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Absiract - In the present paper a convolution integral equation of Fredholm type whose kernel involves a product of generalized

polynomial set, general multivariable polynomials, Fox’s H-function and H -function, has been solved by using the theory of
Mellin transforms. Our main result is believed to be general and unified in nature. A number of (known and new) results follow as
special cases by specializing the coefficients and parameters involved in the kernel.
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[. INTRODUCTION

In the present paper, we have used the following special case of Raizada’'s generalized polynomial set defined as [9] :

.B,0
sr? ¥ [x; r,0,ABK, (] = (Ax+B)~*exp (er)Tl? Z[(AX+B)°‘+qnexp (-BxN)] ..(1.1)
whose explicit form is
a,B,0 L
Sn [Xx r:qu:Bakng] = Z (P(e,p,U,V) X 1 (1 2)
e,p,u,v
where
NP (- _
o(epuyv) = BINP é“( D7V Chle (0)p (_a_qn)e[%k”uj APBY, (1.3)
ulvielp! (I~a—p)e 14 n
L=/m+p+rv,(pVv=01..,n), ... (1.4)
and n Vv n p
X =X X X X ... (1.5)

epuv v=0 u=0 p=0 e=0

The polynomial set defined by (1.2) is very general in nature and it unifies and extends a number of classical
polynomials introduced and studied by various research workers such as Chatterjea [3] , [2], Gould and
Hopper [5] , Krall and Frink [8] , Srivastava and Singhal [13] etc. Some of its special cases are given by
Raizada [9] in tabular form.

The main object of the present paper is to derive an exact solution of the following convolution integral
equation of Fredholm type

7y (X] fy) dy = g (x) . 6
0 Yy

where g is a prescribed function, f is an unknown function to be determined and the kernel u(x) is given by

a,B,0 M,N @jAjhp
u(x) = SnB [z xP;rq,ABK/] Spl""’gm [wix*L,.,wx'M] H t x> "

X
A1s+Am P.Q (bj’Bj)l,Q
_My,Ny (€j.0 B 1Ny - (&) 0Ny +1,Py 1)
X x! 7
P1.Q1 (F:B1 My (B} Fdmy +1,Q;
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P1sPm
where S [X1,-+Xm] is the general multivariable polynomials introduced and defined by Srivastava [11]
01,Am
in the following manner:
P1,eP [91/P1]  [Am/Pm] (-9)p.k; ~9m)p..k
s UM Xl = X S kp.l L. mk Pmm
a1 Am k=0 Km=0 1 m-
k k
xA g, k330 K Xy Loxp ™ .. (18)

where Pyp..-.Pm are arbitrary positive integers and the coefficients A [d1,Kq;...;0y Ky ] are arbitrary constants, real
or complex.

M,N
Also, H [y]is the well known Fox's H-function whose series representation due to Braaksma [1] and

Skibiriski [70] is given by

B

MN| | @RALP | w M ()G

z Y o(ng) 2'G, - (1.9)
P.Q | | (®Bj1o G=0 g1 G'Bg
where
M N
11 F(bj—BjnG) H F(l—aj+Aj1’]G) ... (1.10)
i1 ;
oMng) = 5 = )
[T T(-bj +BJnG) H F(a jnG)
j=M-+1 j=N+
and

L (1.11)
nG = (bg+G)/By

Q= ZA—ZA-*—ZB—Z B>0 L (112)

i=1 i=N+1 i=1 i=M+1

and the ﬁ—function, introduced by Inayat-Hussain (1987) in terms of Mellin-Barnes type contour integral, is defined
by

M N || @ EDLNG @ INg 1Py
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z —j v(s) S ds, .. (1.13)
Pl’Ql (f]’BJ)l,Ml’(f]’BJF])M1+1,Q1 2mi —joo
where My Ny
I T(fj-Bjs) I {r-ej+ajs)} i
O =
Q FEOP ! .. (1.14)
1] {r(l—f,-+ﬁjs)}J M TEj-oj)
j=M1+1 -=Nl+l

which contains fractional powers of some of the T'-functions.

Here and throughout the papereJ(J_l, ,Pp) and fj(j =1,..,Qq) are complex parameters, oj >0(j=1,....P), BJ >20(j = 1,...Qq),
(not all zero simultaneously) and the exponents Ej (j=1,..Np)and Fj (j = Mq+1,....,Qq) can take non-integer values.

For the sake of brevity
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My Nq Q1 P
T= 3 IBjl+ X Ejaj— X [FBjl- X ;>0
j=1 j=1 =My +1 j=Ng+1

... (1.15)

Our method of solution of the integral equation (1.6) with kernel u(x) given by (1.7) would depends on the theory

of Mellin transform defined by

© s-1
FG) =M{f(x);s} = Io x> (x) dx,
provided that the integral exists.
[I.  MELLIN TRANSFORM OF U(X)
In order to solve the integral equation given by (1.6) we shall require the following result contained in
LEMMA. Let U (s) = M {u(x) ; s}, where u(x) is defined by (1.7), then
[a/p1]  [Am/Pm] o M
DI

X X oepuv)
e,p,uv k=0 kpm=0 G=0 g=1

U@s) =

k k
(=01)pykeq -+ (-Am) Al kg U Ky Iy 1w 2L
y 1/pkq m’pmKm 171 m-f*ml1¥q m

G n
L (D7 0MG)t'C ~(stpLaing +viky . +vimkm )y
G !By

( s+pL + Ang +viKy +..+vmKkm J
X \'f — ’
Y

where L=fn+p+rvandp>0,vi>0(i=1,..m),y>0,A>0]arg t| <%Qn,

N P M Q
Q=% Ai- X A+ X2 B- X B;>0,
i=1 i=N+1 i=1 i=M+1
My Ny Q Py
T= % IBjl+ X Ejoj— X [FfBjl- X aj>0,

=1 =1 j=M1+l j= N1+1

|argr|<%Tn,

_ min Re LJ <Re {S+pL+Xng+vlkl+...+vmkm}< ke i
1<j<sMyg Bj v 15N, ”

Proof. We have 8.0
o0 a,p,
ue =, 715 12 xP g, AB K. (]
n

p 1"'lp M!N (aJ’AJ)llP
xg 1M [wix*L,.,wp x /M ] . H tx*

qlv"'!qm PIQ

(0j.Bj)1,Q

xH xV

T dx .
P1.Q (F.B 1My (F.Bj:Fmy +1,Q
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Making use of the series expansions for the generalized polynomial set, the general multivariable
polynomials and the Fox’'s H-function given by (1.2), (1.8) and (1.9) respectively and then changing the order of
summation and integration, we get

[Q:I_/pl] [qm/pm] 0 M
X e X X X oepuv)
e.p,uv k=0 kpn=0 G=0 g=1

U(s) =

kl I‘m G n L
Wy W (=1)P o(ng)t'C z

L. 1 m G
*C0)pykq + CamIppkpy ALk 8m K] kel km! G! B

g

YN
«M {XpL+knG +vik{ vk g 171 [1x]: S}

P1.Qq @3
Now applying the following known formula due to Erdélyi (1954)
and M {x” f(z xh);s} =h1 z—(5+u)/h(5;“) 24
_M1,Np
M{le.Ql [X]?S}=\|/(—S), .. (25)

provided that T > 0, |arg 1| < %T 7, and

fj 1—ej
— min Re|—|<Re(s)< min Re||—
1<jsMy | Bj 1<j<Ng aj
in (2.3), we arrive at the required result (2.1).
[11. SOLUTION OF THE INTEGRAL EQUATION (1.6)

The solution of the convolution integral equation (1.6) is contained in the following theorem.

Theroem . Let the Mellin transform F(s), G(s) and U(s) = 0 of the functions f(x), g(x) and u(x) (defined by (1.7))
respectively exist and are analytic in some infinite strip s; < Re s < s, of the complex s-plane. Also suppose that for
afixed ¢ e (s;,8,), U'(x) is defined by

=Mt = b y;’j: SUN)ds | @)
where
* Kp(_ [a1/p] [Am/Pm]
U (S) — M 1M . mz m Z I\Z/I

M-c+kMep iy k=0 kp=0 G=0 g=1

x¢(e,p,u,v) (_Q1)plk1 ---(_qm)pmkm Alq1.Kq e 0m-Km]

k1 Km,L, G n
y Wll---Wmm 2= () o(ng)t G ~(SHuk+E+pLAANG +ViKy +. VK )Y
Y kylkp! G By
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[ S+pk+E+pL+Ang +VviKy +.+ vinKm j }_1
XW - ]
Y

provided that the following set of conditions hold true
i. largx| <%anhereT >0

ii. p=#0andkisnon-negative integer; p>0andv,>0(=1,...m)

f S+pk+E+pL+ANG + VK] +.. v K 1-e; _
i. — min Re|-|< Re{ pkrGrpLring +vikg+-+vm m} < min Re||—1 =
1<jsMy | Bj Y 1<j <Ng aj S
iv. Pi.....Poma arbitrary positive integers and the coefficients A [q1.K1;...; OmKm] are arbitrary (real or complex) ;f
constants. h

Then the integral equation (1.6) has its solution given by

0 * k
g = xHE Tyt m(y“loy) [y° o] dy,

/-\
w
&KL
w
N

provided that the integral on the right hand side of (3.3) exists.

Version [

Proof. Applying the convolution theorem for Mellin transform due to Erdélyi [4] we find from (1.6) that
UE)F(s) = G(s), .. (3.4)

where U(s) is given by (2.1), and F(s) and G(s) are Mellin transforms of f(x) and g(x) respectively.

Replacing s by s+uk+&in (3.4), we get

Volume XI Issue VII

* S+uk
F (s+uk+8) = U™ (s) uK {—;‘ j G (s+upk+€) ... (3.5)
k
Now using the formula due to Srivastava [14]
M {(XMDX)“ f(x);s}:f“(-“f“) F (s+(n) ... (3.6)
n

(€ =0, nis a non-negative integer)

Frontier Research

in (3.5), we get

F (s+uk+8) = U (5) M {(y“*loy)" Iy° g(y)];s} @7 =
w2
Again using elementary result E
M {x” £(X) ; s} = F (s+p) ... (38) =
and well known convolution theorem for Mellin transform in (3.7), we obtain :§
k © 1 x( X 1 “ i

M{x“ +8 f(x);s}=M vt (yj(y“* Dy) [Fawildy:s . - 39)

On inverting both sides of (3.9) by using the well-known Mellin inversion theorem, we arrive at the desired solution |
(3.3).

IV.  SPECIAL CASES
If we set m = 1 in the theorem and denote A [q3, k] thus obtained by Aql’kl' then the general multivariable

polynomials reduces to the general class of polynomials introduced by Srivastava [12] and we get

© 2011 Global Journals Inc. (US)
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Corollary 1 : Under the hypothesis of the theorem, the integral equation

(e8] _1 X
[y ul[jf(y) dy=9g(x) , o (47)
0 y
where the kernel
a.,B,0 p M,N @jpAjp
up(x) =S P [z xp;r,q,A,B,k,f]Sq1 [wy x"11H txt| 1
n 1 P.Q (®j.Bjh,q
Mg, N (et E 1Ny (N +1,py |
xH ! 4.2)
P..Qq (Fj.B 1My (5B Fm 11,0 | AR
8
has its solution given by
ke o 1 ox(x k
f0 = xHE] yludyj@””Dﬁ [y> ol dy . . (43)

provided that the integral in (4.3) exists, and UI(X) is the Mellin transform of

pX X X o(epuy)

Ui = ke o TRl e
I=G+uk/ulepuy k=0 G=0 g=1

K1 L, \G nG
L CWpgky A kg2 DT 0MGIT (s ke rplaing +viky)ly
v k! G! By

. (4.4)

( s+uk+E+pL+ing +v1k1] }_1
\l.l - y
Y

provided the conditions mentioned with the Theorem are satisfied.
If we set wy=1=vq,q7=0 and AO,OZ 1 in (4.2) then the general class of polynomials reduces to unity and we get

Corollary 2 : Under the hypothesis of the Corollary 1, the integral equation

Global Journal of Science Frontier Research Volume XI Issue VII Version I H October 2011

[y ~up (Jf(y) dy=9(x) , ... (4.5)
0 y
where the kernel
a,B,0 MN| |, |@jAjLp
up(x) =S [zxP:r,q,ABk,H tx .. (4.6)
n P.Q (©j.Bj)1,Q
xH Y
QL T3Bpmy (3BFmy 11,0y
has its solution given by
_yk—g . © 1 *(Xx k
fm=x“k%0y1@@ﬂwﬂw)w%mwy, (A7)

provided that the integral in (4.7) exists, and UZ(X) is the Mellin transform of

* K¢ M
Uyes) = | HEE s 5 S epuy)zt
F[—(5+Hk)/H] e,p,u,v G=0 g= 1
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-1
y (—1)G (P(T]G)tnG T—(S+uk+§+pL+knG)/y vl - s+uk+&+pL+ing
y G! Bg Y ’

provided the conditions mentioned with the Corollary 1 are satisfied.

. (4.8)

Ifwesetn=9gq=k=B=0¢=r1r=-1andA = 1in the theorem, the generalized polynomial set

o,B,0
S [x;r,0, A Bk, ¢] red
n

Corollary 8 : Under the hypothesis of the theorem, the integral equation

“ vy Lol X |y dy = , L@
IO y ”3[yj (y)dy =g (x) (4.9)

where the kernel
D110 M,N @j.AjLp
uz(x) = S Lrtm wix*1,.,wp x "M H % J

01 Am P.Q (bj’Bj)l,Q

_My,Ng (8]0 E 1Ny - (8]0 INg +1,Py
. ! ! . (4.10)
QL (5B My - (BB FMy 41,

has its solution given by
N s 0 S [T Hap Ly
00 = xHE] Ty g (v oy ) vt am oy @)

provided that the integral in (4.11) exists, and u;(x) is the Mellin transform of

>

G = ks [/pl m[qmgpm] z M
T=s+ukm] =0 kp=0 G=0g=1

k k G
wptown (D o(ng)t"C (K E4ANG +viKg vk )y
Y kyloky |G ! By

[ s+uK+E+ANG +V1KY +ot VK ] }_l
X\V - ’

v .. (412)

provided the conditions mentioned with the Theorem are satisfied.

fwesetM=Q=1,N=P=0,b, =0,B, =1andt— 0in the theorem, the Fox’s H-function reduces to unity and
we get
Corollary 4 : Under the hypothesis of the theorem, the integral equation

iyt [Xjf(y) dy =9 ()
0 4y : . (413)
where the kernel
o, ,0 p ;---;p
ug(x) =S, P [zxP;r,0,ABk,/]S Lrtm [wyx'L, . wyx M]
dy-am

CMpNp | CRFEDLNG Ny Ly
xH ¥ .. (4.14)
P.Q1 (581, Mmy - (B FM, 41,0
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has its solution given by

0 * k
09 = x M y‘1u4(§j(y“+1Dy) [y° o)1 dy . L (415)

provided that the integral in (4.15) exists, and UZ(X) is the Mellin transform of

kreswy o [P /P

¢ (e.p.uv)
[[=(s+pk)/u] e,p,u,v k1:0

Uyg(s) = {
Km=0

k Km L
(=a1) w(=qm) AT Ky s O Ky TWo w2
y 1/p1kq m’pmKm 1.1 m:"*mi¥Wq m

Y kl!...km!

-1
XT—(s+pk+<‘;+pL+vlkl+...+vmkm)/y \V{— S+uk+§+pL+v1k1+...+vmkm]} , ..(4.16)
Y

provided the conditions mentioned with the theorem are satisfied.
Further, if we set Ej(j: 1,..Nq7)= Fj (J= M1 +1,...,Q1)=1,m = 1in (4.14) then H -function reduces to the Fox’s H-

function and the general multivariable polynomials reduces to the general class of polynomials and we get the
solution of the integral equation considered by Goyal and Mukherjee [6].
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