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I.
 

INTRODUCTION
 

Let A denote the class of functions of the form
 

       
 
                                                                                                                                                                      … (1.1) 
 
that are analytic in the open unit disk    

Also let S denote the subclass of A consisting of all functions f (z) of the form 
  
 
                                                                                                                                                                                 

…(1.2)

  
A function  is said to be uniformly convex in  if f is a univalent convex function having the property that 

for every circular arc γ contained in  with centre also in     ,the image curve  is a convex arc. Denoting the class 
of all uniformly convex functions by UCV, it was shown in [10, 13] that 
 
 
 
                                                                                                                          

        … (1.3)

 To give the geometric interpretation of (1.3), let

    

 
        
 

which is the interior of the parabola

  

                       
Then

 
 
                                                                               

…(1.4)

 

A class closely related to the class        is the class of parabolic starlike functions denoted by p [15]. This class 

 

and the class

 

of uniformly convex functions  have been studied in [ 1,6,7,11,15,16,17 ]. A survey of these 
functions can the works of [12 ].

 

Let 

  

, and 0 

 

1, then [2,13]

 
 
 
 
    

…(1.5)  

 

and
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}z)(qp{z ψ

}{Re ω > | 1−ω |

,nzna
2n 

z  (z)f ∑
∞

=
+=

∆ = {z : | z | < 1 }.

.0n a,nzna
2n 

z  (z)f ≥∑
∞

=
−=     

f∈A ∆
∆ ∆ f(γ)

( )(z)'f
(z)   ''fz1Re

(z)'f
(z)''fzUCVf +<⇔∈ , (z ∈ ∆ ).

{ }1)(Re,ivu:p −ω>ω+=ωω=

 v
2 = 2u – 1.

Ω

z f (z)f UCV 1 pf (z)
′′

∈ ⇔ + ∈Ω
′

UCV US
USp UC P

f ∈ S, 0 ≤ λ < ∞ ≤ μ<

f ∈ UCp(λ,μ)
z f ' ' (z)Re 1

f ' (z)
⇔ + 

 
 

µ+λ≥
(z)'f
(z)''fz

f ∈ USp(λ,μ)
z f ' (z)Re 

f (z)
⇔

 
 
 

µ+−λ≥ 1
(z)'f
(z)''fz

…(1.6)
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We recall here that the hadamard product (or convolution) of f (z) of the form (1.1

 

) and 
                                      

 

is 
defined as 

 
  

                                …(1.7)
 

 The generalized Fox-Wright function [8] appearing in the present paper is defined by
 

       
                                         
                                                                                                                                                                               

… (1.8)

 
 
 

where 

 

and

 

are real and positive ,                            and

 

and

 

can take non -integer values.

 

For (1.8), we have

 
  
 
 
 
 
 
 
 
 

or

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                     

                                                                                  

…(1.9)
 

where

   
 

 
 
 

                                                                                                                              
                              

 

…(1.10)
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,nznb
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z  (z)g ∑
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z  z)g(f ∑
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−=∗ z ∈ ∆ .

(a , ; A ) ;j j j 1,p
(z)    zp pq q (b , ; B ) ;j j j 1,q

α 
 ψ = ψ
 β 

                                       

,

!n jB
n)}jjb(

q

1j
{

nzjA
n)}jja(

p

1j
{

0n β+Γ∏
=

α+Γ∏
=

∑
∞

=
=

αj (j

 

= 1,…, p) βj (j = 1,…, q) ,j
p

1j
j

q

1j
1 α∑

=
>β∑

=
+ Aj (j = 1,…, p)        Bj (j = 1,…, q) 

!)1n(jB
})]1n(jjb[{

q

1j

nzjA
})]1n(jja[{

p

1j

2n 

z
jB

}jb{
q

1j

jA
}ja{

p

1j    z)}(qp{z

−−β+Γ∏
=

−α+Γ∏
=

∑
∞

=

+

Γ∏
=

Γ∏
=

=ψ

q Bj{ b }j
j  1z   z qp q An  2 j{ a }j
j  1

p A nj{ [a (n 1)]} zj j
j  1
q Bj{ [b (n 1)] } (n 1)!j j

j  1

Γ∏
∞ =Ω = + ∑
= Γ∏

=

Γ +α −∏
=

Γ +β − −∏
=

q b j{ b }j
j  1

 

  qp  p qq A j{ a }j
j  1

Γ∏
=Ω = Ψ

Γ∏
=

.

                

Now, we define a linear operator 
                               

as follows: 
                                  SS:p

qG →
pG f (z)  z f (z)q  p q= Ω ∗



 
 

     

 

                                                                                                                                                                         

 
 
 

                                                                                                                                                                     

   

 

… (1.12)

 
 

Corresponding to the operator 

 

defined in (1.11), we let  for  denotes the subclass of 

functions f ∈ S satisfying the inequality 

 

                                

 
 
 

                                                                                                                             

                                            

…(1.13)

 

In the present paper we shall use the following Lemmas [2, 18] to establish our

 

main results:

  

Lemma 1.1.

 

A function f (z) of the form (1.1) is in the class USp  if 

 
  
 

                                              

 

     

 
 

where M1 > 0 is a suitable constant. 

 

Lemma 1.2.

 

A function f(z) of the form (1.1) is in the class UCp

 
 
 
 

                            

 
 

where M2 > 0 is a suitable constant.

 

II.

 

MAIN RESULTS

 

Theorem

 

2.1. If 

 
 
 
 
 

then a sufficient condition for the function                to be in the class 

   

, and 0 

 

, is

 
 
 
 
 
 

                                                                                                          

                                 

 

                                                                                                                                                                         

 

… (2.1)

 
 

Proof. Since
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or       

                                                                           

       

                                                           

                                                                                                                                                                              

…(1.11)

Where

        

     na
!)1n(jB

})]1n(jjb[{
q

1j
jA

}ja{
p

1j

nzjA
})]1n(jja[{

p

1j
jB

}jb{
q

1j

2n 
-z  

−−β+Γ∏
=

Γ∏
=

−α+Γ∏
=

Γ∏
=

∑
∞

=
=

  

 

    nzna)n,jB,jA,jb,ja(B
2n

zp
qG ∑

∞

=
−=

  
 

p
qG

p
qS (λ) -1 ≤  γ < 1,

p pz(G f (z)) z(G f (z))q qRe 1p pG f (z) G f (z)q q

 ′ ′ − γ ≥ − 
 
 

(λ,μ)

[n(1 ) ( )] a (1 ) M ,n 1
n  2

∞
+λ − λ +µ ≤ −µ∑

=
…(1.14)

 if (λ,μ)

n[n(1 ) ( )] a (1 ) M ,n 2
n  2

∞
+λ − λ +µ ≤ −µ∑

= …(1.15)

q p q p
b a 1,  and 1 B A ,j j j j j j

j  1 j  1 j  1 j  1
> + + β > α∑ ∑ ∑ ∑

= = = =

z)}(qp{z ψ

 

US p (λ, μ), 0 ≤ λ < ∞ ≤ μ< 1, 

( a , ;A ) ;j j j j 1,p1 1p q1 ( b , ;B ) ;j j j j 1,q

+α α  +λ  ψ −µ +β β    

p A j{ a }j( a , ;A ) ;j j j 1,p j  11 M .p 1q q B( b , ;B ) ; jj j j 1,q { b }j
j  1

Γ∏α  = + ψ ≤ +
 β  Γ∏

=
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Now, we have 
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so by virtue of Lemma 1.1, we need only to show that
             

  

!)1n(jB
})]1n(jjb[{
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1j

nzjA
})]1n(jja[{

p

1j

2n 

z
jB

}jb{
q

1j

jA
}ja{

p

1j    z)}(qp{z

−−β+Γ∏
=

−α+Γ∏
=

∑
∞

=

+

Γ∏
=

Γ∏
=

=ψ

p A j{ [a (n 1)]}j j
j  1[(1 )n ( )] q Bn  2 j{ [b (n 1)]} (n 1)!j j

j  1

(1 ) M1

 
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≤ −µ … (2.2)
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−
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or         

 
 
 
 

Hence the theorem.

 
 

III.

 

AN INTEGRAL OPERATOR

 

In this section we obtain sufficient conditions for the function                                                              to be in the 

classes USp(λ,μ) and UCp(λ,μ).

 

Theorem 3.1.

 

If                                                              

 

then a sufficient condition for the function 

                                     

to be in the class USp(λ,μ),  0 ≤

 

λ

 

< ∞ and 0 ≤

 

μ< 1, is       
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where                                            is given by (1.12).

Proof. By virtue of (1.13), it is sufficient to show that

or

or  

which in view of Lemma 1.1 gives the desired result .

Theorem 2.2. Let f (z) be given by (1.1) and -1 ≤  γ  < 1, then                    if

                                                                                                            
                                                                     

… (2.3)

p A j{ a }j( a , ;A ) ;j j j 1,p j  1(1 ) 1 (1 )qp q(b , ;B ) ; Bj j j 1,q j{ b }j
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   which in view of Lemma 1.1, leads to the result (3.1).

Theorem 3.2. If 

  

( a , ;A ) ;j j j j 1,p
(1 ) (1) ( ) 1q qp p ( b , ;B ) ;j j j j 1,q

p pA Aj j{ (a )} { a }j j j
j  1 j  1( ) (1 )

q qB Bj j{ (b )} { b }j j j
j  1 j  1

−α α
= + λ ψ − λ + µ ψ

−β β

Γ −α Γ∏ ∏
= =

+ λ + µ − − µ

Γ −β Γ∏ ∏
= =

 
 
  

q p q p
b a 1,  and 1 B A ,j j j j j j

j  1 j  1 j  1 j  1
> + + β > α∑ ∑ ∑ ∑

= = = =

z
(z)    (x) dxp pq q0

ϕ = ψ∫then a sufficient condition for the function                                               to be in the class UC p (λ,μ) , 0 ≤ λ < ∞ and 0 

≤ μ< 1, is 

Proof. The result follows as direct consequence of the Theorem 3.1, keeping Lemma 1.2 in view.

IV. PARTICULAR CASES

4.1 For λ=2 and μ=0, Theorem 2.1 and 
Theorem 3.1 corresponds to the results recently 
obtained by Chaurasia  and Kumawat [3] for 0=α .

4.2 For Aj= 1(j = 0,1,…,p) ; Bj = 1(j = 0,1,…,q)
, the Theorems established in the present paper readily 
yield the results due to Bapna and Jain [2].

4.3 The results due to Chaurasia and Srivastava
[4], Dixit and Verma [5] and Shanmugam et.al. [14] also 
follow as particular cases of our main results.
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