

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 5 Version 1.0 August 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975-5896

Metric Boolean Algebras and an Application To Propositional Logic

By Li FU, Guojun Wang

Qinghai Nationalities University, China

Abstract - Let B be a Boolean algebra and Ω be the set of all homomorphisms from B into D , and μ be a probability measure on Ω . We introduce the concepts of sizes of elements of B and similarity degrees of pairs of elements of B by means of μ , and then define a metric on B . As an application, we propose a kind of approximate reasoning theory for propositional logic.

Keywords : Boolean algebra, probability measure, size, similarity degree, approximate reasoning, propositional logic.

GJSFR Classification : 03G05, 54E35, 60A10

METRIC BOOLEAN ALGEBRAS AND AN APPLICATION TO PROPOSITIONAL LOGIC

Strictly as per the compliance and regulations of:

Metric Boolean Algebras and an Application To Propositional Logic

Li FU^a, Guojun Wang^Ω

Abstract - Let B be a Boolean algebra and Ω be the set of all homomorphisms from B into D , and μ be a probability measure on Ω . We introduce the concepts of sizes of elements of B and similarity degrees of pairs of elements of B by means of μ , and then define a metric on B . As an application, we propose a kind of approximate reasoning theory for propositional logic.

Keywords : Boolean algebra, probability measure, size, similarity degree, approximate reasoning, propositional logic.

August 2011

1

Issue V Version I
Volume XI

I. PRELIMINARIES

Let L be a distributive lattice and D be the lattice $\{0, 1\}$. Assume Ω is the set of all homomorphism from L to D , then $\forall f \in \Omega, f$ is order-preserving, i.e., $a, b \in L, a \leq b$ if and only if $f(a) \leq f(b)$.

In fact, if $a, b \in L, a \not\leq b$, then there exists an $f \in \Omega$, such that $f(a) = 1$ and $f(b) = 0$ (see [4]). Therefore, if we think of elements of L as functions from Ω to D , i.e., $\forall a \in L$ defining $a : \Omega \rightarrow \{0, 1\}, a(f) = f(a) (f \in \Omega)$, then the partial order \leq or L will have a representation by means of the partial order among function of 2^Ω . This fact is also true for Boolean algebras. We use the same symbol Ω to denote the set of all (Boolean) homomorphisms from a Boolean algebra B into D .

Proposition 1 : Suppose that B is a Boolean algebra, $D = \{0, 1\}$, and Ω is the set of all homomorphism from L to D , then $a, b \in B, a \leq b$ if and only if $\forall f \in \Omega, f(a) \leq f(b)$. Throughout this paper, assume that B is a Boolean algebra and a probability measure μ is given on Ω , we will introduce the concepts of sizes of elements of B and similarity degrees between elements pairs of elements of B by means of μ and proposition 1, and finally define a metric ρ on B therefrom. Especially, this can be done the Lindenbaum algebra $B_L = F(S)/\approx$, where $F(S)$ is the set consisting of all logic propositions and \approx is the congruence relation of logically equivalence[6], and Ω is the set consisting of all valuations of $F(S)$ of which a probability measure can naturally be introduced. Finally, a kind of approximate reasoning theory can be developed on $F(S)$ because there have been distances among propositions.

II. METRIC BOOLEAN ALGEBRAS

Suppose that μ is a probability measure on Ω

Definition 1 : Define $\tau : B \rightarrow [0, 1]$ as follows:

$$\tau(a) = \mu(\{f \in \Omega \mid a(f) = 1\}), \quad a \in B$$

then $\tau(a)$ is called the *size* of a with respect to μ , or briefly, *size* of a if no confusion arises.

The following proposition is obvious.

Proposition 2 : (i) $0 \leq \tau(a) \leq 1, a \in B$;

(ii) $\tau(1_B) = 1, \tau(0_B) = 0$, where 1_B and 0_B are the greatest element and the least element of B respectively;

(iii) $\tau(a') = 1 - \tau(a), a \in B$

(iv) If $a \leq b$, then $\tau(a) \leq \tau(b), a, b \in B$.

*Foundation item : QingHai Province 135 program.

†Biographical : FULi, Female, Doctor, Research field : Non-determinacy Reasoning, E-mail : 0971@163.com.

Author^a: College of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, P.R.China.

Author^Ω: Shanxi Normal University, Xian, 710062, P.R.China.

Example 1 : Consider the Boolean algebra $\mathcal{P}(X)$, where X is non-empty finite set, and $\mathcal{P}(X)$ is the power set of X . It is easy to verify that a mapping $f : \mathcal{P}(X) \rightarrow D$ is a homomorphism iff there exists an (unique) element x of X such that $f^{-1}(1) = \{A \subset X \mid x \in A\}$. Hence, $|\Omega| = |X|$. Assume that μ is the evenly distributed probability measure on Ω , then the size of an element A of $\mathcal{P}(X)$ is the cardinal of A over $|X|$, i.e., $\tau(A) = |A|/|X|$ ($A \in \mathcal{P}(X)$).

Proposition 3 : $\tau(a \vee b) = \tau(a) + \tau(b) - \tau(a \wedge b)$, $a, b \in B$.

Assume that $a \rightarrow b = a' \vee b$ ($a, b \in B$) (see 5), then we have:

Proposition 4 : $\tau(a) \geq \alpha$, $\tau(a \rightarrow b) \geq \beta$, then $\tau(b) \geq \alpha + \beta - 1$, where $\alpha, \beta \in [0, 1]$.

Proposition 5 : If $\tau(a \rightarrow b) \geq \alpha$, $\tau(b \rightarrow c) \geq \beta$, then $\tau(a \rightarrow c) \geq \alpha + \beta - 1$.

Definition 2 : Define $\eta : B \times B \rightarrow [0, 1]$ as follows:

$$\eta(a, b) = \tau(a \rightarrow b) \wedge (b \rightarrow a), a, b \in B.$$

then $\eta(a, b)$ is called the **similarity degree** between a and b , and η the similar relation on B with respect to μ .

Example 2 : Consider the Boolean algebra $\mathcal{P}(X)$ where X is any non-empty set, and μ is any probability measure on Ω . Then

(1) $\eta(A, X - A) = 0$, ($A \in \mathcal{P}(X)$). In fact, $A \rightarrow (X - A) = (X - A) \cup (X - A) = X - A$, $(X - A) \rightarrow A = A \cup A = A$

Hence, $\eta(A, X - A) = \tau((X - A) \cap A) = \tau(\emptyset) = 0$.

(2) $\eta(A, B) + \eta(A, X - B) = 1$. In fact, let $G = ((X - A) \cup B) \cap ((X - B) \cup A)$, $H = ((X - A) \cup (X - B)) \cap (B \cup A)$. then it is routine to verify that $G \cup H = X$, $G \cap H = \emptyset$. Hence, $\eta(A, B) + \eta(A, X - B) = \mu(G) + \mu(H) = 1$.

Proposition 6 : $\eta(a, b) = \mu(\{f \in \Omega \mid f(a) = f(b)\})$, $a, b \in B$.

Proposition 7 :

- (i) $\eta(a, b) = 1$ if and only if $a = b$.
- (ii) $\eta(a, a') = 0$
- (iii) $\eta(a, b) + \eta(a, b') = 1$.
- (iv) $\eta(a, c) \geq \eta(a, b) + \eta(b, c) - 1$.

Proposition 8 : Suppose that $\eta(x, a) \geq \alpha$, $\eta(y, b) \geq \beta$ then $\eta(x \rightarrow y, a \rightarrow b) \geq \alpha + \beta - 1$.

It follow from proposition 7 that the function ρ defined below is a metric on B .

Definition 3 : Define $\rho : B \times B$ as follows:

$$\rho(a, b) = 1 - \eta(a, b), a, b \in B.$$

Then ρ is a metric on B and (B, ρ) is called the **metric Boolean algebra** with respect to μ .

Theorem 1 : Let (B, ρ) be the metric Boolean algebra, then

- (i) All the operations $', \vee, \wedge, \rightarrow$ are uniformly continuous.
- (ii) If (B, ρ) is a complete metric space, then B is a ω -complete lattice.

Proof : (i) By proposition 7, it follows that $\rho(a', b') = 1 - \eta(a', b') = \eta(a', b) = 1 - \eta(a, b) = \rho(a, b)$. If $\rho(a, b) \leq \varepsilon$, then $\rho(a', b') \leq \varepsilon$, where ε is any given positive number. This proves the continuity of the operation $' : B \rightarrow B$.

Suppose that $\rho(x, a) \leq \varepsilon$, $\rho(y, b) \leq \varepsilon$, then $\eta(x, a) > 1 - \varepsilon$, $\eta(y, b) > 1 - \varepsilon$, and it follows proposition 8, having $\eta(x \rightarrow y, a \rightarrow b) \geq (1 - \varepsilon) + (1 - \varepsilon) - 1 = 1 - 2\varepsilon$, hence $\rho(x \rightarrow y, a \rightarrow b) \leq 2\varepsilon$. This proves that the operation $\rightarrow : B \times B \rightarrow B$ is uniformly continuous.

Since $a \vee b = a' \rightarrow b$, $a \wedge b = (a' \vee b')'$, hence the operations \vee and \wedge also uniformly continuous.

(ii) Suppose that (B, ρ) is a complete metric space, and $\Delta = \{a_1, a_2, \dots\} \subset B$. Let $b_n = \bigvee_{i=1}^n a_i$, then b_1, b_2, \dots is an increasing sequence and hence $\tau(b_1), \tau(b_2), \dots$ is an increase sequence in $[0, 1]$ and is therefore Cauchy. Note that $b_n \rightarrow b_m = b'_n \vee b_m = 1_B$, and $b'_m \wedge b_n = 0_B$ whenever $b_n \leq b_m$, then $\rho(b_m, b_n) = 1 - \eta(b_m, b_n) = 1 - \tau((b_m \rightarrow b_n) \wedge (b_n \rightarrow b_m)) = 1 - \tau(b_m \rightarrow b_n) = 1 - \tau(b'_m \vee b_n) = 1 - [\tau(b'_m) + \tau(b_n) - \tau(b'_m \wedge b_n)] = 1 - \tau(b'_m) - \tau(b_n) = \tau(b_m) - \tau(b_n)$. hence b_1, b_2, \dots is a Cauchy sequence in (B, ρ) and converges to an element c of B . Fix an n we have from $b_n = b_n \wedge b_{n+k}$ and the continuity of \wedge that

$$b_n = \lim_{k \rightarrow \infty} (b_n \wedge b_{n+k}) = b_n \wedge \lim_{k \rightarrow \infty} b_{n+k} b_n \wedge c,$$

hence $b_n \leq c$ and c is an upper bound of $\Sigma = \{b_1, b_2, \dots\}$. On the other hand, let e be any upper bound of Σ , then $b_n = b_n \wedge e$ and hence

$$c = \lim_{n \rightarrow \infty} b_n = \lim_{n \rightarrow \infty} (b_n \wedge e) = (\lim_{n \rightarrow \infty} b_n) \wedge e = c \wedge e.$$

This means that $c \leq e$, hence $c = \sup \Sigma$. It is clear that $\sup \Delta = \sup \Sigma = c$. We can prove that $\inf \Delta$ exists in a similar way, hence B is ω -complete lattice.

III. AN APPLICATION

Consider the set of all abstract formulas in propositional logic. Let $S = \{p_1, p_2, \dots\}$ be a countable set and $F(S)$ be free algebra of type (\neg, \rightarrow) generated by S where \neg and \rightarrow are unary and binary operations respectively. Homomorphisms from $F(S)$ to $D = \{0, 1\}$ called valuations of $F(S)$, the set is consisting of valuations will be denoted Ω . Assume that A, B are formulas (propositions) of $F(S)$, A and B are logically equivalent if $\forall \nu \in \Omega, \nu(A) = \nu(B)$. It is well known that the logical equivalence relation \approx is a congruence relation on $F(S)$ with respect to (\neg, \rightarrow) , and the quotient algebra $F(S)/\approx$ is a Boolean algebra and called the Lindenbaum algebra[6], and denoted B_L . Let $X = \prod_{n=1}^{\infty} X_n$, where $X_n = \{0, 1\}$, and μ_n be the evenly distributed probability measure on X_n , i.e., $\mu(\emptyset) = 0, \mu(X_n) = 1$, and $\mu_n(\{0\}) = \mu_n(\{1\}) = \frac{1}{2}, (n = 1, 2, \dots)$, and let μ be the infinite product of μ_1, μ_2, \dots on X (see[3]). Since $F(S)$ is the free algebra generated by S , a valuation $\nu : F(S) \rightarrow \{0, 1\}$ is completely decided by its restriction $\nu|S$. Since $\nu|S = \{\nu(p_1), \nu(p_2), \dots\}$ can be thought of as a point of X , there is a bijection between Ω and X and hence the measure μ on X can be transplanted on Ω . We use the same symbol μ to denote the measure on Ω , i.e.,

$$\mu(\Sigma) = \mu(\{(x_1, x_2, \dots) \in X \mid \exists \nu \in \Sigma, x_n = \nu(p_n), n = 1, 2, \dots\}) \Sigma \subset \Omega.$$

Assume that $A, B \in F(S)$ and $A \approx B$ and $\nu \in \Omega$, then $\nu(A) = \nu(B)$ hence ν induces a unique Boolean homomorphism $\nu^* : B_L = F(S)/\approx \rightarrow \{0, 1\}$ defined by $\nu^*(a) = \nu(A)$, where a is the congruence class containing $A (a \in B_L)$. In the following ν^* will be simplified as ν and Ω can be thought of as the set consisting of all Boolean homomorphisms B_L to $\{0, 1\}$. Therefore there is a metric ρ on the Lindenbaum algebra B_L and (B_L, ρ) will be called the **metric Lindenbaum algebra**. Denote the congruence class B_L containing A by $[A]$, where $A \in F(S)$ and define $d : F(S) \times F(S) \rightarrow [0, 1]$ as follows:

$$d(A, B) = \rho([A], [B]), \quad A, B \in F(S),$$

then d is a pesudo-metric on $F(S)$. Now that there exists the concept of distances among formulas, an approximate reasoning theory can naturally be developed on $F(S)$. We give in the following only a short sketch.

Definition 4 : Let T be the set consisting of all theorems in $F(S)$ (see[2]) and $A \in F(S)$. If $d(A, T) < \varepsilon$, then A is called a **theorem with error ε** , and denoted $(\varepsilon) \vdash A$. Moreover, let $D(\Gamma)$ be the set of all Γ -conclusions, i.e., $D(\Gamma) = \{A \in F(S) \mid \Gamma \vdash A\}$.

If $\inf\{H(D(\Gamma), T) \mid \Gamma \vdash A\} < \varepsilon$, where $H(\Sigma, \Delta)$ is Hausdorff distance between Σ and Δ (Σ, Δ are non-empty subsets of $F(S)$, for a general definition of the Hausdorff distance between two non-empty, bounded subsets of a metric space without the requirement of closedness see[1], and that of subsets of a pseudo-metric space, see[6]), then A is called ε -**quasi theorem** and denoted $\vdash(\varepsilon)A$.

Theorem 2 : Suppose that A is any formula of $F(S)$, then

$$(\varepsilon) \vdash A \text{ if and only if } \vdash(\varepsilon)A$$

Definition 5 : Suppose that $\Gamma \subseteq F(S)$, let $Div(\Gamma) = \sup \{\rho(A, B) \mid A, B \in D(\Gamma)\}$, where $\sup \emptyset = 0$ is assumed, then $Div(\Gamma)$ is called **the divergence degree of Gamma**. Moreover, let $Dev(\Gamma) = H(D(\Gamma), T)$, then $Dev(\Gamma)$ is called the **deviation** of Γ .

Theorem 3 : Suppose that $\Gamma \subseteq F(S)$, then $Div(\Gamma) = Dev(\Gamma)$.

Proof : Suppose that $Dev(\Gamma) = \alpha$ and $\varepsilon > 0$, then it follows from

$$\begin{aligned}
 H(D(\Gamma), \mathcal{T}) &= \max(\sup\{d(A, \mathcal{T}) | A \in D(\Gamma)\}, \sup\{d(T, D(\Gamma)) | T \in \mathcal{T}\}) \\
 &= \sup\{d(A, \mathcal{T}) | A \in D(\Gamma)\} = \alpha.
 \end{aligned}$$

that there is an $A \in D(\Gamma)$ such that $d(A, \mathcal{T}) \geq \alpha - \varepsilon$. Choose any T from \mathcal{T} , then $A, T \in D(\Gamma)$ and we have $Div(\Gamma) \geq d(A, T) \geq \alpha - \varepsilon$. Since ε is arbitrary, we have $Div(\Gamma) \geq \alpha = Dev(\Gamma)$.

Conversely, we have

$$\begin{aligned}
 Dev(\Gamma) &= H(D(\Gamma), \mathcal{T}) = \max(\sup\{d(A, \mathcal{T}) | A \in D(\Gamma)\}, \sup\{d(T, \mathcal{T}) | T \in D(\Gamma)\}) \\
 &= \sup\{d(A, \mathcal{T}) | A \in D(\Gamma)\} = \sup\{1 - \tau([A]) | A \in D(\Gamma)\}.
 \end{aligned}$$

Moreover, assume that $A, B \in D(\Gamma)$. Note that $[A] \leq [B] \rightarrow [A]$, and $[B] \leq [A] \rightarrow [B]$, we have $d(A, B) = \rho([A], [B]) = 1 - \eta([A], [B]) = 1 - \tau(([A] \rightarrow [B]) \wedge [B] \rightarrow [A])) \leq 1 - \tau([A]) \wedge \tau([B]) = (1 - \tau([A])) \vee (1 - \tau([B]))$. Hence, $Div(\Gamma) = \sup\{d(A, B) | A, B \in D(\Gamma)\} \leq Dev(\Gamma)$.

REFERENCES RÉFÉRENCES REFERENCIAS

1. A.Csaszar, General Topology, Adam Hilger Ltd, Bristol, 1978.
2. A.G.Hamilton, Logic for Mathematicians, Cambridge University Press, London,1978.
3. P.R.Halmos, Measure Theory, Springer-Verlag, New York,1974.
4. P.J.Johnstone, Stone Space,Cambridge University Press, London,1982.
5. H.Rasiowa ,R.Sikorski, The Mathematics of Metamathematics, Panstwowe Wydawnictwo Naukowe,Warszwa,1963.
6. G.J.Wang, Non - classical Mathematical Logis and Approximate Reasoning, Science in China Press, Bejing (in Chinese), 2000.

