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Abstract

 

-

 

H.Exton [J.Comput.Appl.Math.88(1997)269-274] obtained a quite general 
transformation involving hypergeometric functions by elementary manipulation of series, some of 
these results are erroneous. Four erroneous results have been corrected by Medhat A. Rakha et 
al, and made a remark on other three results in [4]. Here, we respond the remark and confirm 
that other three results are also erroneous.
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I. INTRODUCTION 

xton in [3], discovered a number of hypergeometric identities, which were previously not recorded in the 
literature. He established them by applications of Gauss’s second summation theorem and other known 
hypergeometric theorems. Medhat A. Rakha et al, observed that there are errors in four results of Exton’s [3; 

p.272 {(2.5) and (3.1)}, and p.273 {(3.2) and(3.3)}], and they obtained correct forms for the same. They further 
observed that the result present by equation (3.7) is not new as the right hand sides of the results presented by 
equations (3.6) and (3.7) are same and yields a simple identity between two 2F1( 12 ) functions. They also observed 
that Exton’s results given in [3; p.272(2.9), p.273 {(3.4) and (3.6)}] are correct. They cannot derive the Exton’s 
results given in [3; p.273(3.5), p.274 {(3.8) and (3.9)}] nor could verify them numerically, but remarked that these 
three results therefore should be taken as incorrect [4]. The purpose of this note is, as- (i). To present four erroneous 
results [3; p.272 {(2.5) and (3.1)}, and p.273 {(3.2) and(3.3)}], along with their correct form given in [4]. (ii). To 
present two correct results [p.273 {(3.6) and (3.7)}] in a single equation. (iii). To examine the three erroneous results 
[3; p.273(3.5), p.274 {(3.8) and (3.9)}], and confirm the same. 

II. PRELIMINARIES 

The generalized hypergeometric function is defined in [1, p.41], as 
 
 
                                                                                                                                                                        (1) 
 
 
 
where the Pochhammer symbol is defined as                                           . If             the series given by 

equation (1) is converges for            , but when                    , then the series is convergence for               . But, when 
only one of the parameters    is a negative integer

 
or zero, then the series given by equation (1.1) terminates and 

always converges since
 
it becomes a polynomial in x

 
of degree −aj

 
. Exton’s investigation is based on following

 

general transformation, which he obtained by techniques of elementary manipulation of of
 
series [3, p. 270 (1.8)].

 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                          

(2)
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pFq

 a1, a2, · · · , ap ;
x

b1, b2, · · · , bq ;

 =
∞∑

n=0

(a1)n(a2)n · · · (ap)n

(b1)n(b2)n · · · (bq)n

xn

n!

∞∑
n=0

(c1)n(c2)n · · · (cp)n

(d1)n(d2)n · · · (dq)n

(1
2
a)n(−2x)n

n!
p+1Fq

 a + 2n, c1 + n, · · · , cp + n ;
x

d1 + n, · · · , cq + n ;



= 2p+1F2q

 1
2
a, 1

2
c1,

1
2
c2, · · · , 1

2
cp,

1
2
(1 + c1),

1
2
(1 + c2), · · · , 1

2
(1 + cp) ;

−4p−qx2

1
2
d1,

1
2
d2, · · · , 1

2
dq,

1
2
(1 + d1),

1
2
(1 + d2), · · · , 1

2
(1 + dq) ;



(a)n = (a, n) = Γ(a+n)
Γ(a) q = p,

|x| < ∞ , q = p − 1 , |x|< 1
aj

Author Ω : P.D.M College of Engineering, Bahadurgarh, Haryana, India.
Author β : School of Computer and System Sciences, Jawaharlal Nehru University, New Delhi, India. E-mail : mpchaudhary_2000@yahoo.com

If one of the numerator parameters cj equals a negative integer, the resulting equation (2) involves finite 
sums and convergence at             is assured.x = ±1

Gauss’s second summation theorem:[3, p.270(1.6)]

Abstract - H.Exton [J.Comput.Appl.Math.88(1997)269-274] obtained a quite general transformation involving hypergeometric 
functions by elementary manipulation of series, some of these results are erroneous. Four erroneous results have been corrected 
by Medhat A. Rakha et al, and made a remark on other three results in [4]. Here, we respond the remark and confirm that other
three results are also erroneous.



 

 

   
    

 
 
 
 
 

 
  

 

 
                                                                                                                                                                                        

(3)

 

 

Vandermonde’s theorem:[3, p.270(1.9)]

 

 

 

                                                                                                                                                                                        

(4)

 

 

Kummer’s theorem:[3, p.271(1.10)]   

 

 

 

                                                                                                                                                                                        

(5)

 

Dixon’s theorem:[3, p.271(1.11)]

 

 

 

 

 

 

                                                                                                                                                                                        

(6)

 

 

Erroneous results in [3] and corresponding corrected results in [4]

 

In [3, p.272 (2.5)], a result is recorded, as

 

 

  

 

 

                                                                                                                                                                                        

(7)

 

this result has been corrected and recorded in [4], as
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2F1

 a, b ;
1
2

1
2
(a + b + 1) ;

 =
Γ(1

2
)Γ(a+b+1

2
)

Γ(a+1
2

)Γ( b+1
2

)

2F1

 a,−n ;
1

c ;

 =
(c− a, n)

(c, n)
=

Γ(c)Γ(c− a + n)

Γ(c + n)Γ(c− a)

2F1

 a, b ;
− 1

1 + a− b ;

 =
Γ(1 + a− b)Γ(1 + a

2
)

Γ(1 + a)Γ(1− b + a
2
)

3F2

 a, b, − n ;
1

1 + a− b, 1 + a + n;

 =
[(1 + a, n)(1 + a

2
− b, n)]

[(1 + a
2
, n)(1 + a− b, n)]

=
Γ(1 + a− b)Γ(1 + a− n)Γ(a

2
+ 1)Γ(a

2
+ n− b + 1)

Γ(1 + a)Γ(1 + a− b + n)Γ(a
2

+ 1− b)Γ(a
2

+ 1 + n)

(d− a, N)

(d,N)
3F2

 −N , a
2

, 1 + a− d ;
1
2

1
2

+ a
2
− d

2
− N

2
, 1 + a

2
− d

2
− N

2
;



= 3F2

 −N
2
, 1

2
− N

2
;
−1

1
2

+ a
2

d
2
, 1

2
+ d

2
;



(b− a)N

(b)N
3F2

 −N , 1
2
a , 1 + a− b ;

1
2

1
2
(1 + a− b−N), 1

2
(2 + a− b−N);



= 3F2

 1
2
N, 1

2
− 1

2
N, 1

2
a ;

−1
1
2
b, 1

2
+ 1

2
b ;


(8)

In [3, p.272 (3.1)], a result is recorded, as

(9)
(1 + a, N)

(1 + a
2
)

2F1

 a
2
,−N ;

−1
2

1
2

+ a
2

;

 = 3F2

 a
2
,−N

2
, 1

2
− N

2
;
−1

1
2

+ a
2

+ N
2
, 1 + a

2
+ N

2
;


  this result has been corrected and recorded in [4], as

                                                                      



 

 

                                                                                                                                                                                      

 

 

                                                                                                                                                                                         

 

 

 

 

 

                                                                                                                                                                               
       (10)

 

In [3, p.273 (3.2)], a result is recorded, as

 

 

 

 

                                                                                                                                                                                      

(11)

 

 

this result has been corrected and recorded in [4], as

 

 

 

 

                                         

 

                                                                                                                                                                                      

(12)

 

 

In [3, p.273 (3.3)], a result is recorded, as

 

 

 

 

                                                                                                                                                                                      (13)

 

 

this result has been corrected and recorded in [4], as

 

 

 

 

                                                                                                                    

 

                                                                                                                                                                                     

(14)

 

 

In [4], it is also observed that right hand sides of both equations in [3, p.273 {(3.6) and (3.7)}] are same, 
here we are writing both equations

 

in joint form, as
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(1 + a)N

(1 + 1
2
a)N

2F1

 −N, 1
2
a;

1
2

1
2

+ 1
2
a;

 = 3F2

 1
2
N, 1

2
− 1

2
N, 1

2
a ;

−1
1
2
(1 + a + N), 1

2
(2 + a + N);



(1 + a, N)(1 + a
2
− b, N)

(1 + a
2
, N)(1 + a− b, N)

3F2

 b , a
2
,−N ;

1
2

1
2

+ a
2
, b− a

2
−N ;



= 5F4

 b
2
, b

2
+ 1

2
, a

2
,−N

2
, 1

2
− N

2
;
−1

1
2

+ a
2
− b

2
, 1

2
+ a

2
− b

2
, 1

2
+ a

2
+ N

2
, 1 + a

2
+ N

2
;



(1 + a)N(1 + 1
2
a− b)N

(1 + 1
2
a)N(1 + a− b)N

3F2

 −N , 1
2
a, b ;

1
2

1
2

+ 1
2
a, b− 1

2
a−N;



= 5F4

 −1
2
N, 1

2
− 1

2
N, 1

2
a, 1

2
b, 1

2
+ 1

2
b ;

−1
1
2
(1 + a− b), 1

2
(2 + a− b), 1

2
(1 + a + N), 1

2
(2 + a + N);



(1 + a, N)/

(
1

2
+

a

2
, N

)
× 1F0

[
−N ;−;

(
1

2

)N]
= (1 + a, N)/

[
2N

(
1

2
+

a

2
, N

)]

= 4F3

 1 + a
4
, a

2
,−N

2
, 1

2
− N

2
;
−1

a
4
, 1

2
+ a

2
+ N

2
, 1 + a

2
+ N

2
;



(1 + a)N

(1
2

+ 1
2
a)N

1F0

 −N ;
1
2

− ;

 =
2−N(1 + a)N

(1
2

+ 1
2
a)N

= 4F3

 −1
2
N, 1

2
− 1

2
N, 1

2
a, 1 + 1

4
a ;

−1
1
4
a, 1

2
(1 + a + N), 1

2
(2 + a + N);



(1 + a, N)

(1 + a− b, N)
× 2F1

 b,−N;
1
2

1
2

+ a
2
;



=
[(1

2
+ a

2
− b, N)(1 + a, N)]

[(a
2

+ 1
2
, N)(1 + a− b, N)]

2F1

 b,−N ;
1
2

1
2

+ b− a
2
−N;





 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                        

(15)

 

Examination of three erroneous results in [3]

 

 

In this

 

section, we response the remark of Medhat A. Rakha et al on Exton’s three results given

 

in [3; 
p.273(3.5), p.274 {(3.8) and (3.9)}], and confirmed the same.

 

In [3, p.273 (3.5)], a result is recorded, as

 

 

 

 

 

 

 

 

                                                                                                                                                                                     (16)

 

 

We verified this result using computer programming languages Octave, Matlab and Mathematica, and 
confirmed that it

 

is a erroneous result.

 

In [3, p.274 (3.8)], a result is recorded, as

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                  

    (17)

 

 

We verified this result using computer programming languages Octave, Matlab and Mathematica, and confirmed 
that it is a erroneous result.
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= 6F5

 1 + a
4
, b

2
, b

2
+ 1

2
, a

2
, − N

2
, 1

2
− N

2
;
−1

a
4
, 1

2
+ a

2
− b

2
, 1 + a

2
− b

2
, 1

2
+ a

2
+ N

2
, 1 + a

2
+ N

2
;



[(a− 2b, N)(1 + a
2
− b, N)(−b, N)]

[(a
2
− b, N)(−2b, N)(1 + a− b, N)]

×

×5F4

 b
2
, b

2
+ 1

2
, a

2
, − N

2
, 1

2
− N

2
;
−1

1
2

+ a
2
− b

2
, 1 + a

2
− b

2
, 1

2
+ a

2
+ N

2
, 1 + a

2
+ N

2
;



= 5F4

 b
2
, b

2
+ 1

2
, a

2
, − N

2
, 1

2
− N

2
;
−1

1
2

+ a
2
− b

2
, 1 + a

2
− b

2
, 1

2
+ a

2
+ N

2
, 1 + a

2
+ N

2
;



[(a− 2b, N)(−b, N)]

[(1 + a− b, N)(−2b, N)]
×

×6F5

 1 + a
2
, b, 1

3
+ 2b

3
− N

3
, 2

3
+ 2b

3
− N

3
, 1 + 2b

3
− N

3
, −N;

27
8

1 + 2b + N, 1− a + 2b−N, 1
2

+ 2b− N
2
, 1 + b

2
− N

2
, 1

2
+ b;



= 6F5

 1 + a
4
, b

2
, 1

2
+ b

2
, a

2
, − N

2
, 1

2
− N

2
;
−1

a
4
, 1

2
+ a

2
− b

2
, 1 + a

2
− b

2
, 1

2
+ b + N

2
, 1 + b + N

2
;



In [3, p.274 (3.9)], a result is recorded, as

                                                                                           

                                                                                                                                                                                      (18)

[(a− 2b, N)(1
2

+ a
2
− b, N)(−b− 1, N)]

[(1 + a− b, N)(a
2
− 1

2
− b, N)(−2b− 1, N)]

×

×8F7

 1 + a
2
, b, 2 + b, 3

2
− a

2
+ b−N, 2

3
+ 2b

3
− N

3
, 1 + 2b

3
− N

3
, 4

3
+ 2b

3
− N

3
,−N;

27
8

3 + 2b, 2 + 2b− a−N, 1
2

+ b− a
2
−N, 1 + b

2
− N

2
, 3

2
+ b

2
− N

2
, 1 + b, 3

2
+ b;



= 6F5

 1 + a
4
, b

2
, b

2
+ 1

2
, a

2
, − N

2
, 1

2
− N

2
;
−1

a
4
, 1

2
+ a

2
− b

2
, 1 + a

2
− b

2
, 1

2
+ a

2
+ N

2
, 1 + a

2
+ N

2
;





 

 

 

 

 

 

 

 

 

 

 

 

We verified this result using computer programming languages Octave, Matlab and Mathematica,

 

and 
confirmed that it is a erroneous result.
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