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Abstract: In this paper, we applied Sumudu transform to solve
a fractional integro-differential equation involving a Lorenzo- . INTRODUCTION AND PRELIMINARIES
Hartley function. A Cauchy-type problem involving the Caputo he free-electron laser (FEL) high-gain equation (HGE)

fractional derivatives and a generalized Volterra integral describes the evolution of the optical field when it is far
equation are also considered. Several special cases are also

mentioned. from the saturation. Denoting with a(T) the dimensionless
Keywords: Sumudu transform, fractional differential  field amplitude, the HGE is written in the form of a Volterra

?pera_tor, fractional integral —operator, Mittag-Leffler  jntegro-differential equation, namely ([9], [10]):
unction.

L ac> = —iﬂgol‘éa(r oA

(1.1)

The Riemann-Liouville operator of fractional integration of
order v is defined by

1

D, V[h(x)] = W

X
J’ (X —t)VTh@)dt
(o]
1.2)
provided that the integral (1.2) exists. The Riemann-
Liouville fractional derivative of order v is defined in the
form ([17], [18], [19], [15])

3 1 d"F h@) -
D¢ [h(x)]_r(v) ™ ! RN dt  (n—-l<a<n)

(1.3)

Boyadjiev et al. [6] studied the following nonhomogeneous
form of fractional integro-differential equation of Volterra

type:
Dfa(r) = A]' Sa(r —&)exp(ivé)dE + pexp(ivr), 0<7r <1

(1.4)
where ﬂ,iECand veR.

Al-Shammery et al. [1] considered a generalization of (1.4)
in the form

Dfa(r) = ij Ea(r — &) exp(ivé)d & + Bexp(ive), 0<r<1
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where ﬂrﬂré‘ eC ,VeR. SR(OC) >0, and 9’{(5) >-1. Al-Shammery et al. [2] further studied another  generalization

of (1.5)
in the form

Da(r) = /”L_Tf Ela(r — E)D(b, S +LiveE)IE + pD(b',Livr), 0<r<1

where &, 3,4,0 €C veR. R(a)>0,and R()>-1.

Saxena and Kalla [21] derived the solution of a further generalizaion of (1.6) in the
form

Dfa(r) = ﬂj Ela(z —E)D(D, S5 +LivE)IE + pt” D(B, y +1ivr), 0<7r<1

............ (1.7)

where 0!,,8,1,5,# eC Ve R . ER(OC)>O,9%(]/)>—land 9%(5) > —1.

Recently Kilbas et al. [13] systematically studied a generalization of (1.7) in the

followingform

D*a(r) = zf (X—t)“1E7  (Ww(x—t))h(t)d #f(x), a<x<b g

where A, 1,0,7€C weR. R(a)>0,R(u)>0

and f is assumed to be Lebesgue integrable over the interval

(a,b) and the function
< ) z'
7 (z2) = b i , RN > 0,
(2 rzz(:‘r(rp+ﬂ) rt ()
............................................................... (1.9

A detailed account of various operators of fractional integration and their applications can be found in a recent survey paper
of Srivastava and Saxena [20], Oldham and Spenier [18], and Miller ad Ross [17].
In 90’s, Watugala [22] introduced the following integral transform

Sumudu Transform: The Sumudu transform is defined over the set of the functions

e if t e (=1)7 %[0, 00)},

...(1.10)

A={f (t)|IM, 7,7, >0,

by

G(s)=S{f (t)}:= j f (st)e'dt, se(—7,,7,).
0

.. . (1.11)

More detail and properties about thrs transform please see ([5] [6]) and others

The Lorenzo-Hartley function and its relationship with some other functions:-

The Lorenzo-Hartley function GU’WS (a,c,t) is introduced by Lorenzo & Hartley [16] defined as

(5)k ak (t _ C)(k+5)0—u—1
u#§(a c,t)= ; KIT(k+8)o—p) i
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(Ro>0,Ru>0Rwd-u)>0)
where (§)k is Pochhammer’s symbol defined by

&) 1, k=0

« S +1)..(+k—-1), &=0kell,
be the set of natural numbers. Particularly at c=0, the above
Lorenzo-Hartley function reduces in to the following form

& () al @)tremat
So o (@) = kZ::; KIT'((K+3)v — )

(RO>0,Ru >0, NRWS — ) >0)

Lorenzo-Hartley function yields the following relationships with various classical special functions:

Mittag-Leffler function (see [13])

G,, ,(-a.t)=E [-at]= z(a”

ko

, (Ro>0).

1) .. (L.14)
Robtonov&Hartleyfunction(LorenzoandHertley
[16])
0 k¢ (k+1)o-1
—a)“t
G, ,,(—a t)=F[—at]:Z(
v,0,1 ’ v ’ -
0 L'((k+Dv)
where Eulu_ﬂ[at“] is the well known generalized Mittag-Leffler function (see [13]) defined as
) tk

Ro >0, Ru=0.

Epoultl =2, (ko + 22)°

k=0

R function (Lorenzo & Hartley [16])

The method followed here in finding the solution of
Cauchy-type problems (2.1) and (2.2) and other Cauchy
problems is based upon certain properties of fractional
calculus and the Sumudu transform. The solutions derived
are in closed forms and are suitable for numerical
computation.

S[G, ,s(a,c,0)] =

In order to prove our main results, we shall required the
following results

Lemma 1.1. Lorenzo-Hartley function GU’M(a,c,t) is

given by (1.12), the Sumudu transform of G, , ;(,C,t) is
given by .

ov—pu-1

(1-as”)’
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provided that Ro >0, ER,U>0 SR(U-,U)>0. Proof: By definition of Lorenzo-Hartley function, we may see that

5 a-k t (k+3S)o——1
U'ug(at)_z( )k ()

KIT'((K + &) — 22)’

NRo >0, NRu=0, NR(L-£)=0.

(5) " (O
SIG, s (@] = S[Z le((k+5)U—,U):|

Taking the Sumudu transform both side

i (5)kak I —t (St)(k+5)u y—ldt Z (5)ka S S5u u-1

KID((k+8)v— 1) k!
which gives
Sé‘u—,u—l
S[G a,c,t) = , Ro >0, Ru>0, R(v-u)>0.
[ u,y,é‘( ) (1_aSU)§ /Ll ( /Ll)

2. Solution of generalized fractional integro-differential equation of Volterra type.
We begin by proving
Theorem 2.1. Consider the following generalized integro-differential equation of VVolterra type

D:‘h(z-):KIh(T—ﬁ)GU,#ﬁ(a,g)df"‘??f(T)’ ..... 2.1)

where 0<7 <Lk, 14,0,0,n €C and Ro >0, Ru>0, R(v-w)>0.

together with the initial conditions

D *N(r)], =8, (k=12...N)
(N=--Re(a)]):N-1<Re(a) SN:Nell), o, 2.2)

where @, ,...a, are prescribed constant and f (T ) is assumed to be continuous solution of the Cauchy-type problem (2.1) and
(2.2) given by
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(r) =Y 8, (1) +7]O(r - &) f (£)d¢.

e (2.3)
where

A (7) = Z KrGu,yr-,5r (a,7) |
r=0

where My = _a(1+ r) + H, +k-1

and

O(7) = ZKrGU,ﬂr..,gr (a,7),
r=0

where . =—a(l+r)+pu —1. (2.4)
Proof: Applying the Sumudu transform to (2.1) and using the Lemma 1, we find that

N ov—-u-1
sUH(S)= Y s*D**h(r)| .= xSH (5)———— +nF(s
(s) ; . h(r) ] ()(1—as“)5 nF(s)
............................................................ (2.5)

where H(s) and F(s) represent, respectively, the Sumudu transform of the function h(Z‘) and f (T) Solving (3.6) under the
initial conditions (2.2) we find that,

where it is tacitly assumed that

K S
(A—as”)
By taking the inverse Sumudu transform, we get the required result
Setting 4 =0 -1, 5§=1 and replace ‘a’ by (-a)

Corollary 2.1. Under the various relevant hypotheses of Theorem 2.1 , a unique continuous solution of the Cauchy-type
problem involving the Volterra-type integro-differential equation

Dh(r) = x [ h(z —&)R,,, (a, E)E + 77 (),

Where 0<7 <Lk, 0,7, u€Cand Ro >0, Ru>0, R(v-1)>0., together with the initial condition (2.2), is given
by
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h(z) =2 a (@) +n[ (&) f(HdS,

..(2.8)

G(O=XR,, @)

and Pr = H; +k _a(l-l_ r)_l,

Where

al
ZR aTandpr =y, —al+r)-1 (2.9)

Corollary 2.2. Under the various relevant hypotheses of Theorem 2.1, a unique continuous solution of the Cauchy-type
problem involving the Volterra-type integro-differential equation

D h(z) = th(f—é)EU(—a,é”)d§+77f(T),

TR ...(2.10)
where 0<7<Lx,0,neC Rv>0. together with the initial condition (2 2) is given by

h(@) =3 2,0, (2) + 7] @z~ &) f ()dE,

where

Qk (T) — ta+k_1zt(a+l)r Eu,a(1+r)+r+k (_atu)’
r=0

and

D(z) =t D tIE, o, (—at?).

3. Solution of the generalized Volterra integral equation.
Theorem 3.1. The Volterra type integral equation

-
D_*h(r) = <INOG,, , 5@ +nT(@)

has its solution given explicitly by
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O 4
h(z) =77 > " [ F(E—-2)G (a,&)des

r—o o O, 4L , Sr

-(3.2)
where0<2'<1K‘ ,u v, 5 77€Cand ﬁRu>O Ru>0, R(v-1)>0.

Proof: Now taking the Sumudu transform on both the sides of Volterra integral equation (3.1), we get

—1
SSL)—,u—ﬂ:l

H(s) = 7F (s)s & [1—K

@a—as?)?
- ...(3.3)where it is tacitly assumed that
50 —  — A
1 — ~ = 1,

and F(s) and H(s) denote the Sumudu transform of f (T ) and h(T ) respectively.
oo s(é‘u—,u—ﬂ,)r—ﬂ,—l
H(s)=nsF(s) =~ «' 5
r—o @—as)r
....(3.4)

Now taking the inverse Sumudu transform

o o] 2
h(z)=7 >~ x"[F(E-5G,,

(a,£H)H)d<& .
r=o o Fas v

-.-(3.5)
where ££(r) = (4 + /1)r + ﬂ and SRU > O ER/J>O ER(U-/J)>O by using Lemma 1.1.

If we set & =1in Theorem 3.1 we get,
Corollary 5.1. The Volterra type integral equation

T
D_*h(z) = <INOR, L (@.OAL+71 (),

has its solution given explicitly by

[e’®) T
h(z)=7n7 > x'[F(z—-&)G

R o ey, p (B EAE,

provided RO > 0, Ru>0, R(v-£)>0.

If we set U= 0 , 0 =1 and replace aby -ain Theorem 3.1
Corollary 5.2. The Volterra type integral equation which is given by,

T
D_"h(z) = K] h(E)F, (-a,&)dE + 7 f (2),
0
has its solution is given explicitly by

O T
h(z) = anOKr(J; FE =G, A+, r T e)de
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