

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 8 Version 1.0 November 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN:0975-5896

Boundary-fixed Homeomorphisms of 2-Manifolds with Boundary

By David J. Sprows

Villanova University

Abstract - Let X be a closed, orientable 2-manifold and let X_n denote the bounded manifold obtained by removing the interiors of n disjoint closed disks from X . Let $H(X_n)$ denote the group of isotopy classes (rel boundary of X_n) of homeomorphisms of X_n which are the identity on the boundary of X_n . $H(X_n)$ has been determined for all n when X is the 2-sphere (see [8] and [10]). This paper investigates the structure of $H(X_n)$ for X not equal to the 2-sphere. In particular, a relationship between $H(X_n)$ and the homeotopy group (mapping class group) of X (see [4],[5] and [11]) is developed.

Strictly as per the compliance and regulations of :

Boundary-fixed Homeomorphisms of 2-Manifolds with Boundary

David J. Sprows

Abstract - Let X be a closed, orientable 2-manifold and let X_n denote the bounded manifold obtained by removing the interiors of n disjoint closed disks from X . Let $H(X_n)$ denote the group of isotopy classes (rel boundary of X_n) of homeomorphisms of X_n which are the identity on the boundary of X_n . $H(X_n)$ has been determined for all n when X is the 2-sphere (see [8] and [10]). This paper investigates the structure of $H(X_n)$ for X not equal to the 2-sphere. In particular, a relationship between $H(X_n)$ and the homeotopy group (mapping class group) of X (see [4],[5] and [11]) is developed.

I. INTRODUCTION.

Let X be a closed, orientable 2-manifold and let D_1, \dots, D_n be disjoint closed disks in X with p_k a point in the interior of D_k for $1 \leq k \leq n$. Let $X_n = X - \bigcup_{k=1}^n \text{Int}(D_k)$ and $F_n = \{p_1, \dots, p_n\}$. This paper is concerned with the group $H(X_n)$ consisting of all isotopy classes (rel ∂X_n) of homeomorphisms of X_n which are the identity on the boundary of X_n . Note that in order for two boundary-fixed homeomorphisms of X_n to represent the same element in $H(X_n)$ not only must these homeomorphisms be isotopic, but also the isotopy between them must be the identity on the boundary of X_n for all values $t, 0 \leq t \leq 1$. Presentations of $H(X_n)$ for all n in the case that X is the 2-sphere are given in [8]. In this paper it will be shown that if X is not the 2-sphere, then $H(X_n)$ can be obtained as part of a short exact sequence involving the free abelian group on n generators, denoted \mathbb{Z}^n , and the subhomeotopy group of X consisting of all isotopy classes (rel F_n) of orientation preserving homeomorphisms of X which are the identity on F_n , denoted $H(X, F_n)$. This short exact sequence will then

be used to relate $H(X_n)$ to the homeotopy group of X .

II. BOUNDARY-FIXED HOMEOMORPHISMS

let $f: H(X_n) \rightarrow H(X, F_n)$ be the function which sends the isotopy class (rel ∂X_n) of a boundary-fixed homeomorphism h of X_n onto the isotopy class (rel F_n) of the homeomorphism of X which is obtained by extending h by the identity over each disk D_k , $1 \leq k \leq n$. The function f is clearly well-defined since any isotopy (rel ∂X_n) of X_n can be extended by the identity on $\bigcup_{k=1}^n D_k$ to an isotopy (rel F_n) of X . In fact, f is an epimorphism since any orientation preserving homeomorphism of X which is the identity on F_n can be isotopic (rel F_n) to a homeomorphism which is the identity on $\bigcup_{k=1}^n D_k$ (for details see Part 3c of Lemma 3 of [7]). Moreover using Part 4 of Lemma 3 of [7] we have that a homeomorphism of X_n is in the kernel of f if and only if it is isotopic to the identity. That is, the nontrivial elements of the kernel of f are represented by boundary-fixed homeomorphisms that are isotopic to the identity, but not by an isotopy that keeps the boundary of X_n fixed. The next two lemmas are concerned with finding representatives of the isotopy classes (rel ∂X_n) of such homeomorphisms.

Let $K(X_n)$ denote the kernel of f and let A_k be a collar neighborhood of ∂D_k for $1 \leq k \leq n$, with $A_i \cap A_j = \emptyset$ if $i \neq j$.

Lemma 1: Every element of $K(X_n)$ can be represented by a homeomorphism that is the identity on

$$X - \bigcup_{k=1}^n \text{Int}(A_k)$$

Proof : Let h be a homeomorphism that represents an element of $K(X_n)$ and let h_t be an isotopy that takes h to the identity. Using the “unwinding” technique of Proposition 3.22 of [6] it is possible to extend h_t^{-1} / X_n to an isotopy g_t of X_n that takes the identity to a homeomorphism that is the identity on $X - \bigcup_{k=1}^n \text{Int}(A_k)$. The isotopy $g_t h_t$ is then an isotopy (rel ∂X_n) that takes h to a homeomorphism of the type given in the statement of the lemma.

For each k , $1 \leq k \leq n$, let $s_k^r : X_n \rightarrow X_n$ be defined by letting s_k^r restricted to the annulus A_k be the homeomorphism given in which spins one component of ∂A_k r -times while holding the other boundary component fixed and by letting s_k^r restricted to $X_n - A_k$ be the identity. s_k^r will be referred to as a “spin homeomorphism” of X_n .

Lemma 2: If X is not the 2-sphere, then every element of $K(X_n)$ has a unique representation as a product of spin homeomorphisms.

Proof: A consequence of Theorem 7.2 of [3] is that every homeomorphism of A_k which is the identity on ∂A_k is isotopic (rel ∂A_k) to s_k^r / A_k for some r . Since A_i is disjoint from A_j for $i \neq j$, this means that any homeomorphism of X_n which is the identity on $X - \bigcup_{k=1}^n \text{Int}(A_k)$ is isotopic (rel ∂X_n) to a product of homeomorphisms of the form $s_1^{r_1} \cdots s_n^{r_n}$. Thus by Lemma 1, every element of $K(X_n)$ can be represented by a product of spin homeomorphisms.

To show that the representation is unique it suffices to show that if $s_1^{r_1} \cdots s_n^{r_n}$ is isotopic (rel ∂X_n) to the identity, then $r_i = 0$ for $1 \leq i \leq n$. On the contrary, assume this product is isotopic (rel ∂X_n) to the identity, but $r_k \neq 0$ for some k . Let α be a curve which represents a generator of $\pi_1(X, q)$ where q is in ∂D_k and α is chosen so that $\alpha \cap A_j = \emptyset$ for $i \neq j$ and $\alpha \cap D_k = \{q\}$. Let β_k be a curve based at q which wraps once around ∂D_k in the direction of the spin corresponding to $s_k^{r_k}$. In the free group $\pi_1(X_n, q)$, the spin homeomorphism $s_k^{r_k}$ represents the same element as $\beta_k^{-r_k} \alpha \beta_k^{r_k}$. However, since $s_1^{r_1} \cdots s_n^{r_n}$ is isotopic (rel

∂X_n) to the identity and α is outside the support of $s_i^{r_i}$ for $i \neq k$, we have that $s_k^{r_k}(\alpha)$ must also represent the same element as α in the free group $\pi_1(X_n, q)$. This contradiction establishes the lemma.

It should be noted that Lemma 2 is false in the case that X is the 2-sphere and $n < 3$. For example, when X is the 2-sphere and $n = 1$, then every spin homeomorphism of X_1 is isotopic (rel ∂X_1) to the identity (see [8]).

The nest theorem is an immediate consequence of the fact that since the elements of $K(X_n)$ can be represented uniquely as products of spin homeomorphisms and these spin homeomorphisms all commute, the kernel of the epimorphism f is the free group on n generators.

Theorem : If X is not the 2-sphere, then the following sequence is exact.

$1 \rightarrow Z^n \rightarrow H(X_n) \rightarrow H(X, F_n) \rightarrow 1$ where the function from $H(X_n)$ to $H(X, F_n)$ is given by f as defined at the beginning of this section.

The above theorem shows that $H(X_n)$ can be obtained as an extension of Z^n by $H(X, F_n)$. In turn $H(X, F_n)$ is part of the short exact sequence $1 \rightarrow \pi_1(X - F_{n-1}, p_n) \rightarrow H(X, F_n) \rightarrow H(X, F_{n-1}) \rightarrow 1$ where the function from $H(X, F_n)$ to $H(X, F_{n-1})$ sends the isotopy class (rel F_n) of a homeomorphism of X to the isotopy class (rel F_{n-1}) of this homeomorphism. If we denote this function d , then the representation of an element in the kernel of d as an element in $\pi_1(X - F_{n-1}, p_n)$ is obtained by taking the curve formed by tracing the path of p_n during the isotopy (rel F_{n-1}) which takes a representative homeomorphism of an element in the kernel of d to the identity.

Thus, we can build up $H(X, F_n)$ from the homeotopy group of X , $H(X)$, by repeatedly extending $\pi_1(X - F_k)$ by $H(X, F_k)$ for $k = 1, \dots, n-1$ (see [1] and [2]).

REFERENCES RÉFÉRENCES REFERENCIAS

1. J. Birman, “mapping class groups of surfaces: a survey”, Discontinuous Groups and Riemann Surfaces, Ann. Math Stud. 79, Princeton Univ. Press (1974), 57-71.

2. S. Gervas, "Afinite presentation of the mapping class group of a punctured surface", *Topology* 40 (2001) 703-725
3. H. Gluck, "the embedding of the two-sphere in the four-sphere", *Trans. Amer. Math. Soc.* 104 (1962) 308-333.
4. A.Hatcher and W. Thurston, "A presentation for the mapping class group of closed orientable surfaces", *Topology* 19 (1980), 221-237.
5. J.P. Lee, "Homeotopy groups of orientable 2-manifolds" *Fund. Math.* 77 (1972), 115-124.
6. C.P. Rourke and B.J. Sanderson, "Introduction to piece-wise linear topology", Springer, Berlin 1972.
7. D. Sprows, "Homeotopy groups of compact manifolds", *Fund. Math.* 90 (1975), 99-103.
8. D. Sprows, " Subhomeotopy groups of the 2-sphere with n-holes", *Fund. Math.* 108 (1980), 1-5.
9. D .Sprows, "A note on the presentation of isotopy groups of bounded 2-manifolds", *Kumamoto Journal of Math* 2 (1989) 28-31.
10. D. Sprows, "Local subhomeotopy groups of bounded surfaces", *International. Journal. Math & Math. Sci.* 24 (2000), 251-255.
11. H. Zieschang, et. al. , "Surfaces and planar discontinuous groups", Springer Lecture Notes, 835 (1980).

This page is intentionally left blank