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I. Introduction 

The series representation of the H-function of several complex variable studied by Olkha and Chaurasia [2,3] is 
given as follows: 
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Srivastava and Panda [5] have introduced the multivariable H- function
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II. The Main Integral Transformation

We obtained the following integral transformation for H- function of several complex variables defined by 
Srivastava and Panda [4] (see also [3])
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Where the series on the right hand side is convergent and is given by (1.8).

 
 

  
 

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
ti
er

R
es
ea

rc
h

V
ol
um

e
X
I
Is
su

e
IvvvvvvvvvvvvvvV

er
si
on

I

83

 vvvvvvvvvvvvvvV

FINITE INTEGRALS PERTAINING TO A PRODUCT OF SPECIAL FUNCTIONS

 ©  2011 Global Journals Inc.  (US)

  
20

11
J
u
l
y



 

 

 

 

 

 

 

 

 

  

III.

 

Proof

 

To prove that (2.1), we start with the following result [6] :

 

 

 

 

 

 

 

 

 

 

 











 −−,,...,;[...];[...]:]ρ:)ρ:)[(:]γ,γ,[:]α[

];+β[;]:+α[;](τ:)τ[(:]µ,µ,[:]σβ

;;

;;:σ

x)t(1xt,'
sz'

1z(s)(s)[(;...;]''(s)a;...;a'v

1111s)(s)[(m;...;]':)m'(s)b;...;b'[

00sP;...;P':v

11(s)Q;...;Q'
F



nnjn j
1j

(
n

n

jn j

v

1j

0n 11

2x)1Pt

)+β()+α()β(

−()α(

=

µ

σ

=

)β,α
γ

=
∞

= ∏

∏
∑












,...,

;]ρ:)ρ:)[(:]:)γ+α[(

;]τ:)τ[(:]:)σµ+σβ
:σ

'
s

'
1

(s)(s)[(;...;]''(s)a;...;a'vn v

(s)(s)[(m;...;]':)m'(s)b;...;b'n [

(s)P;...;P':v

(s)Q;...;Q'
zzF



, …(3.1)

where ;γ (i)
ji a j = 1,…,v and i = 1,…,s ;βµ (i)

ji j = 1,…, σ and i = 1,…,s; ;τρ (j)
ki

        i = 1,…,P(j) ; j = 1,…,s  

and k = 1,…,Q(s) are all real and positive, (αv) stand for the sequence of parameter α1,…,αv ; )( ( j) stand for the 

sequence of P(j) parameters ,,...,( (j)
(j)P

j)
1  j = 1,…,s, and also similar interpretation for (βσ) and (m(J)), j = 1,…,s 

and F denote the generalized Lauricella function of s-complex variables '
s

'
1 zz ,..., given by Srivastava and Daoust

[8]. Now the proof of main integral transform (2.1) is obtained after multiplying both side (3.1) by 

]−(,...,−(−( σ−ρ RkRh
R

1k1h
1

1 x)1xyx)1xH[yx)1x

. ]−(,...,−(
'
rk'

rh
r

'
1k'

1h
1 x)1xzx)1x[zH

And integrate with respect to x from 0 to 1.

Now we represent the ]−(,...,−(
'
rk'

rh
r

'
1k'

1h
1 x)1xzx)1x[zH in series form [3], given by (1.1) and interchange 

the order of integrations and summations. The required formula is obtained by evaluating the innermost integral with 

the help of result [5].

dx2x)1Px)1xyx)1xyHx)1x n

Rk
Rh

R
1k1h

1
1

1

0
−(








−(,...,−(−( β,ασ−ρ∫

)β,αβα(:+λ,

],++

∞

= )+α

++β+α(−(
=∑

RR(;...;)','20

RNR[M;...;]N',[M':1C2,A
k

kk

0k
H

1(!k 
1)nn)

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
ti
er

  
  

V
er
si
on

I

84

V
ol
um

e
X
I
Is
su

e
IvvvvvvvvvvvvvvV

FINITE INTEGRALS PERTAINING TO A PRODUCT OF SPECIAL FUNCTIONS

©  2011 Global Journals Inc.  (US)

R
es
ea

rc
h

  
20

11
J
u
l
y



 

 

       

  

  

   

  
 

 

 

 

 

  

   

 
 

 

 

 

 

Where

 

 

 

 

 












,...,

;]η:η[(;]γγ[(,],...,;σ−[,],...,−ρ−[

;]ε:)ε[,)]+(,...,)+−σ−ρ−[,]ξξ[(
R1

(R)(R)[q;...;]':)q'(R),...,':g)Rk1kRh1hk;1

(R)(R)[(p;...;]':p'RkRh1k1(h;k 1(R),...,';f)
yy , …(3.2)

,−>














ε
+σ,>















ε
+ρ ∑∑

==
1

pk
Re0

ph
Re (i)

j

(i)
ji

R

1i
(i)
j

(i)
ji

R

1i

(1.8).TR1,...,i
2

T
(yarg0T0h0k1,...,j i

i
iiii

(i) =,
π

<|)|,>,>,>,α=

IV. Special Cases

Taking r) to1i0hR), to1i0h '
ii =(→=(→ in (2.1), we obtain the following result









−(,...,−(−( σ−ρ∫

Rk

R
1k

1
1

1

0
x)1yx)1yHx)1x

. 







−(,...,−(

'
rk

r

'
1k

1 x)1zx)1zH

dxF
x)t(1xt,'

sz'
1z(s)(s)[(;...;]''(s)a;...;a'v

1111s)(s)[(m;...;]':)m'(s)b;...;b'[

00(s)P;...;P':v

11(s)Q;...;Q' 









 −−,,...,;[...];[...]:]ρ:)ρ:)[(:]γ,γ,[:]α[

;];+β[;]:+α[;](τ:)τ[(:]µ,µ,[:]σβ

;;

;;:σ



21

knni
(i)

im

r

1ijn j
1j

kk
nin

r

1iiU
i

r

1ijn j

v

1j

0inn,k,

(i)u

1im 1(!k 11n

k)1)nn)t1z
ΦΦ

)+α)+β()+α(




 !δ)β(

+ρ(Γ++β+α(−()−()()α(

=

∏∏

∏∏
∑∑

=
µ

σ

=

)(
=

=
γ

=
∞

==

∑

.











,...,

;]ρ:)ρ:)[(:]:)γ+α[

;]τ:)τ[(:]:)σµ+σβ
:σ

'
s

'
1

(s)(s)[(;...;]''sa;...;a'vn v

(s)(s)[(m;...;]':)m'(s)b;...;b'n [

(s)P;...;P':v

(s)Q;...;Q'
zzF



.









;














,...,;

=
−σ−

;]ξξ[(

)β,αβα(:+λ,

],++

∑ Rk1kiU'ik
r

1i
(R),...,':f)

(R)(R)(;...;)','10

(R)N(R)[M;...;]N',[M':1C,1A
H

 
 

  
 

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
ti
er

R
es
ea

rc
h

V
ol
um

e
X
I
Is
su

e
IvvvvvvvvvvvvvvV

er
si
on

I

85

 vvvvvvvvvvvvvvV

FINITE INTEGRALS PERTAINING TO A PRODUCT OF SPECIAL FUNCTIONS

and is  given  by

 ©  2011 Global Journals Inc.  (US)

  
20

11
J
u
l
y



 

 

  

         

 

 

 

 

 

 

 

 

 

 

Where

  

 

 

 

(2)

 

Taking r)

 

 to1

  

i0k

 

R),

 

 to1

  

i0k '
ii =(→=(→ in (2.1), we obtain the following result

 

 

 

 

,










,...,;]η:η[;]γγ[(

;]ε:ε[;













,...,;

=
−−σ−ρ− ∑

R1

RR[q;...;]':q'R,...,':g)

(R)(R)[p;...;]':p'Rk1kiU'
ik

R

1i
k

yy …(4.1)

,−>














δ
+

ε
+σ,>)ρ ∑∑

==
1

d
k

pk
Re0(Re )(

j

)(
j'

r

1
i
j

(i)
ji

R

1i







.1| t |r,1,...,,R1,...,i
2

T
(yarg0T0k0k1,...,j i

ii
'

i
(i) <==,

π
<|)|,>,>,>,α= 



[ ]Rh
R

1h
1

1
1

0
xyxyHx)1x ,...,−( σ−ρ∫ 








,...,

'
rh

r

'
1h

1 xzxzH

            
. dxF

x)t(1xt,'
sz'

1z(s)(s)[(;...;]''(s)a;...;a'v

1111(s)(s)[(m;...;]':)m'(s)b;...;b'[

00(s)P;...;P':v

11sQ;...;Q' 









 −−,,...,;[...];[...]:]ρ:)ρ:)[(:]γ,γ[:]α[

];;+β[;]:+α[;]τ:)τ[(:]µ,µ,[:]σβ

;;

;;:σ



21

knni
(i)

im

r

1ijn j
1j

kk
nin

r

1iiU
i

r

1ijn j

v

1j

0inn,k,

(i)u

1im 1(!k 11n

1)1)nn)t1z
ΦΦ

)+α)+β()+α(




 !δ)β(

+σ(Γ++β+α(−()−()()α(

=

∏∏

∏∏
∑∑

=
µ

σ

=

)(
=

=
γ

=
∞

==

∑

.











,...,

;]ρ:)ρ:)[(:]:)γ+α[

;]τ:)τ[(:]:)σµ+σβ
:σ

'
s

'
1

(s)(s)[(;...;]''(s)a;...;a'vn v

(s)(s)[(m;...;]':)m'(s)b;...;b'n [

(s)P;...;P':v

(s)Q;...;Q'
zzF



.









;














,...,;

=
−−ρ−

;]ξξ[(

)β,αβα(:+λ,

],++

∑ Rh1hiU'ih
r

1i
k1

(R),...,':f)

(R)(R)(;...;)','10

(R)N(R)[M;...;]N',[M':1C1,A
H

,










,...,;]η:η[;]γγ[(

;]ε,ε[;













,...,;

=
−−σ−ρ− ∑

R1

(R)(R)[q;...;]':q'R,...,':g)

(R)(R)[p;...;]':p'Rh1hiU'
ih

R

1i
k

yy …(4.2)

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
ti
er

  
  

V
er
si
on

I

86

V
ol
um

e
X
I
Is
su

e
IvvvvvvvvvvvvvvV

FINITE INTEGRALS PERTAINING TO A PRODUCT OF SPECIAL FUNCTIONS

©  2011 Global Journals Inc.  (US)

R
es
ea

rc
h

  
20

11
J
u
l
y



 

 

 

 

 

 

 

 

 

 

 

 
 

Where

 

 

 

 

 

 

 

(3) Reducing the H - function of several complex variables

 

to the generalized Lauricella function [8] by putting 
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Which

 

is valid under the

 

same condition as given in (2.1).

 

(4) Reducing the Lauricella function to the Kampé de Fériet function [7] by putting i = 1,2 in (4.3) and we get the 

following result
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Which

 

is valid under the same condition as surrounding (2.1).

 

(5) Reducing the H-function of several complex variables

 

to the product of R mutually independent H - functions by 

taking λ

 

= A = C = 0 in (2.1), we get the following result
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which holds under the same condition as for (2.1).
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