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I.
 

INTRODUCTION
 

A very rich literature has been done on the semi - linear wave equation
 

 

 

 

 
where and are real numbers. Some special cases for the coefficients and have being considered by many 
authors:

 1)

 
When and ,  the damping term 

 

ensures global existence for arbitrary data (See, for 
instance, Haraux and Zuazua [5]).

 2)
 

When and , the source term is responsible for finite blow up of the global 
nonexistence of solutions with negative initial energy (See Ball [2]; Kalantarov and Ladyzhenskaya [7]; and, 
Yordanov and Zhang

 
[12]).

 3)
 

When and or when and , the global solutions ( in time) under 
negative energy condition exist (Georgiev and Todorova [3] and Messaoudi [9]).

 4)
 

The case is more complicated. For instance, a local existenceuniqueness
 
solutions are guaranteed 

only for small values of and regular
 
initial data. This is due to the fact that the non linear term 

has
 
bad sign and is not locally Lipschitz continuous on , where is a

 
bounded open domain of . 

This problem was studied by Haraux [4].
 
He showed that (with on bounded domain) there is no 

nontrivial
 
global and bounded solution. He also constructed blow up solutions with

 
arbitrary small initial 

data. The same problem was considered by Jazar
 
and Kiwan (See [6] and the references therein for the 

same equation on  bounded domain).  
5)  For the case when is a positive function, the author (see Ref.  [10]) proved that any strong 

solution, with  , where is a positive constant depends only of , and , blows up in finite time, 

when 
  

( the ball of radius ).
 

 

In this paper, we consider the semi-linear wave equation with and 
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utt −∆u = a |ut|
p−1 ut + b |u|q−1 u, (1)

a ≤ 0 b = 0 |ut|
p−1 ut

a = 0 b ≥ 0 |u|q−1 u

a ≤ 0, b > 0 p > q a ≤ 0, b > 0 p = 1

a > 0
p |ut|

p−1 ut
L2(Ω) Ω R

n

b = 0

a = a(x, t)∫
utdx ≥ C C p, n R

supp(u0) ∪ supp (u1) ⊂ BR(0) R

a = 1 b = 0:

a b a b






utt −∆u = |ut|
p−1 ut (x, t) ∈ RN × [0, T ) ,

u (x, 0) = u0 (x) ∈ H1
loc, u

(
R
N
)
,

ut (x, 0) = u1 (x) ∈ L2loc, u
(
R
N
)
.

(2)

and show that given any time , there exist initial data with sufficiently negative energy for which the solution 
blows up in a time . To achieve this goal, we will follow the same approach of Zaag and Merle [MZ1] by 
comparing, for our case, the growth and , where is a solution of the explosively EDO
associated with the equation (2). Unfortunately, the presence of the viscous term makes our task more 
difficult. To overcome this difficulty, we draw attention to the work of Rivera and Fator [11] and rewrite (2) as follows:

T > 0

t∗ ≤ T
ut k k ktt = |kt|

p−1kt
|ut|p−1ut

utt –∆u = |ut |p–1ut
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Then, we substitute the following change of variable:

 
 
 
 
 
 

in (3) to obtain the integro-differential equation

 
 
 
 
 
 
 
 

Now, we introduce , where 

   

with 

  

and

  

. Using   the   following 
transformation defined by:

 
 
 
 

For                    

 

and

 
 
 
 
 
 
 
 
 
 

where . We then see that the function (we write 

 

for

 

simplicity) satisfies for all 
and all 

  
 
 
 
 
 
 
 

Where                           and

 

 

 

 






utt −
∫ t
0 ∆ut (τ) dτ −∆u0 = |ut|

p−1 ut (x, t) ∈ RN × [0, T ) ,

u (x, 0) = u0 (x) ∈ H1
loc, u

(
R
N
)
,

ut (x, 0) = u1 (x) ∈ L2loc, u
(
R
N
)
. (3)

v (x, t) = ut (x, t) , (4)

{
vt −

∫ t
0 ∆v (τ) dτ −∆u0 (x) = |v|

p−1 v, (x, t) ∈ RN × [0, T )

v (x, 0) = ut (x, 0) = u1 (x) =: v0 ∈ L2loc, u
(
R
N
)
.

(5)

w := ut/k k := κ (T − t)−β β := 1
p−1 κ := ββ

a ∈ RN T > 0

z = x− a, s = − log (T − t) , v (t, x) = 1
(T ′−t)β

θT ′, a (s, z) (6)

and

u (x, 0) =:
1

(T ′)β+!
θa,00 , v (0, z) =:

1

(T ′)β
θ (s0, y) =:

1

(T ′)β
θa,0,

s0 = −log (T ) θa = θT,a θ s ≥ −Log (T )

z ∈ RN

(s) θs + βg (s) θ −

∫ s

s0

2 (τ)∆θdτ − (s0)∆θ00 = (s) |θ|p−1 θ (7)

(s) = e(β+1)s (s) = e(β−1)s.

In the new set of variables , the behavior of as is equivalent to the behavior of As far as we 
know, no local existence of solution was given for our problem (2). For this reason, we assume that there exists a set 

for which our problem (2) admits solutions for some In this work, We do not consider the same 

condition as in [10]. First let us provide the following assumption. we assume that 

(s, z) ut t ↑ T θ as s→∞.

A ⊂R p ∈ A ⊂ R.

H1 α > max
(
2, β2 (β + 1)

)
.

g g g g

g g

Our main result in this paper is:

Theorem 1 : Let be                      , and assume that the hypothesis is satisfied and a solution for (7) on 

such that for some then blows up in in time , where is the unit ball 

and is the functional of energy associated to the equation (7). The above theorem implies directly the following 

blowing - up result for (5).

Proposition 2 : Let
 

                      , and suppose that the hypothesis holds and is a solution of (5) on as 

for some and , then blows up in finite time The 

paper is organized as follows. In section 2 we define an associated decreasing energy to equation (7)(see Lemma 3) 

and in the section 3 we provide proofs for Theorem 1 and Proposition 2.

p ∈ A ∩
(
1, N+3
N−1

)
H1 θ

B E (θ) (s0)< 0 s0 ∈ R, θ H1 (B)×L2 (B) s∗ ≤ s B

E

p ∈ A∩
(
1, N+3
N−1

)
H1 v B

ΞT,a (v) (t) = E (θT,a) (− log (T − t)) < 0 0 ≤ t ≤ T a ∈ RN T ′ < T .v
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II.

 

The associated energy

 

In this section we start first by defining a weighted energy associated to the

 

equation (7) and then, prove the 
lemma 3 . The wighted energy is given by

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where denotes the unit ball, 

 

is any number satisfying 

 

and 

   

Lemma 3 :

  

The energy 

 

is a decreasing function of . Moreover,

 

we have

 
 
 
 
 
 
 
 
 
 
 

E(s) = −
β

2

∫

B

(s) ραθ2dz +
1

p+ 1

∫

B

(s) ρα |θ|p+
1 dz (8)

+
1

8

∫ s

s0

∫

B

ρα 2(τ)
{
|4∇θ (τ)−∇θ (s)|2 − |∇θ (s)|2

}
dzdτ

+α

∫ s

s0

∫

B
2 (τ)

[
(Nρ− 2 (α− 1)) |z|2

]
ρα−2

{
|θ (s)− θ (τ)|2 − |θ (s)|2

}
dzdτ

+α

∫ s

s0

∫

B

(τ) ρα−1
{[

e−2τz∇θ (s)− θ (τ)
]2
−
[
e−2τz∇θ (s)

]2}
dzdτ

−
(s0)

2

{∫

B

ρα |∇θ (s) +∇θ00|
2 dz −

∫

B

ρα |∇θ(s)|2 dz

}

−αg (s0)

{∫

B

ρα−1 [θ (s)− z∇θ00]
2 dz −

∫

B

ρα−1 [θ (s)]2 dz

}
.

B α α > max
(
2, β2 (β + 1)

)
, ρ (z) := 1− |z|2.

s→ E(s) s ≥ s0

E(s+ 1)−E(s)

= − (β+1)
p+1

∫ s+1
s

∫
B

(s) ρα |θ (s′)|p+1 dzds′

−
∫ s+1
s

∫
B

(s) ραθ2s (s
′) dzds′

−
[
α− β

2 (β + 1)
] ∫ s+1

s
(s′)

∫
B
ραθ2 (s′) dzds′

−α
∫ s+1
s

∫
B

(s′) ρα−1 |z|2 |θ (s′)|2 dzds′

−
∫ s+1
s

∫
B 2(s

′) ρα |∇θ (s′)|2 dzds′,

(9)

where α > max
(
2, β2 (β + 1)

)
.

Proof. To calculate the derivative of , we multiply equation (7) by and integrate the equation over 

which is equivalent to

E ραθs B

1
p+1

d
ds

∫
B

(s) ρα |θ|p+1 dz − (β+1)
p+1

∫
B

(s) ρα |θ|p+1 dz

=
∫
B

(s) ραθ2sdz +
β
2
d
ds

∫
B

(s) ραθ2dz − β
2 (β + 1)

∫
B

(s) ραθ2dz
−
∫
B

∫ s
s0

(τ)∆θ (τ) ραθs (s) dτdz − (s0)
∫
B
ραθs∆θ00dz

β
2
d
ds

∫
B

(s) ραθ2dz − 1
p+1

d
ds

∫
B

(s) ρα |θ|p+1 dz

+
∫
B

∫ s
s0

(τ) ρα∇θ (τ)∇θs (s) dτdz − 2α
∫
B

∫ s
s0

(τ) ρα−1z∇θ (τ) θs (s) dτdz

+ (s0)
∫
B
ρα∇θ00∇θsdz − 2αg (s0)

∫
B
ρα−1z∇θ00θsdz

= − (β+1)
p+1

∫
B

(s) ρα |θ|p+1 dz −
∫
B

(s) ρα [θs]
2 dz + β

2 (β + 1)
∫
B

(s) ραθ2dz.

The last equation can be written as

β
2
d
ds

∫
B

(s) ραθ2dz − 1
p+1

d
ds

∫
B

(s) ρα |θ|
p+1

dz + I1 + I2 + I3 + I4

= − (β+1)
p+1

∫
B

(s) ρα |θ|
p+1

dz −
∫
B

(s) ρα [θs]
2 dz + β

2 (β + 1)
∫
B

(s) ραθ2dz, (10)
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where

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

I1 =
∫
B

∫ s
s0 2 (τ) ρ

α∇θ (τ)∇θs (s) dτdz

= −1
2
d
ds

{∫
B

∫ s
s0

ρα 2(τ)
∣∣2∇θ (τ)− 1

2∇θ (s)
∣∣2 dτdz

}

+1
2

{∫
B
ρα 2(s)

∣∣2∇θ (s)− 1
2∇θ (s)

∣∣2 dτdz
}

+1
8
d
ds

∫ s
s0 2(τ)dτ

∫
B
ρα |∇θ (s)|2 dz

−1
8 2(s)

∫
B
ρα |∇θ|2 dz,

= −1
2
d
ds

{∫
B

∫ s
s0

ρα 2(τ)
∣∣2∇θ (τ)− 1

2∇θ (s)
∣∣2 dτdz

}

+1
8
d
ds

∫ s
s0 2(τ)dτ

∫
B
ρα |∇θ (s)|2 dz

+ 2 (s)
∫
B
ρα |∇θ|2 dz,

I3 = (s0)
∫
B
ρα∇θ00∇θsdz

= g(s0)
2

d
ds

{∫
B
ρα |∇θ00 +∇θ|2 dz −

∫
B
ρα |∇θ|2 dz

}
,

I4 = −2αg (s0)
∫
B
ρα−1y∇θ00θsdz

= αg (s0)
d
ds

{∫
B
ρα−1 [z∇θ00 − θ]2 dz −

∫
B
ρα−1 [θ]2 dz

}
.

I2 = −2α
∫
B

∫ s
s0

(τ) ρα−1 [∇θ (τ) zg (τ) θs (s)] dτdz

= 2α
∫
B

∫ s
s0 2 (τ)

[
θ (τ)∇

(
zρα−1θs (s)

)]
dτdz

= 2α
∫
B

∫ s
s0 2 (τ) θ (τ)Nρα−1θs (s) dτdz

−4α (α− 1)
∫
B

∫ s
s0 2 (τ) θ (τ) |z|

2 ρα−2θs (s) dτdz

+2α
∫
B

∫ s
s0 2 (τ) θ (τ) zρα−1∇θs (s) dτdz

= A1 +A2 +A3

A1 = 2αN
∫
B

∫ s
s0 2 (τ)

[
θ (τ) ρα−1θs (s)

]
dτdz

= −αN d
ds

∫
B

∫ s
s0 2 (τ) ρ

α−1 [θ (τ)− θ (s)]2 dτdz

+αN d
ds

{∫ s
s0 2 (τ) dτ

∫
B
ρα−1θ2dz

}

−αN
∫
B 2 (s) ρ

α−1θ2dz,

A2 = −4α (α− 1)
∫
B

∫ s
s0 2 (τ) θ (τ)

(
|z|2 ρα−2s θ (s)

)
dτdz

= 2α (α− 1) d
ds

∫
B

∫ s
s0 2 (τ) |z|

2 ρα−2 [θ (τ)− θ (s)]2 dτdz

−2α (α− 1) d
ds

[∫ s
s0 2 (τ) dτ

∫
B
|z|
2
ρα−2θ2dz

]

+2α (α− 1)
∫
B 2 (s) |z|

2 ρα−2θ2dz,

A3 = 2α
∫
B

∫ s
s0

(τ) θ (τ) zρα−1∇
(
e−2τθ

)
s
(s) dτdz

= −α d
ds

∫
B

∫ s
s0

(τ) ρα−1
[
θ (τ)− e−2τz∇θ (s)

]2
dτdz

+α d
ds

{∫ s
s0

e−4τ (τ) dτ
∫
B
ρα−1 (z∇θ)2 dz

}

−α
∫
B
e−4s (s) ρα−1 (z∇θ)2 dz

+α
∫
B

(s) ρα−1
[
θ (s)− e−2sz∇θ (s)

]2
dz

= −α d
ds

∫
B

∫ s
s0

(τ) ρα−1
[
θ (τ)− e−2τz∇θ (s)

]2
dτdz

+α d
ds

{∫ s
s0

∫
B
e−4s (τ) dτρα−1 (z∇θ)

2
dz
}

+α
∫
B

(s) ρα−1 [θ (s)]
2
dz − α

∫
B 2 (s) ρ

α−1z∇
(
θ (s)

2
)
dz
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Substitute in equation (10) we finally obtain

 
 
 
 
 
 
 
 
 

We choose 

 
 

 
  

 

. So we deduce (8) . This completes the proof

 

of the lemma.

 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 

 
    

     
    

   
 

  
 
 
 
 
 
 
 
 
 

 
 

 

= −α d
ds

∫
B

∫ s
s0

(τ) ρα−1
[
θ (τ)− e−2τz∇θ (s)

]2
dτdz

+α d
ds

{∫ s
s0

∫
B
e−4τ (τ) dτρα−1 (z∇θ)2 dz

}

+α
∫
B

(s) ρα−1 [θ (s)]2 dz + α
∫
B 2 (s)∇.

(
ρα−1z

)
θ (s)2 dz

= −α d
ds

∫
B

∫ s
s0

(τ) ρα−1
[
θ (τ)− e−2τz∇θ (s)

]2
dτdz

+α d
ds

{∫ s
s0

∫
B
e−4s (τ) dτρα−1 (z∇θ (τ))2 dz

}

+α
∫
B

(s) ρα−1 [θ (s)]2 dz + αN
∫
B 2 (s) ρ

α−1 [θ (s)]2 dz

−2α (α− 1)
∫
B 2(s) ρ

α−2 |z|2 θ (s)2 dz.

Then

I2 = −αN
d
ds

∫
B

∫ s
s0 2 (τ) ρ

α−1 [θ (τ)− θ (s)]2 dτdz

+αN d
ds

{∫ s
s0

∫
B 2 (τ) dτρ

α−1θ2dz
}

+2α (α− 1) d
ds

∫
B

∫ s
s0 2(τ) |z|

2 ρα−2 [θ (τ)− θ (s)]2 dτdz

−2α (α− 1) d
ds

∫ s
s0 2 (τ) dτ

∫
B
|z|2 ρα−2 [θ (s)]2 dz

−α d
ds

∫
B

∫ s
s0

(τ) ρα−1
[
θ (τ)− e−2τz∇θ (s)

]2
dτdz

+α d
ds

{∫ s
s0

∫
B
e−4τ (τ) dτρα−1 (z∇θ)2 dz

}

+α
∫
B

(s) ρα−1 [θ (s)]2 dz.

I0, ..., I4

d
ds
E(s) = − (β+1)

p+1

∫
B

(s) ρα |w|p+1 dz

−
(
α− β

2 (β + 1)
) ∫

B
(s) ρα [θ (s)]2 dz

−α
∫
B

(s) ρα−1 |z|2 θ2dz −
∫
B

(s) ραθ2sdz

− 2 (s)
∫
B
ρα |∇θ|2 dz.

α > max
(
2, β2 (β + 1)

)

III. Proof the main result

In  this  section,  we prove results of explosion for equation (7)  and  (5), using the method  Georgiev  and  Todorova.

 Since and is decreasing and then for all .

By setting , it follows that for all 

Consider two different cases:

1. Assume that is bounded. Then, we deduce that all the right terms in the following equation

E(s0) < 0 E(s) E(s) < 0 s ≥ s0

h(s) = −E(s) h (s) ≥ h(s0) s ≥ s0.

h(s)

(β+1)
p+1

∫ s
s0

∫
B

(τ) ρα |θ|p+1 dzdτ +
∫ s
s0

∫
B

(τ) ραθ2τdzdτ

+
(
α− β

2 (β + 1)
)∫ s

s0

∫
B

(τ) ραθ2dzdτ

+α
∫ s
s0

∫
B
ρα−1 (τ) (zθ)2 dzdτ + 1

2

∫ s
s0

∫
B 2(τ) ρα |∇θ|2 dzdτ

= h(s)− h(s0).

Proof of Proposition 2 :

Proof of Theorem 1 :
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Suppose that there exist , and such that . Let          
, then By applying Theorem 3 (see bellow), we find that the solution of (7) 

blows up in finite time . Since , we deduce that blows-up in finite time such that 

, so we have

T > 0, 0 < t0 < T a ∈ Rn ΞT,a (v) (t0) < 0

s0 = − log (T − t0) E (wT,a) (s0) < 0. θ

s∗ <∞   v (t, x) = 1

(T−t)β
θ (s, y) v T ′

s∗ =− log (T − t∗) ≥ − log (T − T ′)    T ′ ≤ T − e−s
∗

< T .
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Now, we introduce the following functional defined by

 
 
 
 
 
 

where and 

 

are positive constants to be determined later.

 

We note that

 
 
 
 
 
 
 
 
 
 

we choose 

 

such that 

 
 

so we have 

  
  

The derivative of this functional is given by

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

are bounded. It means that

are

bounded for

∫ s
s0

∫
B

(τ) ραθ2dzdτ,
∫ s
s0

∫
B

(τ) ρα |θ|p+1 dzdτ
∫ s
s0

∫
B 2(τ) ρα |∇θ|2 dzdτ

p < N+3
N−1 .

and

ϕ (s) = (h (s))1−δ + ε

∫ s

s0

(τ)dτ

∫

B

ρα+1 |θ (s)|2 dz.

0 < δ < 1 ε

[ϕ (s)]
1

1−δ = C

(
h (s) + ε

∫ s

s0

(τ)dτ

∫

B

ρα+1 |θ (s)|2 dz

) 1

1−δ

≤ C

(

h (s)
1

1−δ +

∫ s

s0

(τ)dτ

(∫

B

ρα |θ (s)|2 dz

) 1

1−δ

)

≤ C

(
1 + (s)

(∫

B

ρα |θ (s)|
2

1−δ dz

))
,

δ 2
1−δ ≤ p+ 1 δ ≤ p−1

p+1 ∈ (0, 1) .

ϕ′ (s) = (1− δ) (h (s))−δ h (s)′ + 2ε
∫ s
s0
(τ)dτ

∫
B
ρα+1θ (s) θs (s) dz

+2εg(s)
∫
B
ρα+1 |θ (s)|2 dz

≥ (1− δ)M−1
0 h (s)′ + I0 + 2εg(s)

∫
B
ρα+1 |θ (s)|2 dz. (11)

because is bounded.
From (7), it follows that

then from the Green’s formula we can write

h

I0 =

∫ s

s0

(τ)dτ

∫

B

ρα+1θ (s) θs (s) dz

= −β

∫ s

s0

(τ)dτ

∫

B

ρα+1θ2dz

+

(∫ s

s0

(τ)dτ

)
−1(s)

∫

B

ρα+1θ (s)

(∫ s

s0

2 (τ)∆θ (τ) dτ

)
dz (12)

+

∫ s

s0

(τ)dτ

[
(s0 − s)

∫

B

ρα+1θ (s)∆θ00dz +

∫

B

ρα+1 |θ(s)|p+1 dz

]
,

I0 = −β

∫ s

s0

(τ)dτ

∫

B

ρα+1θ2dz+I1+I2+I3+I4+

∫ s

s0

(τ)dτ

∫

B

ρα+1 |θ(s)|p+1 dz,

Where

I1 = −

(∫ s

s0

(τ)dτ

)
−1(s)

∫

B

ρα+1∇θ (s)

∫ s

s0

2 (τ)∇θ (τ) dτdz (13)

≥ −

∣∣∣∣

∫

B

ρα+1∇θ (s)

∫ s

s0

2 (τ)∇θ (τ) dτdz

∣∣∣∣

≥ −

[
σ1 2(s)

∫

B

ρα |∇θ (s)|
2
dz + σ−11

∫ s

s0

∫

B
2 (τ) ρ

α |∇θ (τ)|2 dzdτ

]
.
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Using Young’s inequality, we obtain

 
 
 
 
 
 
 
 

Similarly, we find

 
 
 
 
 
 
 

and

 
 
 
 
 
 
 
 
 
 
 
 

Substituting (13)-(16) into (11) we obtain

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
  

 
 

I2 = +2 (α+ 1)

(∫ s

s0

(τ)dτ

)
−1(s)

∫

B

zραθ (s)

(∫ s

s0

2 (τ)∇θ (τ) dτ

)
dz (14)

≥ −2 (α+ 1)

[
σ2 (s)

∫

B

ρα |zθ (s)|2 dz + σ−12

∫ s

s0

∫

B
2 (τ) ρ

α |∇θ (τ)|2 dzdτ

]

.

I3 = − (s0 − s)

∫ s

s0

(τ)dτ

∫

B

ρα+1∇θ (s)∇θ00dz (15)

≥ −

∫

B

ρα
[
σ3 |∇θ00|

2 + σ−13 2 (s) |∇θ (s)|2
]
dz

I4 = 2 (α+ 1) (s0 − s)

∫ s

s0

(τ)dτ

∫

B

zραθ (s)∇θ00dz (16)

≥ −2 (α+ 1)

[
σ−14

∫

B

ρα |∇θ00|
2 + σ4 (s)

∫

B

ρα (zθ (s))2 dz

]
.

So

Now, the first we choose such that

ϕ′ (s) ≥ 2εg(s)

∫

B

ρα+1 |θ (s)|
2 dz

+

[
M1

(
α−

β

2
(β + 1)

)
− 2βε

] ∫

B

(s) ρα [θ (s)]2 dz

+ [M1α− 4 (α+ 1) ε (σ4 + σ2)]

∫

B

(s) ρα−1 [zθ (s)]2 dz

+

[
M1

2
− 2ε

(
σ−13 + σ1

)]
2 (s)

∫

B

ρα |∇θ|2 dz

−2ε
[
2 (α+ 1)σ=14 + σ3

] ∫

B

ρα∇θ200dz

−2ε
(
σ−11 + σ−12

) ∫ s

s0

∫

B

ρα+1 2(τ) |∇θ (τ)|2 dzdτ

+
(β + 1)

p+ 1
M1

∫ s

s0

∫

B

(s) ρα |θ|p+1 dzdτ

where M1 =
(1−δ)
M0

.

δ

δ ≤ min





(
α− β

2 (β + 1)
)
− 2βεM0

(
α− β

2 (β + 1)
) ,

p− 1

p+ 1



 .

M1

(
α−

β

2
(β + 1)

)
− 2βε ≥ 0.

After we choose and such that the following coefficients are Positiveσ1, σ2, σ3 σ4

[M1α− 4 (α+ 1) ε (σ4 + σ2)] ≥ 0,
[
M1

2
− 2ε

(
σ−13 + σ1

) ∫

B

ρα |∇θ (τ)|2 dτ

]
≥ 0.
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Then

 
 
 
 
 
 
 
 
 
 
 
 
 
 

and as

 
 
 

 
 

   

is bounded, then we can choose

 
 

small enough such that

 
 
 
 
 
 
 
 
 

This implies that there exists such that

 
 
 
 

 
 
 
 
 
 
 

ϕ′ (s) ≥
(β + 1)

p+ 1
M1

∫ s

s0

∫

B

(s) ρα |θ|p+1 dz

−2ε
(
2 (α+ 1)σ=14 + σ3

)
(s0)

∫

B

ρα+1∇θ200

−
(
σ−11 + σ−12

)
2ε

∫

B

∫ s

s0

ρα+1 2(τ) |∇θ (τ)|2 dτdz

≥ Cϕ
1

1−α (s)− 2ε
(
2 (α+ 1)σ=14 + σ3

) ∫

B

ρα+1∇θ200dz

−
(
σ−11 + σ−12

)
2ε

∫

B

∫ s

s0

ρα+1 2(τ) |∇θ (τ)|2 dτdz

∫
B

∫ s
s0

ρα+1 2 (τ) |∇θ (τ)|2 dτdz ε

Cϕ
1

1−δ (s)− 2ε
[
2 (α+ 1)σ=14 + σ3

] ∫
B
ρα+1∇θ200dz

−
(
σ−11 + σ−12

)
2ε
∫
B

∫ s
s0

ρα+1 2(τ) |∇θ (τ)|2 dτdz ≥ 0,

ε′

ϕ′ (s) ≥ ε′ϕ
1

1−α (s) .

blows-up in finite time It follows that blows up also in finite time because 

is bounded. Thus blows-up also in finite time.

2. We assume that blows-up in finite time and since

then the solution blows - up in finite time

So we deduce that

ϕ (s) = (h (s))1−α + ε

∫ s

s0

(τ)dτ

∫

B

ρα+1θ2 (s) dz

s∗,
∫ s
s0
(τ)dτ

∫
B
ρα+1θ2 (s) dz h (s)

‖θ‖L2(B)

h(s) s∗

h (s) ≤ sup
s0≤s≤s∗

[
‖θ‖H1(B) + ‖θt‖L2(B)

]
,

θ
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