the influence of root cracks on the dynamic characteristics of gear systems, is of great significance for 
early fault diagnosis. 

Many scholars worldwide have done a lot of work in gear dynamics and time-varying meshing stiffness. 
Weber[3] conducted analytical calculations for gear mesh stiffness without defects. Cornell[4] and Kasuba[5] applied 
numerical analysis methods to calculate the gear mesh stiffness. Yang and Lin[6] used the so-called potential energy 
method to calculate the total meshing stiffness of gear pairs and achieved high calculation accuracy. Since then, the 
potential energy method has been widely accepted. Basis on Yang, Tian[7] and Wu[8] further improved the calculation 
model of meshing stiffness by considering the influence of load shear, However, they still did not consider the 
deflection of the rounded foundation. Chaari et al.[9] considered the influence of energy on various parts of the gear 
teeth and calculated the meshing stiffness of gears with crack faults. Wan et al.[2] considered the situation where the 
tooth base circle and tooth root circle do not coincide, proposed a meshing stiffness correction method, and 
established a tooth root crack dynamic model to study the influence of tooth root cracks on the dynamic response of 
gear systems. Sun[10] used a straight line segment instead of the transition curve of the tooth profile, and used the 
potential energy method to solve the meshing stiffness of gears with and without cracks. Zhang et al.[11] derived an 
analytical formula for the meshing stiffness of spur gears based on the potential energy method, and analyzed the 
variation of meshing stiffness with different frictional forces. Meng et al.[12] considered the gear transition curve 
function and used the potential energy method to calculate the stiffness changes of 10 different crack lengths. They 
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considered the time-varying meshing stiffness and sliding friction between teeth, and analyzed the dynamic

Author α σ ρ: Qing'an Group Co., Ltd., Xi'an Shaanxi, China. e-mail: 726679818@qq.com
Author Ѡ: College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei.

G
lo
ba

l 
Jo

ur
na

l 
of
 R

es
ea

rc
h 

in
 E

ng
in
ee

ri
ng

 (
 A

 )
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I
 

 Y
ea

r 
20

24

29

© 2024 Global Journals



 

 

response of gear systems with cracks. Liu et al.[13] used the principle of generation method to calculate the tooth 
profile equation with the rolling angle of the cutting tool as a unified variable, and solved the time-varying meshing 
stiffness of the gear based on the energy method. Sun et al.[14] divided spur gears into many separate slices along 
the tooth width and proposed a modified calculation model for spur gear pairs with tooth profile modification based 
on the relationship between deformation and total stiffness of the meshing cycle. The errors of this method under 
different modification amounts were discussed. Cao[15] and Xu[16] considered the accurate tooth profile 
parameterization equation and established a tooth cantilever beam model to solve the time-varying mesh stiffness of 
spur gears. 

However, there are still relatively few calculation and analysis models for the mesh stiffness of the internal 
gear pair. Hidaka et al.[17] applied the FEA method and analysis model to calculate the deformation of the internal 
gear ring along the mesh line based on the results of Karas[18]. Chen et al.[19] embedded the Timoshenko beam 
theory into the meshing stiffness model of internal meshing gear pairs and studied the influence of ring gear flexibility 
on internal meshing stiffness. Chen et al.[20] calculated the time-varying meshing stiffness of healthy and internal gear 
pairs with root cracks, and analyzed the impact of ring gear root cracks on the dynamic response of planetary 
systems. However, Chen et al.[19,20] did not consider the precise root transition curve when calculating the meshing 
stiffness of internal gears, instead, an approximation algorithm was used. 

Lwicki[21-23] has conducted extensive research on the propagation path of tooth cracks and has drawn some 
beneficial conclusions. He pointed out that the direction of crack path propagation depends on the backup ratio, 
which is defined as the ratio of the thickness of the wheel rim to the tooth height, and the propagation path is often 
smooth and continuous. For gears with high backup ratios, tooth root cracks will propagate towards the interior of 
the teeth along the tooth width direction. For those teeth with lower backup ratios, cracks will pass through the rim. 
The initial crack angle is also a determining factor for path extension. Under small initial crack angle conditions, even 
with a high backup ratio, cracks will propagate through the wheel rim. 

Charri et al.[24] pointed out that the dynamic response of gear systems is closely related to the time-varying 
meshing stiffness of gears. When specific tooth faults cause a decrease in meshing stiffness, the system will be 
monitored for more significant vibration impact and noise. Establishing a gear dynamics model with gear tooth faults 
will help analyze the changes in system dynamic characteristics, and the model can also serve as a theoretical basis 
for fault diagnosis. Conducting time-domain, frequency-domain, and time-frequency domain analysis on the 
dynamic response of gear systems is the most powerful tool for monitoring faults in rotating machinery. 

The article applies the potential energy method to establish a time-varying meshing stiffness model for 
internal meshing gears based on precise tooth profiles. In this model, root crack defects with different size 
parameters are embedded, and the meshing stiffness of internal meshing gears containing root cracks is obtained. 
Further established a dynamic model of planetary gear system with root cracks, analyzed the impact of tooth cracks 
on gear dynamic characteristics, and applied widely used RMS and Kurtosis statistical indicators in vibration 
detection to reveal the severity of gear cracks. The dynamic response of the planetary gear system was analyzed 
using time-domain and FFT spectra, as well as cepstrum analysis, in order to quantitatively obtain the influence of 
tooth root cracks on the dynamic characteristics of gears. This is of great significance for gear condition monitoring 
and fault diagnosis. 

II. Establishment of an Equivalent Model for Internal Gears 

By applying the principle of potential energy, the internal gear tooth is simplified as a variable cross-section 
cantilever beam on the gear ring, and the time-varying meshing stiffness of the internal gear pair is calculated. The 
equivalent model is shown in Fig. 1. According to the principle of potential energy, the work exerted by an external 
force on the gear tooth is equal to the potential energy stored by the gear body due to deformation. The potential 
energy stored in the gear tooth includes four parts: bending potential energy Ub, shear deformation energy Us, radial 
compression deformation energy Ua, and Hertz potential energy Uh. These four types of potential energy can be 
used to calculate the bending stiffness kb, shear stiffness ks, radial compression stiffness ka, and Hertz stiffness kh, 
respectively. The total meshing stiffness is the series form of each stiffness. From the knowledge of elasticity and 
material mechanics, it can be inferred that: 
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Where: F represents the force acting along the meshing line at the meshing point, Fa and Fb represent the 
horizontal component of force F in the x-axis direction and the vertical component of force F in the y-axis direction; 
Mf represents the bending moment generated by force F on the beam. E is the elastic modulus, G is the shear 
modulus, Ix is the moment of inertia of the gear tooth section at a distance of x from the force F  acting point, and Ax is 
the cross-sectional area of that point. 

 

Fig. 1: Equivalent model of internal gear

III. Calculate the Meshing Stiffness of Internal Gears based on the Principle of 
Potential Energy 

According to the cantilever beam model of the gear teeth, the internal gear tooth profile is divided into two 
parts: involute and transition curve. As shown in Fig. 1, point M is the tangent point of the connection between the 
involute and transition curve, also known as the tooth profile transition point[25], and point N is the tangent point of the 
connection between the transition curve and the tooth root circle. The transition curve is a curve that is enveloped by 
the rounded corner of the cutter tooth during the internal gear machining process. When the rounded corner of the 

0ρ > ), the transition curve is an equidistant curve of an extended epicycloid[26]. Due to the 
entirely different equations of tooth profile involute and transition curve, when calculating the deformation energy of 
internal gear tooth in this article, the cantilever beam model is divided into involute and transition curve two parts for 
integration. Under the action of meshing force F, the deformation energy of tooth bending, shear, and axial 
compression can be expressed as: 

 

 
 

 

For equations (5), (6), and (7), the first term represents the deformation energy generated by force F on the 
involute tooth profile, and the second term represents the deformation energy generated by F on the transition curve. 
In the formula, dM and dN are the x-axis distances between the meshing point F and the tooth profile transition point 
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cutter tooth is non sharp (



 

 

M and the tooth root connection point N. MN N Md d d= − , X is the point on the involute tooth profile or transition 
curve. x is the horizontal distance between point F and point X, and h and hx are the distances from point F and point 
X on the tooth profile to the tooth symmetry line (x-axis), respectively. The specific values can be calculated using 
the following formula: 

 

                                                                                                                                   

                                                                                                                                                       

  
 

                                                                                                                                             

Where: 0 2/ zθ π= ， 2z is the number of teeth of the internal gear; 2δ
 
is

 
the center angle of the circle 

corresponding to the arc tooth width 2S  of the indexing circular groove for the internal gear, 2 2 2/S rδ = ; 

   

   
 

 
 

 
Fig. 2:

 
Geometric relationship between meshing force angle

 
fβ
 
and pressure angle

 
fα
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In the formula, B is the internal gear tooth width, is the angle between the meshing force F and the y-

axis, , It’s geometric relationship is shown in Fig. 2, where

fβ

'f f fβ α θ= +

2(1 )
EG

v
=

+ ,  
32
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( )2 2/ 2 2S m tgπ ξ α= + , m is the modulus of the internal gear, and is the displacement coefficient of internal 

gear; is the pressure angle of the dividing circle; fα is the pressure angle at point F. Similarly:
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For the second integral in equations (5), (6), and (7), which do not include involute related parameters, the 
stiffness can be solved by numerical integration based on the transition curve parameter equation which can be 

 

 

 

   

When ( )Hγ ϕ+  taking the maximum value 02( / 2 ' )π α− , the tangent point M(x2M, y2M) connecting the tooth 

profile involute and the transition curve is obtained. At this time, Hϕ  and 2ϕ  take the maximum value maxHϕ  and 

2maxϕ , and the coordinates of point N are（x2N, y2N）. The relevant parameter descriptions in the formula refer to the 
original literature, and there are: 

                                                                                                                                                

Where, the meaning of Mr  is as described in equation (13). 
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Where, rM is the vector radius of the transition point M of the internal gear tooth profile, rb2 represents the 
radius of the tooth ring base circle.

obtained by referring to Cao et al.[27]'s reference:

Fig. 3[27]: Transition curve of internal gear tooth profile



 

 

  

                             

Due to the complexity of using function integration calculations, this article adopts a numerical integration 
method to calculate the deformation energy of the gear teeth. For the bending deformation energy at the point of 
force F , there are: 

 

 

Where, /i Mx d m∆ =  ,  1 /j MNx d k∆ = , m, k are the number of micro segments divided by numerical 
integration of the involute tooth profile and transition curve, respectively. The larger the m and k, the higher the 
accuracy of numerical integration calculation, but the larger the computational amount. Therefore, it is necessary to 
choose appropriate values of m and k. 

The reciprocal of the bending stiffness at the meshing force F can be obtained from equation (1) as: 

 

Similarly, the reciprocal of the shear stiffness and compressive stiffness at the point of meshing force  F  can 
be obtained: 

  

  

The range of action of meshing point F is the surface position of the involute tooth profile between the top of 
the internal gear tooth and the transition point M of the tooth profile, [ ],f a Mα α α∈ , aα  is the pressure angle of the 
top of the internal gear tooth. 

The stiffness of a single tooth of an internal gear can be expressed as: 

                                         

The calculation method for the meshing stiffness of external gears can be found in many literatures. The 
single tooth stiffness of external gears 

extk in this article is based on precise tooth profiles and calculated using the 
Weber energy method in reference [15]. However, the calculation of external gear deformation here needs to correct 
an error in the original literature. When calculating single tooth deformation in the original literature, the total 
deformation included the calculation of contact deformation, because only the calculation of gear pair meshing 
deformation included the calculation of contact deformation. If each single tooth deformation calculation includes 
contact deformation, then two contact deformations are included in the total deformation of gear pair meshing, 
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For the second term in equations (5), (6), and (7), according to the transition curve equation（15）,

be obtained that: 1 2xh x= ,

it can 



 

 

resulting in a smaller calculation result of gear pair meshing stiffness, So the calculation of the single tooth stiffness 
of the external gear here does not include the influence of contact deformation. 

Based on the obtained meshing stiffness of the inner and outer teeth, derive the meshing stiffness of a 
single tooth pair of the inner meshing gear pair: 

                                                                                                                                 

Where: hk  is the contact stiffness of the gear teeth. According to Hertz’s contact deformation theory, 
assuming that the gear teeth are isotropic, the contact stiffness is only related to the parameters of the gear itself 
and does not change with the meshing position. And its calculation formula is: 

                                                                                                                                                     

Where, v is the Poisson's ratio. 

For meshing gears with contact ratio 1 ~ 2aε = , when two pairs of gears mesh simultaneously, the total 
effective meshing stiffness dK  is: 

                                                                                                                                                  

IV. Stiffness Analysis of Internal Meshing Gears with Root Cracks 

a) Modeling and Analysis of Gear Cracks 
Internal gear root cracks are usually caused by stress concentration caused by insufficient rim thickness in 

the design, improper processing, material defects and harsh working conditions etc. The internal gear tooth crack 
propagation model is shown in Fig. 4. According to Lewicki[21,22], crack propagation depends on the backup ratio, 
which is defined as the ratio of the thickness of the wheel rim to the height of the tooth. For gears with high backup 
ratios, the analysis predicts that crack propagation will follow the direction of tooth thickness (as shown by crack line 
1 in Fig. 4), while for gears with low backup ratios, crack propagation will propagate towards the ring gear along the 
direction of crack line 2 in Fig. 4. Initial crack angle αc also explains the direction of crack propagation. αc is defined 
as the intersection angle between the crack and the centerline of the gear, for low αc. even in high backup ratios, 
cracks will propagate through the ring gear, as shown αc2 in Fig. 4. Lewicki [28] pointed out that the crack propagation 
path is often smooth, continuous, and quite straight with only slight bending. 

 

Fig. 4: Influence of backup ratio on the propagation direction of gear cracks 

The presence of root cracks will reduce the effective tooth thickness, thereby reducing the stiffness of the 
gear tooth. In condition monitoring and fault diagnosis, it is necessary to detect gear faults as early as possible. 
Therefore, this article studies the root cracks of internal meshing gears in the initial stage, and the gear cracks do not 
extend to the centerline of the teeth. Assuming that the root crack is a straight line as shown in Fig. 5, located at the 
intersection point M of the involute and the transition curve, with a depth of qc and an inclination angle cα , When the 
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crack occurs, the radial compression stiffness calculation of the gear teeth is still the same as that of a normal gear.



 

 

The area inertia moment xI  and cross-sectional area Ax in the formula for calculating the bending stiffness and 
shear stiffness of the gear tooth will change. The formula is as follows: 

 

Fig. 5:
 
Schematic diagram of gear crack model
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In the formula, qch

 

is the distance from the crack endpoint to the centerline of the gear tooth. The 
prerequisite for applying the formula is:

 
cosM c cx d q α≤ + . When

 
cosM c cx d q α> + ,

 

xI and

 

Ax

 
will still be  

In reference[29], the propagation pattern of gear tooth cracks along the tooth width and tooth thickness 
directions was studied. As shown in Fig. 6[29], the crack depth qc

 

is

 

also uneven along the tooth width direction, 
which can be expressed as a function of the tooth width position x, i.e. q=q(x). When calculating the stiffness of the 
gear tooth, the gear tooth is cut into many thin slices along the tooth width direction. For each slice, the crack depth 
is considered a constant, and the stiffness of each slice can be calculated using formulas (20) to (22). In this article, 
the crack depth is set to be distributed in a parabolic shape along the tooth width, and the crack inclination angle cα

 

is a constant. The solid line curve in Fig.

 

6 represents the situation where the crack does not penetrate the tooth 
width, while the dashed line curve represents the situation where the crack penetrates the entire tooth width. Cracks 
can be defined as Crack (qc, Bc/B, q2, cα ),

 

and finally, by integrating and calculating the stiffness of all these sliced 
teeth, the stiffness of the entire faulty gear tooth can be obtained.

 

For the solid crack curve in Fig.

 

6, the crack depth equation is:

 

[ ]

[ ]

( )       ,

( ) 0                           0,

c
c c

c

c

x B B
q x q x B B B

B

q x x B B

 + −
= ∈ −


 = ∈ −

                                                                                                                (29)

 

For the dashed crack curve in Fig.

 

6, the crack depth equation is:

 

2 2
22
2( )

 

cq q
q x x q

B
+

= −
                                                                                                                                          (30)
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calculated according to equation (17).



 

 

 

Fig. 6[29]: Distribution model of gear cracks along the tooth width direction 

b) The Influence of Tooth Root Cracks on the Stiffness of Internal Meshing Gears 
Based on the above gear crack analysis model, calculate and study the influence of gear tooth crack size 

on gear mesh stiffness. The main parameters of the internal gear pair in the text are shown in Table 1. In order to 
simulate the propagation of internal gear cracks, the crack size Crack (qc, Bc/B, q2, cα ), is given in Table 2. Crack A 
in Table 2 is a healthy gear without any cracks; B and C represent smaller crack sizes, where the cracks do not 
penetrate the entire tooth width; Cases D, E, and F represent more extensive crack situations, where the cracks 
extend  further longitudinally along the entire tooth width.  

Table 1: Gear Parameters Table 

   
   

   

   

   

   

    

  
 

    
   

Table 2: Internal gear tooth crack size (Note: Crack parameters qc
 and q2, Unit: mm) 

Crack
 

A B C 

C(qc,Bc/B,q2,
 
αc) (0,0,0,0)

 
(1,0.7,0,80°)

 
(1.2,0.8,0,80°)

 

Crack
 

D E F 

C(qc,Bc/B,q2,
 
αc) (1.5,1,1.5,80°)

 
(2,1,1.5,80°)

 
(3,1,2,80°)

 

 

Fig.
 
7 shows the single tooth stiffness of the external gear in the gear pair, with the external gear being a 

healthy gear. Fig.
 
8 and Fig.

 
9 show the single tooth stiffness and single tooth pair meshing stiffness curves of 

internal gears with different crack sizes. The comprehensive meshing stiffness reflecting the alternating meshing 
process of single and double teeth pair is shown in Fig.

 
10. From the figures, it can be observed that whether it is the 

stiffness of a single tooth or the meshing stiffness of a pair of teeth, the stiffness curve decreases compared to 
healthy teeth when tooth cracks are introduced, and the decrease is faster with the extension of the cracks. Large 
cracks in D, E, and F will weaken the stiffness of the teeth more significantly. Here, the contact position of the gear 
pair moves along the tooth profile from the top of the ring gear to the root position; The maximum stiffness reduction 
of cracked teeth occurs at the top of the teeth where the cracked gear begins to mesh. This is because compared to 
the position closer to the root circle on the inner tooth profile, the tooth flexibility at the tooth tip circle is greater.

 
 

 
 
 

Parameter Name Pinion Ring gear
Number of teeth z1=17 z2=52

Pressure angle α(°) 25 25

Module (mm) 3 3

Displacement coefficient x1=0.296 x2=-0.16

Contact ratio εa 1.2112

Tooth width b(mm) 24 24

Input speed of driving wheel (rpm) 1000

Young's modulus E（N/mm2） 2.07e5 2.07e5
Poisson's ratio 0.3 0.3
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Fig. 8: Single tooth stiffness curve of internal gears with cracks of different sizes

Fig. 9: Single pair teeth meshing stiffness of cracked faulty gears

Fig. 7: Single tooth meshing stiffness curve of external gear
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Fig. 10: Comprehensive meshing stiffness of internal meshing gears with crack faults

V. Dynamic Analysis of Planetary Gear System with Crack Faults

a) Dynamics Equation of Planetary Gear System
Based on the meshing stiffness of the internal meshing gear pair with root cracks calculated earlier, 

establish a 2K planetary gear system dynamics model. Calculate the system dynamic response caused by the 
decrease in meshing stiffness of the gear ring with crack defects through the model. The model was established 
using the centralized mass parameter method, also known as the analytical model, initially developed by Lin and 
Parker[30].

The main components of a planetary system include the sun gear (s), ring gear (r), planetary carrier (c), and 
N planetary gears (p), each of which is considered a rigid body. The coordinates of each component are shown in 
Fig. 11, and each component has three degrees of freedom: two translations and one rotation. The translation 
coordinates of the sun gear, ring gear, and planetary carrier are xj, yj, (j=s,r,c),

 
and the translation coordinates of the 

planetary gear are ,n nζ η （1,2,...N), which are the radial and tangential deflection coordinates of the nth planetary 

gear measured relative to the rotation coordinate system ( , , , )O i j k
 

fixed on the planetary carrier at the origin O. 
The basic coordinate system ( , , , )O i j k

 
rotates at a constant planetary carrier angular velocity cω , xj (j=s,r,c) 

pointing towards the equilibrium position of planetary gear 1. The coordinates of the rotational degrees of freedom of 
the component are: , ( , , ,1,... )j j ju r j c r s Nθ= = , where jθ is the rotational deflection displacement, jr is the 
radius of the gear base circle or the radius of the planetary gear center distribution circle. Ψn is the circumferential 
position angle of the planetary gear relative to the rotational base vector i


, which is a fixed angle, where ψ1=0.
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Fig. 11: Planetary gear system dynamics model

The stiffness of each supporting bearing in the planetary system is modeled by linear springs, and the 
damping is introduced in parallel with the gear meshing stiffness and bearing support stiffness. snδ , esp(t), rnδ , erp(t)

represent the meshing displacement and transmission error models on the meshing lines of the sun-planetary gear 
group and the planet- ring gear group, respectively, and have:

1

1

sin cos sin cos ( )

cos sin cos sin ( )

( ) sin(2 )

( ) sin(2 )

rn n r n r r rn r rn r n rn

sn s sn s sn n s n s s n sn

sn sm esn sn
m

rn rm ern rn
m

x y u u e t

y x u u e t

e t E mf t

e t E mf t

δ ζ α η α ψ ψ

δ ψ ψ η α ζ α

π ξ

π ξ

∞

=

∞

=

= − − + + − +


= − − − + + +


= +


 = +


∑

∑
                                                                     

(31)

Where: ψsn＝ψn -αs，ψrn＝ψn +αr. ,s rα α are the working pressure angle of the sun-planet gear pair and 

planet-ring gearpair. smE , rmE , esnf , ernf , snξ , rnξ ,  are the tooth profile error modulus, meshing frequency, and 
meshing phase of the sun-planetary gear pair and the planetary-ring gear pair[31], respectively.

Establish a motion control equation system for planetary gear systems with 3N+9 degrees of freedom, and 
assemble the equation system to obtain the matrix equation of the system:

2( ) ( ) ( )c b m cMq G C q K K K q T F tω ω Ω+ + + + − = +                                                                              (32)

Where, 1 1 1[ , , , , , , , , , , , ,..., , , ],c c c r r r s s s N N Nq x y u x y u x y u u uζ η ζ η= / /q q q  are the displacement,
velocity, and acceleration of the degree of freedom vector, M is the mass matrix, G is the gyroscopic matrix, Kb is the 
bearing stiffness matrix, KΩ is the centripetal stiffness matrix, and mK (t) is the time-varying meshing stiffness 
matrix. T is the external torque, which is set as a constant here, and F (t) is the excitation force caused by 
transmission error. The damping matrix C is calculated from the formula 1(2 )T

i iC U diag Uρ ω− −= , where iρ is the 
modal damping ratio, and the natural frequency iω and orthogonal normalized modal matrix U are derived from a 
time invariant system that simplifies time-varying mesh stiffness to average values[32].
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Fig. 12: Shows the dynamic meshing displacement between the planetary gear and the ring gearwith root cracks,
(A, B, C, D, E, and F correspond to the crack sizes of six groups of gear teeth in Table 2, respectively)

The configuration parameters of the planetary gear system analyzed in this article are shown in Table 3.

Table 3: Planetary gear system configuration parameters

Gear mesh parameters Sun gear Planet gear(mesh with ring gear)  Ring gear
Number of teeth zs=20 zp=15 zr=52
Module (mm) 3 3 3
Teeth width (mm) 24 24 24
Pressure angle (deg)  28.22 21.33 21.33
Cutting tool tip radius (mm) 1.04 1.04 0.735

Base circle dia. (mm) 27.189 20.391 70.692
Outer dia. (mm) 95.91

System parameters
Sun gear Planet gear Ring gear carrier

Mass (kg) 1.52 0.3 3.23 0.513
I/r2 (kg) 0.926 0.183 1.4485 1.413
Bearing stiffness (N/m)                                       kcb=kpb=ksb=krb=108

Torsional stiffness (N/m) ksu=0; kpu=0 kru=109 kcu=0

Input speed（rpm）/power（W） 500/3000 —— —— ——

b) Dynamic Simulation of Planetary Gear System with Tooth Cracks

i. RMS and Kurtosis Indicator Statistics
The dynamic response of cracked gear tooth was simulated using a planetary dynamics model, and Fig. 12 

shows the dynamic meshing displacement curve between planetary gear 1 and the ring gear. Fig. 12A shows the 
dynamic response curve of a healthy gear. When the root crack of the ring gear is in the early stage, it is difficult to 
observe the pulse waveform it produces, as shown in Figures 12B and C. However, as the crack size expands, two 
evident pulse vibrations appear in Fig. 12E and Fig. 12F, with the interval between the two adjacent pulses precisely 
equal to the timeit takes for the planetary gear to mesh with the crack ring gear for one cycle (T=0.43s).
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—— ——



 
 

 
 

 

 
 
 
 
 
 
 
 
 
 

 

 

The statistical characteristics of vibration signal measurement are widely used in mechanical fault detection. 
Wu et al.[8] investigated the performance of some statistical indicators when cracks with different sizes and depths 
appeared in meshing gears. The results show that using RMS and Kurtosis indicators to detect the severity of crack 
propagation has good performance. This article applies RMS and Kurtosis indicators to analyze the dynamic 
characteristics exhibited by six sets of meshing displacement data and evaluates the severity of tooth root cracks.

RMS is the root mean square value of the vibration signal (describing the energy of the vibration signal), and 
its calculation formula is:

2

1

1 ( )
N

n
RMS x n

N =

= ∑
                                                                                                                                                           

(33)

Kurtosis describes the impact characteristics reflected in vibration signals, and its calculation formula is:

( )4

1

2
2

1

1 ( )

1 ( )

n N

n

n N

n

x n x
NKurtosis

x n
N

=

=

=

=

−
=

 
 
 

∑

∑
                                                                                                                                        

(34)

In the formula: x(n)—is the numerical value of the collected data; N—is the length of the collected data;

1

1 ( )
N

n
x x n

N =

= ∑
is the average value of the signal.

Fig. 13 shows the trend of calculated RMS and Kurtosis indices varying with crack propagation, with crack 
indices 1~6 corresponding to six root crack sizes A, B, C, D, E, and F. From the graph results, it can be seen that 
for the data in groups A, B, C, and D as shown in Fig. 13, the displacement fluctuations caused by cracks are not 
significant, and the RMS and Kurtosis indicators are also relatively flat. Correspondingly, the impact fluctuations of 
the data in groups E and F in Fig. 13 are more prominent, and the statistical indicators also show a clear change 
trend. RMS shows an upward trend, while Kurtosis indicators show a downward trend. This pattern is similar to the 
simulation results of L. Cui et al.[33].

Fig. 13: RMS and Kurtosis indices vary with crack propagation

ii. Spectrum Analysis
1) FFT spectrum and Zoom FFT analysis

From the dynamic response of planetary-ring gear group meshing in Fig. 12, it can be seen that when a root 
crack is generated in the ring gear, a pulse vibration will occur. However, when the crack size is small, it is difficult to 
detect its pulse characteristics in the time domain coordinates. As the crack size expands, obvious pulse vibration 
will be discovered. In addition to analyzing the characteristics of vibration signals in the time domain, observing their 
dynamic characteristics in the frequency domain is also an effective way to demonstrate the influence of tooth root 
cracks.

In order to better analyze the vibration response, calculate the various characteristic frequencies of the 
planetary system according to equation (35):
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(35)

The calculated frequency data of the planetary system are shown in Table 4, where the frequency of crack 
faults is the planetary carrier rotation frequency fc=1/T=2.315Hz.

Table 4: Characteristic frequencies of planetary gear systems

Sun gear rotation 
frequency fs

Planetary carrier rotation 
frequency fc

Planetary gear rotation 
frequency fp

Planetary-ring gear 
meshing frequency fmesh

8.333Hz 2.315Hz 8.025 Hz 120.37 Hz

According to the resolution ratio formula /sf f N∆ = , under the condition of a specific sampling frequency 
fs, increasing the number of FFT sampling points N can reduce the resolution f∆ . Therefore, here, the vibration 
signal time history in Fig. 12 is extended (increased by N) to be greater than two meshing periods (9.3s). Taking the 
crack response curve in Fig. 12B as an example of frequency spectrum analysis, the results are shown in Fig. 14. 
The time-domain data in Fig. 14 is formed by eliminating trend terms or normalizing the original data. In its spectrum, 
the prominent frequency amplitude is the amplitude of the meshing frequency fmesh=120.8Hz and its doubling 
spectrum. There are also many sidebands around the meshing fundamental frequency and its harmonics, as shown 
in Fig. 15(a). Fig. 15(b) shows an enlarged image of the low-frequency part of the spectrum, but due to its low 
resolution (0.73Hz), it is not possible to clearly display the fc and its harmonic lines.

In order to extract accurate spectral information, Zoom FFT analysis is performed on the frequency band of 
the 0-500Hz component to accurately determine the fault frequency and meshing frequency sideband information. 
The meshing frequency fmesh is accurate to 120.4Hz. The enlarged images of the fault low-frequency band fc and 
meshing frequency fmesh sideband information are shown in Figures 16 to 21 (flaw1 to flaw6 correspond to the crack 
groups A to F in Table 2, respectively). It can be seen from the figure that due to the interference of spectral clutter, 
the peak characteristics of the planetary carrier rotation frequency (fault frequency band fc) cannot be accurately 
displayed when healthy teeth (flaw1) and minior-sized cracks (flaw2) are present. As the crack size increases, the 
peak amplitude of the fault frequency and its harmonics gradually becomes apparent and increases. Chen et al.[20]

argue that the fundamental frequency of gear meshing and its harmonics are difficult to be affected by cracks. For 
those sidebands, it can be seen from the Zoomed spectrum that there are no fault frequencies around the meshing 
frequency, and their sidebands amplitudes (121.9Hz and 123Hz) do not change with the increase of crack size. For 
simplicity, only in Fig. 16b and Fig. 21b the meshing frequency fmesh and its side frequency information are displayed.
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Fig. 14: Frequency domain analysis of meshing curve with B-group size (flaw2) crack

Fig. 15: Enlarged frequency domain analysis of flaw2 crack meshing

Fig. 16: Flaw1 Crack response spectrum refinement and enlargement

(a) Enlarged low-frequency part of flaw1 crack   
response

(b) Planetary-ring gear meshing frequency fmesh and

 

its side frequency

(a) Planetary-ring gear meshing frequency fmesh and its 
side frequency

(b) Enlarged image of low-frequency part of flaw2   
crack response
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Fig. 21: Flaw6 crack response spectrum refinement and enlargement

2) Cepstrum Analysis
Cepstrum analysis, also known as secondary spectrum analysis, is equivalent to performing logarithmic 

weighting on the signal spectrum, resulting in higher weighting of low amplitude frequency components, which is 
more conducive to extracting and analyzing periodic components in the signal spectrum[34]. Cepstrum can simplify 
the family of sideband spectral lines on the original spectrum into a single discrete spectral line, and its spectral line 
height reflects the size of the periodic component of the power spectrum[35].

In the FFT spectrum analysis mentioned above, due to the interference of spectral clutter, it isn’t easy to 
detect the information of feature frequency fc in the spectrum of healthy tooth and tooth with minior root cracks 
(flaw2). Therefore, further application of cepstrum analysis and identification of fault frequency fc information is 
needed. The simulation results are shown in Fig. 22 to Fig. 27. Unlike the FFT spectrogram, the cepstral 
spectrogram is based on the time t as the x-axis, where the reciprocal 1/t of the t coordinate scale represents the 
frequency value at that coordinate. The frequency component identified at t=0.00833 is f=1/0.00833=120Hz, which 
is the meshing frequency fmesh. The identified t=0.4321 corresponds to f=1/0.4321=2.314Hz, which is the 
component information of the frequency fc. The information of the characteristic frequency fc was identified through 
cepstral analysis. As the size of the root crack expands, the amplitude of the fault frequency fc also increases 
accordingly. The amplitude data of fc in the cepstral spectrum was extracted and plotted in Fig. 28. The trend of the 
cepstral amplitude response of fc with crack propagation can be intuitively seen, which is consistent with the 

Fig. 17: Enlarged low-frequency part of flaw2 crack 
response

Fig. 18: Enlarged low-frequency part of flaw3 crack 
response

Fig. 19: Enlarged low-frequency part of flaw4 crack 
response

Fig. 20: Enlarged low-frequency part of flaw5 crack 
response

(a) Enlarged image of the low-frequency part of flaw6 
crack response

(b) Planetary-ring gear meshing frequency fmesh and its 
side frequency
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Fig. 24: Flaw3 crack response cepstrum analysis       Fig. 25: Flaw4 crack response cepstrum analysis

Fig. 26: Flaw5 crack response cepstrum analysis Fig. 27: Flaw6 crack response cepstrum analysis

Fig. 28: fc recpstrum amplitude variation with crack propagation

performance trend of the RMS index mentioned above. This further verifies the consistency of the essential 

Fig. 22: Flaw1 crack response cepstrum analysis     Fig. 23: Flaw2 crack response cepstrum analysis

characteristics of time-domain and frequency-domain signal analysis.

VI. Conclusion

Based on the principle of potential energy, the time-varying meshing stiffness of internal gears was derived, 
and the influence of root cracks on the meshing stiffness of internal gears was studied. Based on the meshing 
stiffness model of internal gear pairs with root cracks, a planetary gear system dynamics model is established to 
study the influence of cracks on the dynamic response of planetary gear sets. Using vibration statistical indicators to 
evaluate the severity of tooth root cracks, and applying FFT spectrum, ZoomFFT analysis and cepstrum analysis to 
extract and analyze the dynamic response characteristics of cracks.
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(1) The internal gear cantilever beam model is divided into two parts: involute and transition curves for numerical 
integration. The transition curve part is calculated using ideal parameterized equations, which can accurately 
calculate the tooth deformation energy and improve the accuracy of stiffness calculation. 

(2) Gear cracks can weaken and reduce the meshing stiffness, further causing impact vibration of the planetary 
gear set. As the crack size expands, the impact vibration caused by the fluctuation of meshing stiffness will 
become more severe. 

(3) In the vibration spectrum of planetary gear systems, there will be relatively mixed spectra. In the initial stage of 
crack occurrence, the application of FFT spectrum and its refined analysis cannot observe these weak vibration 
components. Cepstrum analysis can easily extract the amplitude information of the characteristic frequency fc, 
and as the crack size increases, its amplitude also shows a significant growth trend. The analysis results are 
consistent with the trend judgment of crack propagation using RMS indicators. 
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