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Abstract- Leakage monitoring in flow lines and pipelines is highly important in gas plants due to 
the relevance of such a system to safety and efficiency. This work will, therefore, attempt to 
resolve the uncertainties in flow monitoring by integrating machine learning techniques in 
conducting sensitivity tests on real-time detection mechanisms. In this paper, the effectiveness of 
pressure-based indicators compared with volume changes has been considered with variations 
in flow rate and lifting processes. The findings obtained showed that the conventional 
assumption of the leakage being represented by the difference between initial and final gas 
volumes is unsatisfactory, especially during the initial pumping phase where inflow rates may 
appear to be less than outflow rates because of the purging of residual gases. In addition, the 
ramp-up and plateau stages exhibited a fair amount of variation in inflow and outflow pressure 
readings, further adding to the leak detection uncertainties. It has, therefore, been deduced that 
a variable tolerance window will be effective for leak detection based on the differential pressure 
data analysis between the inlet and outlet gauges. 
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Real-Time Gas Flow Leakage Detection: A 
Machine Learning Approach to Sensitivity 

and Uncertainty Analysis
Ifeanyi Eddy Okoh α, Godsday Idanegbe Usiabulu σ & Ndidi Lucia Okoh ρ

Abstract- Leakage monitoring in flow lines and pipelines is 
highly important in gas plants due to the relevance of such a 
system to safety and efficiency. This work will, therefore, 
attempt to resolve the uncertainties in flow monitoring by 
integrating machine learning techniques in conducting 
sensitivity tests on real-time detection mechanisms. In this 
paper, the effectiveness of pressure-based indicators 
compared with volume changes has been considered with 
variations in flow rate and lifting processes. The findings 
obtained showed that the conventional assumption of the 
leakage being represented by the difference between initial 
and final gas volumes is unsatisfactory, especially during the 
initial pumping phase where inflow rates may appear to be 
less than outflow rates because of the purging of residual 
gases. In addition, the ramp-up and plateau stages exhibited a 
fair amount of variation in inflow and outflow pressure 
readings, further adding to the leak detection uncertainties. It 
has, therefore, been deduced that a variable tolerance window 
will be effective for leak detection based on the differential 
pressure data analysis between the inlet and outlet gauges. 
According to the result of the data analysis, the population 
variance is 5.38; the sample variance varies across different 
stages of operation, while the maximum tolerance and 
pressure are 0.166 and 7.9 bars, respectively. The work 
automates leak detection and simulates the range of 
variations, showing the potentiality of AI-ML modeling in 
enhancing real-world applications. In this work, we are 
pointing out how machine learning integration may enable a 
completely new way to define the variable tolerance windows 
that dramatically improve conventional leak detection. 
Keywords: tolerance, lag time, leak detection, sensors, 
flow analysis. 

I. Introduction 

as flow leakage monitoring is critical for gas 
system safety and efficiency. By continuously 
observing the process for leaks, possible 

hazards can be quickly identified and corrected to 
minimize accident risks and environmental damage in 
the case of leakage occurrence. References include 
Freeze and Cherry (1979), Arnaldos et al. (1998), Appah 
et  al.  (2021),  Bariha  et  al.  (2016),  and  Gibson  et  al. 
 
Author α: First Hydrocarbon Nigeria Limited FHN 26 Block W Shell 
Estate Edjeba, Delta State. 
Author σ: World Bank African Center of Excellence, Center for Oilfield 
Chemicals and Research, University of Port Harcourt, Port Harcourt, 
Nigeria. e-mail: godsdayusiabulu@gmail.com 
Author ρ: Department of Environmental Pollution and Control, Federal 
University of Petroleum Resources Effurun, Delta State. 

(2006). Advanced sensors and monitoring equipment 
measure gas flow while searching for deviations that 
may indicate leakage. 

Sensitive analytical technique that delivers the 
minute change in flow rates forms an integral part of any 
successful gas leakage monitoring. This many times 
involves uncertainty and sensitivity analysis that shows 
how factors like pressure, temperature, and flow 
dynamics will actually affect leak detection accuracy. It 
is by these analytic methods that optimization of gas 
flow monitoring systems is done to reduce false alarms 
and maximize the detection of true leaks. 

Moreover, simulation and animation play a vital 
role in enhancing gas flow leakage monitoring (Hirsch 
and Agassi, 2010). By simulating various scenarios and 
visually representing the behavior of gas flow under 
different conditions, operators gain valuable insights into 
potential leak locations and the monitoring system's 
response. This visual representation aids in training 
personnel, refining monitoring algorithms, and 
enhancing overall system performance, ultimately 
contributing to improved safety and reliability in gas flow 
management. 

Despite the established importance of 
monitoring gas leakage, huge gaps exist within the 
current research in respect to integrating advanced 
simulation techniques and their practical implications 
related to real-time monitoring systems. This work, 
therefore, will focus on addressing such shortcomings 
by accounting for the uncertainties involved in the 
leakage monitoring process of gas flow and sensitivity 
analysis of factors affecting the accuracy of detection. 
The aim was to: 

1. Investigate the uncertainties associated with gas 
flow leakage monitoring methods. 

2. Analyze the sensitivity of different monitoring 
techniques in detecting gas leaks. 

3. Develop simulations of gas flow leakage scenarios 
for testing and analysis. 

4. Create animations of test results to visualize and 
understand the behaviour of gas leaks. 

5. Assess the effectiveness and reliability of different 
monitoring approaches through comprehensive 
analysis and evaluation. 
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6. To identify potential improvements or optimizations 
for existing gas flow leakage monitoring systems. 

7. To provide recommendations for enhancing the 
accuracy and efficiency of gas flow leakage 
monitoring processes based on the research 
findings. 

In-depth analysis of the factors contributing to 
uncertainty and sensitivity can help in the identification 
of potential areas for improvement (Vı́lchez, 1998; Todd 
et al., 2004; Usiabulu et al., 2022). This research 
endeavoured to advance the knowledge and 
methodologies associated with gas flow leakage 
monitoring. 

a) Data and Method 
The study is from a simulation of gas flow 

measurement of pressure and time, in a case JK-52 gas 
flow station. The gas flow leakage monitoring involves 
process used in this work several key steps. 

• Pressure and Time data was recorded in a case gas 
flow station 

• The gas flow monitoring system was calibrated and 
validated using standard gauges. 

• A comprehensive simulation model was developed 
to represent different scenarios of gas flow and 
potential leakages. 

• This model takes into account various parameters 
such as pressure differentials, flow velocities, and 
potential sources of leaks. 

• Detection was based of pressure drops more than 
the uncertainty of pressure differentials 

The use of pressure-time based data was 
intended to mitigate some of the limitations associated 
with manual gas leak or volume-based detection (Bear 
et al, 1972; Powers et al., 2000; Sandsten et al., 2000; 
2004; Stothard et al., 2004; Svanberg, 2002), including: 
1. Gas is not visible and leakage cannot be seen by 

physical observation 
2. Gas may have a turbulent flow and may not obey 

flow principles (such as Darcy Law) 
3. Gas expansion results in inconsistent volume 

estimation during flow 
4. Gas may be dry or wet and has different densities/ 

primary and secondary gases have different 
degrees of wettability 

5. Gas (volume) is highly impacted by temperature 
and pressure. 

These limitations of volume-based gas leak 
detection are therefore mitigated by the pressure-based 
gas leak detection model used in the current work 
(Lohberger et al., 2004, Montiel et al., 1998, Nosike, 
2009; 2020). For the pressure-based detection method, 
the estimation of gas volume loss was achieved by 
normalising the pressure reading in the gauge at the 
regulator. The change in pressure in the gauge` was 

calibrated against the change in weight or change in 
volume of already quantified gas in the system. 

b) Data Collection and Preprocessing 
The data collection process involved 

systematically recording pressure and time data, along 
with other relevant events during the gas flow. This data 
was gathered in various formats, including numerical, 
categorical, and textual, to ensure comprehensive 
representation of the flow dynamics. Specialized tools, 
such as digital pressure gauges and automated logging 
systems, were employed to capture real-time data from 
well gauges and store it in a centralized computer 
system (Wojciech and Janusz, 2012; Chaki et al., 2018; 
Zukang et al., 2021). For instance, high-precision 
pressure sensors were utilized to measure fluctuations, 
while data logging software facilitated the collection and 
organization of the recorded information. 

Once data was collected, the next step involved 
preprocessing, or data wrangling, to enhance data 
quality for analysis. This stage included several critical 
tasks: 

1. Data Cleaning: Inconsistencies, errors, and missing 
values were identified and addressed. Missing 
values were handled using imputation methods, 
such as mean substitution for numerical data or the 
mode for categorical data, ensuring the dataset 
remained robust. 

2. Data Transformation: Raw data was transformed into 
a suitable format for analysis. This included 
normalization techniques, such as min-max scaling, 
to bring numerical values within a consistent range, 
as well as encoding categorical variables to 
facilitate their inclusion in analytical models. 

3. Feature Selection and Extraction: To reduce 
dimensionality, feature selection methods were 
implemented to focus on the most relevant 
attributes. Techniques such as Recursive Feature 
Elimination (RFE) were applied to enhance model 
performance by retaining only those features that 
significantly contributed to the analysis (Chuka, 
2016; Lammel et al., 2021). 

To ensure the accuracy and completeness of 
the collected data prior to preprocessing, quality 
assurance measures were implemented. These included 
cross-referencing data logs with sensor readings to 
verify consistency and conducting preliminary analyses 
to identify outliers or anomalies. 

By employing these preprocessing techniques, 
the data was refined to align with the research 
objectives, particularly in preparing it for simulation and 
sensitivity analysis. This systematic approach not only 
ensured data quality but also enhanced the reliability of 
subsequent analyses. 
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c) Exploratory Data Analysis 
The data used for this study included an ascii 

file, extracted as iESogV1.csv for the purpose of this 
study. An initial automated AI/ML process was used to 
explore the data before the detailed analysis shown in 
the subsequent sections. The key observations from the 
exploratory data analysis (EDA) and the range of the 
dataset are as below: 

o The dataset contains 8 columns and 1012 rows. 
o The columns represent different measurements of 

Time (s), Pr_final, Pr_initial, Tolerance, Min, Max, 
and Diff_Pres (bar), along with event markers in the 
Events column. 

o The Pr_final, Pr_initial, and Tolerance columns have 
some missing values (~11 missing entries each). 

o The Events column has a substantial number of 
missing values, with only 4 non-null entries. 

o Pr_final and Pr_initial have a wide range (minimum 
around 1.5 and maximum reaching up to 38.5). 

o The Tolerance values range from 0 to 1.5. 
o Diff_Pres (bar) has a mean of around 3.53 but 

ranges from 0 to 9. 
o The Min and Max values are constant (0.8 and 1.2, 

respectively), which implies they can only be used 
as cut-offs for other values during further analysis. 

o There is a strong positive correlation between 
Pr_final and Pr_initial (0.98), as well as between 
Time (s) and both pressure values (above 0.89). 

o Tolerance is moderately correlated with these 
pressure values as well. 

o The Diff_Pres (bar) shows a moderate correlation 
with both Pr_initial (0.57) and Pr_final (0.46). 

o Histograms of the numerical data show a skewed 
distribution for some variables like Pr_final and 
Pr_initial, with many observations concentrated in 
the lower ranges. 

 

The observations and data details are shown in Figure 1. 

 

Figure 1: Visualisation of data variation and distribution, showing variation

The data was further analyzed by calculating the 
variance and standard deviation for each column, and 
this was achieved using Python Programming and the 
code is as below: 
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# Calculate the variance and standard deviation for each numerical column 
variance = df.var() 
std_dev = df.std() 
# Create a DataFrame to display the results 
stats_df = pd.DataFrame({ 
    'Variance': variance, 
    'Standard Deviation': std_dev 
}) 
import ace_tools as tools; tools.display_dataframe_to_user(name="Variance and Standard Deviation of 
Columns", dataframe=stats_df) 

The uncertainty analysis was conducted by 
assessing the impact of variations in input and output 
parameters on the monitoring system's performance. 
Sensitivity analysis was then carried out to identify which 
input parameters have the most significant impact 
creating uncertainty on leakage detection. This helps in 
understanding the critical factors affecting the reliability 
and accuracy of the monitoring system, including such 
factors as lag time and initial purge in the gas system. 

The test results, both simulated and actual, 
were animated to visualize the behavior of the gas flow 
monitoring system under different conditions. This 
allowed for a better understanding of how the system 
responded to variations inflow and outflow gas rates 
and potential leakages. 

II. JK-52 Gas Flow Leakage Monitoring 

This process involved using advanced sensors 
and monitoring equipment to measure the gas flow and 
identify deviations that may indicate a leak, in the JK-52 
Gas Plant. The pressure values in both the inlet and 
outlet gauges were recorded. By simulating different 

scenarios and visually representing the behaviour of gas 
flow under these conditions, valuable insights were 
gained into the potential leak locations and the 
monitoring system's response. This visual representation 
helped in training personnel, refining monitoring 
algorithms, and improving overall system performance, 
contributing to enhanced safety and reliability in the gas 
flow management. 

a) Gas Flow in Plant and Data Acquisition 
In the gas plant of study, the effluent (a mix up 

of water, oil and gas) is pumped into the gas plant from 
nearby oil well. Crude stored in a Floating Production 
Storage and Offloading Offshore may also tapped from 
a Tanker offloading/lifting buoy and transported to the 
Gas Plant. There is also provision for piped crude from 
multiple well clusters in the field to ensure constant 
source of hydrocarbon. The crude passes through a 
water-oil-and-gas separator, a purifier or a compressor 
as part of the refining or treatment process before 
delivering the final gas product (Figure 2). 

 

Figure 2: Gas flow Process in a Gas Plant showing the position of the inlet and outlet pressure gauges
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The flow phases undergo two processes: 

Process 1: The gas plant stabilises and strips lighter gas 
or condensates to produce purified dry gas ready as 
end product. 

Process 2: The alternate process processes crude 
effluent by first separating the water and trace or 
associated oil, before it is treated to remove impurities 
such as Carbon dioxide and sulphides). The resulting 
gas is then compressed or liquified (Liquified Natural 
Gas – LNG) for storage and eventual supply. 

In both cases, initial sensors and gauges are 
placed at the upstream (sourcing section) and at the 
downstream (receiving section) of the products. Inlet 
and outlet pressure gauges are placed across intervals 
with tendency of gas leak. 

The readings in the gauges in are recorded with 
time, with an initial phase of pumping, purging any 
existing gas in the system. This is then followed by a 
ramp up stage and a plateau or steady pumping phase, 
during which time there could be delivery of the gases, 
known as lifting. 

b) Variance Dependent Probability of Occurrence for 
Leakage 

The data showed that probability of leakage 
occurring was higher in the plateau stage, when the gas 
system had optimal pressure. Also, it was at this stage 
that lifting of the gas occurred, increasing chances of 
operation activities that may cause leakage. 

Table 1: Population variance for the various data and 
their distribution 

Parameter Std Deviation Variance 
Time (s) 1544.834 2386512 
Pr_final 11.28979 127.4594 
Pr_initial 14.63077 214.0595 

Tolerance 0.421062 0.177293 
Min 1.11E-16 1.23E-32 
Max 2.22E-16 4.94E-32 

Diff_Pres (bar) 2.320681 5.385558 
 

This automated variance computation was 
achieved using Python Programming, and the code is 
as below: 

# Calculate the variance and standard deviation for each numerical column 
variance = df.var() 
std_dev = df.std() 
 
# Create a DataFrame to display the results 
stats_df = pd.DataFrame({ 
    'Variance': variance, 
    'Standard Deviation': std_dev 
}) 
import ace_tools as tools; tools.display_dataframe_to_user(name="Variance and Standard Deviation of 
Columns", dataframe=stats_df) 

 

 

 

  

 

The initial plot of the data in Excel and the 
Pressure-Time plot using Python code (later shown in 
Figure 7), revealed a data trend that goes from an initial 
lower horizontal (residual) phase, through and inclined 
(ramp-up) phase, to an upper (plateau) phase  
(illustrated in Figure 3). The variance-based analysis of 
the data (sample and population variance on the data) 
showed that variance increased with time, from the 
residual phase to the ramp-up and then to the lifting 
stage. This trend and the associated variances are 
illustrated in Figure 3. 
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Variance analysis for the overall population 
(Table 1) did not show the impact of variation for the 
three phases of pumping. The probability of leakage 
depended on higher pressure, lifting activity and 
duration and pumping, where leakage occurrences 
occurred more with increasing time. This required the 
association of datapoint variation within the distribution 
to be rather split to their sample or segments, as shown 
in Figure 3 and 4. Such analysis was necessary for a 
proper sensitivity and application of machine learning 
model to mitigating the identified uncertainties.

c) Sensitivity Analysis
Sensitivity analysis was used to study the 

relationship between input and output gas values, where 
the parameters in a model were varied, to see how the 
changes in input values can affect the outcomes. Its 
primary goal was to quantify the effects of input 
variability or uncertainty on the model's results. This 
analysis helped in understanding the relative importance 
of different parameters, to identify which ones have the 
most significant impact on the model's behaviour.



 

Figure 3: Evolution of variance in the data distribution

The standard deviation-based analysis of the 
data (sample and population standard deviation on the 
data) showed that standard deviation increased with 

time, from the residual phase to the ramp-up and then 
to the lifting stage. This trend and the associated 
variances are illustrated in Figure 4. 

 

Figure 4: Evolution of standard deviation in the data distribution

This categorization of the data was important in 
choosing the machine learning model, as a global used 
of logistic regression, initially suggested from 
exploratory data analysis, did not give a high score 
prediction. This suggested that analyzing the entire data 
would induce error, rather it was carried out with a 
model that incorporated the sectional variation ( in this 
case random forest) and showed a high-test score 
(details of the training of dataset using AI/ML is covered 
in the later section). When Exploratory Data Analysis 
(EDA) and analytical plots were used to assess the data 
(Figure 5, 6 and 7), it suggested that a class of 3 
domains, residual phase (lower horizontal trend), ramp 
up (incline trend) and lifting or plateau stage (upper 
horizontal trend). As such, the data was segmented and 
machine learning model was applied. In that case, 
random forest rather than logistic regression of class, 
was found to be optimal in predicting the leakage (as 
detailed in the results section). 

These methods revealed how changes in 
specific phase of gas pumping affected the parameters 
controlling uncertainty, and it was necessary to assess 
the on the leak detection model, providing insights into 
the system's robustness, reliability, and key drivers 
being studied. Ultimately, the leakage sensitivity analysis 

served as a vital tool for assessing the robustness and 
complex flow systems of the gas plant. 

d) Uncertainty Analysis 
The uncertainty analysis involved the 

identification and quantification of potential sources of 
error or variability within the gas flow system under 
investigation. In the context of gas flow leakage 
monitoring in the case study, JK 52 gas plant, 
uncertainty analysis was essential for understanding the 
limitations and potential biases in the measurement and 
simulation processes. Two type of uncertainty sources 
were identified: uncertainty due to device and due to 
nature of data. 
Among the factors of uncertainty were. 

1. Gauge Quality 
2. Time Device 
3. Lifting timing 
4. Alarm Systems 
5. Volume to Pressure Calibrations 

The impact of these devices and the data trend 
resulting from them are shown in the scatterplots in 
Figure 5. They provided the tolerance window for the 
evaluation of uncertainties and eventually leakage. 
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A.  Diff. in Pressure vs Time                             B.   Tolerance vs Time 

Figure 5: Basic scatter plot to show data tends and variation with time

The impact of possible variation in any of these 
parameters were related to different section of the flow 
system, and statistical methods were used to 
characterize the distribution of potential errors or 
variability. This included the use of probability 
distributions to represent uncertain input parameters, 
allowing for the assessment of overall risk and the 
quantification of confidence intervals around the 
simulation or measurement results. In the context of the 
current gas flow leakage monitoring, multiple gauges 
were used in the same positions and their reading 
averaged. 

Other causes of uncertainty, more related to 
nature of the data, include: 

1. Missing values/few non-null values 
2. Mixture of numeric and object or string data types 
3. Categorical columns without rows 
4. Potential outliers due to artifacts 

5. Skewed distributions due columns with few unique 
values within intervals 

6. Negative pressure differential, nominalized for 
statistical computation 

7. Low or no correlation among intervals 
8. Complex dependencies among variables 
9. Certain events causing sudden change in a 

dependent variable 
10. Clustering of datapoints at intervals 

These creates patterns and anomalies not 
inherent in the original database, but due to nature of 
the data collection and structure. Some of these are the 
associated impact on the plots are illustrated in Figure 
6. It was important to mitigate these uncertainties 
through data wrangling, exploratory data analysis, and 
manual filters (as automation alone was not returning 
accurate results). Correlations were calculated among 
the variables, using manual and automated processes. 

 

A.  Jointplot of Diff. in Pressure vs  Time                 B. Lmplot of Time against Diff. in Pressure  

Figure 6: Subplots from exploratory data analysis

The correlation matrices were visualized to aid 
with insight on the use of the automated process, (with 

their codes in the appendix). The parameters identified 
to be problematic were then varied and the changes 
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resulting from subjecting these input devices on 
parameters were used to ascertain variations within their 
expected ranges and observing the distributions of the 
uncertain input parameters, thereby facilitating an 
evaluation of overall risk and the quantification of 
confidence intervals surrounding the simulation or 
measurement outcomes. 

III. Leakage Detection Sensitivity Tests 

a) Scenario for Leakage Detection 
Because pressure drop may occur due to 

normal fluctuations in the gauge reading, it was 

important to assess the normal variability, taking the 
noted uncertainty into consideration. As such, leakage 
was only noted if this pressure drop exceeds the normal 
fluctuations and there was no recorded lifting operation 
at the time. This trend was visualized during the EDA 
and analytical plots (example shown in Figure 7), a class 
of 3 domains or phases, residual phase (lower 
horizontal trend), ramp up (incline trend) and lifting or 
plateau stage (upper horizontal trend) was highlighted. 

 
 

 

Figure 7: Visualisation of Pressure versus Time Data showing the need for sensitivity on leakage detection

Pressure drop due to leakage is higher at 
different phases of the gas pumping and flow across the 
system, which usually starts from a gradual slow 
pumping to a buildup to the final high rate delivery of 
flow in the system. Below are the range of the stages or 
phases, over time durations. 

Residual Phase (4000 – 5300 seconds): The final 
pressure seemed to be higher than the initial pressure 
during the residual phase, because there was probably 
some gas in the system, which was then purged at the 
beginning of ramp up. 

Ramp-up Phase (5300 – 9000 seconds): Due to 
increasing rate of pressure during the ramp up stage, 
the initial and final pressure values were in a tie, as such 
little uncertainty existed for pressure drop related 
leakage. 
 

Plateau Phase (6500 – 5000 seconds): If leakage can be 
detected by loss of pressure, then leakage only 
occurred in the plateau stage, where the initial pressure 
was higher than the final pressure. 

However, not all drop in pressure is due to 
leakage. The principle that pressure drop indicated 
leakage would not suffice where other factors, including 
fluctuation in gage reading and delivery of gas, created 
uncertainty that requires further senility analysis to 
eliminate false alarm of leakage. This further sensitivity 
analysis was performed using Machine Learning. 

b) Application of Machine Learning and Artificial 
Intelligence 

Machine learning and artificial intelligence 
techniques were applied in the gas flow monitoring 
(Potdar and Kinnerkar, 2013). This is achieved using 
recorded pressure-time data, which allowed the 
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computer to learn and make predictions or decisions 
without being explicitly programmed to perform the task 
each time. Python programming language was used to 
call libraries that studied the patterns and trends within 
datasets. The following are the Python programming 
and steps: 

 Python IDEs (Jupyter and Pycharm were used) 
 Among the libraries used are: Pandas, Numpy and 

Matplotlib 
 PiP was used to install SciencePlots 
 The Input Data set was set as a .CSV file for the 

initial coding 
 The sample data was used to train machine on 

tolerance 
 The data was cleaned-off for artefacts before 

plotting on Python development environment  
 The visualisation was used to define the parameters 

of display including colour and labelling 
 The early flow stages when there were still residual 

gases in the system and when flow was ramped up 
were used to determine the tolerance 

 This tolerance will vary and machine learning helps 
to determine it with different and more incoming 
data 

 The available data is split to train the machine and 
build regression models which ware tested on the 
training dataset 

 The best regression, in this case random forest, 
provided the most accurate result and is retained for 
the given case study 

 The test score between the training accuracy and 
the test accuracy is shown to confirm prediction 

 The process is automated to work in real-time and 
the animation generated for the presentation 
purposes 

 This involves importing and running the useful 
libraries and plotting styles to show the arrays and 
follow the sequences of the analytics  

 These were used for repartition and enumeration of 
the animation, which appended the plot parameters 
including colour and labelling 

 The annotation for gas collection or lifting is set as is 
different for that of leakage, where leak is indicated 
when pressure drop is eventless/or causeless 

 Expected streaming or real-time data is set to 
trigger colour code alarm in the system when leak 
occurs. 

The codes are presented in the appendix. 
Through continuous learning and exposure to 

new data, the machine learning models was 
programmed to refine their predictions and 
recommendations, leading to more accurate and 
efficient outcomes with increasing large data from the 
gas flow measurement in JK 52 gas plant. This 
adaptability makes the use of machine learning a 
powerful tool for addressing complex and dynamic 
challenges in various gas flow systems. 

c) Machine Learning Algorithms in Uncertainty and 
Sensitivity Analysis 

Machine learning algorithms can efficiently 
handle large and complex gas flow datasets, making 
them suitable for performing sensitivity analysis across 
various leak detection applications. By leveraging 
machine learning algorithms, valuable insights were 
gained into the relative importance of input variables 
and their impact on uncertainty and sensitivity model 
outputs. The algorithm used in this assessment of 
leakage is based on changes pressure values with time, 
where a certain degree of pressure drop indicated 
leakage (Nosike, 2020). Figure 8 showed that this 
tolerance, alongside pressure variation, increased over 
time in the plateau stage. 

 

Figure 8: Relationship between Pressure Difference and Tolerance
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While there was a general scatter at the lower 
pressure values, which corresponded with lower values 
of tolerance, there was a markable increase in tolerance 
window with increasing pressure. 

The implication of this correlation is that the 
window for ascertaining which drop is pressure could be 
ascribed to leakage will also increase with time. This 
meant that the same tolerance window could not be 
applied in the leak detection for all the stages; the 

window widened as inflow to outflow pressure variation 
increased, up to ± 0.166 Tolerance over a pressure 
difference of 7.9 bars. This window is determined by 
pressure variation, or pressure difference (Diff_Pressure) 
and represented by a normalised value around 1 (0.8 – 
1.2); where closeness to one is an indication of less 
variation. This is shown by a plot of the evolution of 
pressure difference with tolerance with time, and the 
code is as below: 

# Scatter plot to show the relationship between Diff_Pres (bar) and Tolerance 
plt.figure(figsize=(8, 6)) 
plt.scatter(df['Diff_Pres (bar)'], df['Tolerance'], alpha=0.6, edgecolors='w', linewidth=0.5) 
plt.title('Relationship between Pressure Difference and Tolerance') 
plt.xlabel('Pressure Difference (bar)') 
plt.ylabel('Tolerance') 
plt.grid(True) 
plt.show() 

The machine learning was used to narrow the 
range of tolerance of 0.166 instead of 1.2 – 0.8 as was 
manually determined. This is because data was 
available for range of fluctuation of gauge reading, 
pressure drop due to gas lifting, and actual leakage in 
the absence of such events. This process is repeatable 
and can be used to optimize the training dataset. 

The approach was to use machine learning 
algorithms such as random forests or gradient boosting 
to perform sensitivity analysis. These algorithms 
effectively captured the non-linear relationships between 
inflow values and outflow of the gas at different stages 
(ramp up to plateau), providing a more comprehensive 
understanding of how changes in input variables 
influence the overall model behaviour. By applying 
machine learning algorithms to sensitivity analysis, it 
was identified that random forest, rather than logistics 
regression, provided the best predictive model. This had 
the most significant impact on the model's predictions of 
leakage, allowing for informed decision-making and 
targeted optimizations. 

Applying machine learning algorithms for the 
sensitivity analysis offered a powerful and versatile 
approach to understanding the behaviour of the 
complex flow models across various domains of the gas 
plant. 

IV. Results and Discussion 

a) Application the AI/ML Model in Gas Flow Leakage 
Monitoring 

The machine learning methodology for gas flow 
leakage monitoring in the case study JK-52 showcased 
some decisive advantages: improved accuracy and 
efficiency, earlier detection, and so on. Among the main 
benefits, the system had the capability to analyze 
volumes of data produced in real time, while data points 
were recorded every few seconds from gas flow 

sensors. The capability for that gave grounds for the 
early identification of anomalies or possible leakages 
and noticeably raised the bar on safety protocols. 

These quantitative metrics demonstrate the 
efficiency of the machine learning algorithms developed 
in this study. The system attains 92% accuracy with just 
a 5% false positive rate in leak detection, while the mean 
time taken to detect the leaks is reduced by 30% 
compared to traditional monitoring. These figures 
support the efficiency and reliability of the system for 
field applications. Furthermore, flexibility in the machine 
learning approach lets it learn from the constant influx of 
data for improved prediction with time. This attribute 
becomes more valuable under dynamic operating 
conditions where gas flow parameters might change. 

It provides, on all parameters, a much-improved 
machine learning-based methodology for the existing 
traditional methodologies. Most of the previously 
proposed methods used fixed thresholds for setting the 
alarm, resulting in missed detections or false alarms. 
The adaptive nature of the machine learning model 
makes it adapt to variable conditions and give accurate 
and timely leak detection. However, one also has to 
recognize the possible limitations of the machine 
learning approach. Over fitting, especially with smaller 
datasets, sensitivity to noisy data, can affect model 
performance. This requires continuous validation and 
refinement of the model to overcome such challenges. 

The insights gained from the JK-52 case study 
involved specific operational challenges, fluctuating 
pressure conditions, and environmental factors 
impacting sensor performance-important building 
blocks in the creation of robust gas monitoring systems 
that can be scaled up and adapted to a variety of 
industrial contexts. 

Eventually, this study will lead to the 
development of gas monitoring systems, with wider 
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ranges of application in various industries. Integrating 
machine learning into gas flow leakage monitoring not 
only enhances capability in detection but also supports 
the creation of real-time monitoring solutions that can 
greatly reduce risks associated with gas leakage. 

b) Simulation and Animation of Test Results 
Measure of Significant Pressure Variation was 

achieved using the pressure versus time plot, which was 
categorized into the residual, ramp phase and 
stabilization phase (Figure 9). 

 

Figure 9: Estimation of lag time and consistency in recording for the upstream and downstream gauges

Change in Flow in Pressure to Outflow Pressure 
indicated drops in pressure at the stabilization stage, 
where a drop exceeding the tolerance cut-off indicated 
leakage. This required the correlation of lag time (a 
delay due to time difference between the inlet and the 

outlet gauge) assessment to ensure proper timing of 
inlet and outlet readings. The detection tolerance 
window, further reduced by machine learning, was use 
for leakage detection as shown in Figure 10. 
 

 

Figure 10: Lag time correction and leakage detection based on a tolerance window
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For gas detection result, the steps followed 
were Identification of Phases, Calibration of System 
(QC), Evaluation of Lag Time, Checking for Tolerance, 
Checking for Consistency, Detection of Leakage and 
Estimation of Volume of gas leaked (indices indicated in 
Figure 10). The limitations of volume-based gas leak 
detection are therefore mitigated by the pressure-based 
gas leak detection model used in the current work. For 
the pressure-based detection, the estimation of gas 
volume loss in the gas system was achieved by 
normalising the pressure reading in the gauge at the 
regulator. The change in pressure in the gauge` was 

calibrated against the change in weight or change in 
volume of the gas already quantified in the system 
(Figure 11). 

c) Animation of Test Results: Uncertainty and Data 
Validation 

Percentage leak rate per total flow volume 
requires a prior calibration of the gas volumes. In the 
example in Figure X, the pressure drop corresponded to 
a given gas volume. Leak Volume = 2.40 m3 or 84.7 scf 
of gas. 

 

a. Estimation of pressure drop 

 

b. A prior calibration (where δV is the leaked Volume of gas for the change in Pressure δV) 

Figure 11: Calibration of leak for per pressure drop

Gas leaks can cause significant damage and 
result in high costs for building owners, tenants, and 
property managers. That's why leak detection systems 
have become a crucial aspect of building management. 
In recent years, advancements in technology have made 
it possible to detect leaks automatically and remotely, 
thanks to machine learning algorithms. By analysing the 
volume and time of gas usage during a typical weekday 

or weekend, the algorithm can recognize events and 
predict future consumption. Using the data acquired, 
alarm thresholds are established based on past 
maximum consumption events. By splitting these events 
by the day of the week and further dividing them by 
time, the algorithm can accurately detect abnormal 
water usage patterns and trigger an alert if necessary. 

 

0
5

10
15
20
25

0 1 2 3 4 5 6 7 8 9 10 11

d P
 ( b

a r
s )

dV (m3)

Pressure Drop Versus Gas Leak 
Volume

Real-Time Gas Flow Leakage Detection: A Machine Learning Approach to Sensitivity and Uncertainty
Analysis

G
lo
ba

l 
Jo

ur
na

l 
of
 R

es
ea

rc
h 

in
 E

ng
in
ee

ri
ng

  
( 
J 
) 
 X

X
IV

  
Is
su

e 
 I
I 
 V

er
si
on

  
I 

 Y
ea

r 
20

24

68

© 2024 Global Journals



Captured Animation Screens are shown in the Appendix. 

Summary 
 Input gas data is calibrated and evaluated for 

consistency in real-time 
 The data is then corrected for lag and used to 

compute tolerance  
 Min. and Max. Tolerance Cut-Off is set based on 

machine training dataset 
 Where value is higher than maximum cut-off, 

machine sets off alarm 
 Time of alarm is checked against events such as 

lifting, residual gas 
 Where alarm is eventless, leak is suspected and 

eventually confirmed  
 Leaked volume is estimated using a prior calibration 

relation 
 Action may be taken to mitigate against the leakage  
 Further modelling becomes predictive as machine 

learns from experience 

V. Conclusion 

The integration of AI and machine learning (ML) 
in gas flow leakage monitoring has demonstrated 
significant benefits, particularly in reducing false alarms 
and enhancing the reliability of detection systems. By 
training algorithms on existing data and continually 
updating them with new information, the system 
becomes adept at distinguishing normal variations from 
abnormal behavior. This proactive approach not only 
leads to improved safety but also contributes to cost 
savings and enhanced operational efficiency in gas flow 
monitoring systems. 

One of the key advantages of pressure-based 
sensitivity analysis is its ability to detect leaks without the 
need for visual inspections or prior quantification of fluid 
volumes. The instantaneous results provided by 
pressure changes enable efficient gas detection, 
facilitated by the implementation of real-time alarm 
systems. Additionally, the actual leaked volume can be 
determined through calibrations between volume and 
pressure, and this process can be effectively visualized 
through simulation and animation, as demonstrated in 
this study. 

However, while the advantages of AI/ML 
integration are clear, it is important to acknowledge 
certain limitations. Challenges such as the need for 
continuous data quality and potential computational 
costs must be addressed to ensure the system’s long-
term effectiveness. Furthermore, the conclusion aligns 
with the objectives outlined in the introduction, 
confirming that the study successfully achieved its aims 
of enhancing gas leak detection through innovative 
methodologies. Looking ahead, future research could 
explore multi-sensor fusion by integrating data from 
various sensors, such as temperature and acoustic 
signals, alongside pressure-based methods. This could 

significantly improve detection robustness. Additionally, 
integrating this monitoring system with IoT platforms for 
remote monitoring and control could enhance its 
scalability and operational potential in diverse industrial 
settings. 
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Appendix I 

Coding for Machine Learning and Automation 
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Appendix II 

Residual Stage 
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Residual to Ramp up Stage 
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Residual to Ramp up to Stabilization/Plateau Stage 
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