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Abstract

 

-

 

In this paper, we apply homotopy perturbation transform method (HPTM)

 

for solving 
nonlinear wave-like equations of variable coefficients. This method is the coupling of homotopy 
perturbation method and Laplace transform method. The nonlinear terms can be easily obtained 
by the use of He's polynomials. HPTM

 

present an accurate methodology to solve many types of 
linear and nonlinear differential equations. The approximate solutions obtained by means of 
HPTM

 

in a wide range of the problem's domain were compared with those results obtained from 
the actual solutions, the Variational iteration method (VIM)

 

and the Adomain decomposition 
method (ADM). The fact that proposed technique solves nonlinear problems without using 
Adomain's polynomials can be considered as a clear advantage of this algorithm over the 
decomposition method. The

 

comparison shows a precise agreement between the results.
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I.

 
INTRODUCTION

 
onlinear phenomena appear everywhere in our 
daily life and our scientific works, and today 
nonlinear science represents one of the most 

challenging promising, and romantic fields of research 
in science and technology

 
[1-2]. It was very difficult to 

solve nonlinear problems effectively either numerically or 
analytically, an even more difficult to establish models 
for real world problems. In recent years, many authors 
have paid attention to studying the solutions of nonlinear 
partial differential equations by Adomain decomposition 
method [3-6], the tanh method [7], the sine-cosine 
method [8-9] the differential transform method [10-11], 
the variational iteration method [12-17] and the Laplace 
decomposition method [18-22].

 
In numer methods, 

computers codes and more powerful processors are 
required to achieve methods. The main advantage of 
semi-analytical methods, compared with others 
methods, is based on the fact that they can be 
conveniently applied to solve various complicated 
problems    with    accurate    approximation ,   but    this 
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approximation is acceptable only for small range [23], 
because boundary conditions in one dimension are 
satisfied via these methods. Consequently, this shows 
that most of these semi-analytical methods encounter 
inbuilt deficiencies like he

 
calculation of Adomain 

polynomials, huge computational works and divergent 
results. One of these semi-analytical methods is the 
homotopy perturbation method (HPM). He [24-32] 
developed the homotopy perturbation method for 
solving linear, nonlinear, initial and boundary value 
problems [33-38] by merging two techniques, the 
standard homotopy and the perturbation technique. The 
homotopy perturbation method was formulated by 
taking the full advantage of the standard homotopy and 
perturbation technique and has been modified by the 
some scientists to obtain more accurate results, rapid 
convergence, and to reduce the amount of computation 
[39-44]. Everyone familiar the term namely, Laplace 
transform [45], is a powerful technique for solving 
various linear partial differential equations having 
considerable significance in various fields of science 
and engineering. But it incapable of solving nonlinear 
system of equations because of the difficulties that are 
arises due to nonlinear terms. Various techniques have 
been

 
proposed to handle these nonlinearities to 

produce a highly effective technique for solving the 
nonlinear problems [46-48].

 In this paper we use a new modification of HPM 
to overcome the difficulties of handling nonlinear terms. 
HPTM provides the solution

 
in a rapid convergent series 

which may lead the solution in rapid convergent series 
which may lead the solution in closed form. The 
nonlinear terms can be easily handled by the use of He's 
polynomials [49-50]. HPTM is applied without any 
discretization or

 
restrictive assumptions and avoids 

round-off errors. Several examples are given to verify the 
reliability and efficiency of the homotopy perturbation 
transform method. In this paper, we consider the 
following nonlinear wave-like equations
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 with the initial conditions

 

 

)()0,( 0 XaXu = ,
 

 

).()0,( 1 XaXut =
 

 

 

 

 
 II.

 

HOMOTOPY PERTURBATION 
TRANSFORM METHOD (HPTM)

 This method has been introduced by Y.Khan 
and Q.Wu [52] by combining the Homotopy perturbation 
method and Laplace transform method for solving 
various types of linear and nonlinear systems of partial 
differential equations. To illustrate the basic idea of 
HPTM, we consider a general nonlinear partial 
differential equation with the initial conditions of the form 
[52].

 ),,(),(),(),( txgtxuNtxuRtxuD =++    

 

      
(2)

 

)()0,( xhxu ,        )()0,( xfxut .

 where D

 

is the second order linear differential 
operator 22 tD ∂∂= , R is the linear differential 
operator of less order than D ; N

 
represents the general 

nonlinear differential operator and ),( txg is the source 
term. Taking the Laplace transform (denoted in this 
paper by L ) on both sides of Eq. (2):

 
 

[ ( , )] [ ( , )] [ ( , )] [ ( , )]L Du x t L Ru x t L N u x t L g x t+ + =

 

  
(3)

 
 

Using the differentiation property of the Laplace 
transform, we have
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Operating with the Laplace inverse on both sides of Eq. 
(4) gives

 

1
2
1( , ) ( , ) [ ( , ) ( , )]u x t G x t L L Ru x t N u x t
s

−  = − + 
           

      

(5)   

 

where ),( txG

 

represents the term arising from 
the source term and the prescribed initial conditions. 
Now we apply the homotopy perturbation method   
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and the nonlinear term can be decomposed as 

 

 

0
( , ) ( )n

n
n

N u x t p H u
∞

=
= ∑

 

      

  

(7)

 

for some He's polynomials )(uH n (see [49-50]) that are 
given by
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Substituting Eq. (8), Eq. (7) and Eq. (6) in Eq. 
(5) we get
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which is the coupling of the Laplace transform and the 
homotopy perturbation method using He's polynomials. 
Comparing the coefficient of like powers of p, the 
following approximations are obtained.
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[ ]2
2 1 12

1: ( , ) ( , ) ( )p u x t L Ru x t H u
s

= − + ,

   

(10)[ ]3
3 2 22

1: ( , ) ( , ) ( )p u x t L Ru x t H u
s

= − + ,



and so on

,

Here ),,,( 21 nxxxX = and iij GF 11 , are 

nonlinear function of tX , and .u iij GF 2,2 are 

nonlinear function of derivatives of ., ji xx While SH ,
are nonlinear functions and ,k ,m p are integers. These 
types of equations are of considerable significance in 
various fields of applied sciences, mathematical 
physics, nonlinear hydrodynamics, engineering physics, 
biophysics, human movement sciences, astrophysics 
and plasma physics. These equations describe the 
evolution of stochastic systems. For example, they 
describe the erratic motions of small particles that are 
immersed in fluids, fluctuations of the intensity of laser 
light, velocity distributions of fluid particles in turbulent 
flows and the stochastic behavior of exchange rates. M. 
Ghoreishi [51] has been solved this type of equation by 
Adomain Decomposition method (ADM) to avoid 
unrealistic assumptions in calculating the Adomain 
polynomials. ADM is the most transparent method for 
solutions of the nonlinear problems; however, this 
method is involved in the calculation of complicated 
Adomain polynomials which narrows down its 
applications. To overcome this disadvantage of the 
Adomain decomposition method, we consider the 
homotopy perturbation transform method to solve 
various nonlinear wave-like equations of variable 
coefficients.

= =



 

 

    

  

  
 

III.

 

APPLICATIONS

 

In this section, we apply the homotopy 
perturbation transform method (HPTM) for solving 
various types of nonlinear wave-like equations with 
variable coefficients.

 

Example 3.1

 

Consider the following two dimensional 
nonlinear wave-like equations with variable coefficients 
[51].
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with the initial conditions

 

xyeyxu =)0,,( ,            
xy

t eyxu =)0,,(

 

The exact solution is given by

( )ttetyxu xy sincos),,( += ; by means of homotopy 
perturbation transform method,

 

Taking Laplace transform both of sides, subject 
to the initial condition, we get
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Taking inverse Laplace transform, we get
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by homotopy perturbation method, we get
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using equation (14) in equation (13), we get
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Where )(uH n

 

and )(uKn

 

are the He's

 

polynomials 

having the value ( )yyxxn uu
yx

uH
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The first few components of )(uH n and )(uKn are 
given by
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Comparing the coefficients of various powers of
,p we get

 

( ) xyettyxup += 1),,(: 0
0

 

( ) ( ) ][ 




 −+= − ),,()()(1),,(: 0002
1

1
1 tyxuuKyxuHL

s
Ltyxup

 

                    










+−=

62

32 tte xy

 

( ) ( ) ][ 




 −+= − ),,()()(1),,(: 1112
1

2
2 tyxuuKyxuHL

s
Ltyxup

               

(16)

 

  

=










+

12024

54 tte xy

 

( ) ( ) ][ 




 −+= − ),,()()(1),,(: 2222
1

3
3 tyxuuKyxuHL

s
Ltyxup

 

  

=










+−

5040720

76 tte xy

 



 

and so on
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Therefore the approximate solution is given by
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     (17)
which converges to the exact solution and is same as 
obtained by M.Ghoreishi [51]

Example 3.2 Consider the following nonlinear wave-like 
equation with variable coefficients [51].
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with the initial conditions
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By applying above said method, we get
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Where )(),( uKuH nn and )(uJ n are He's polynomials. 
First few components of He's polynomials are given by
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Comparing the coefficients of various powers of ,p we 
get
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Therefore the approximate solution is given by
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which converges to the exact solution and is same as 
obtained by M.Ghoreishi [51]

 

Example

 

3.3

 

Consider the following nonlinear wave-like 
equation with variable coefficients [51].
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with the initial conditions
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By applying above said method, we get
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Where )(uH n and )(uKn are He's 
polynomials. First few components of He's polynomials 
are given by
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

Comparing the coefficients of various powers of ,p we 
get
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Therefore the approximate solution is given by
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which converges to the exact solution and is same as 
obtained by M.Ghoreishi [51]

 

IV.

 

CONCLUSION

 

In this paper, we applied the homotopy 
perturbation transform method (HPTM) for solving 
nonlinear wave-like equations with variable coefficients. 
The proposed method is applied successfully without 
any discretization, linearization or restrictive 
assumptions. It may be concluding that the HPTM by 
using He's polynomials is simple, but the calculation of 
Adomain's polynomials is complex. Its small size of 
computation in comparison with the computational size 
required in other numerical methods and its rapid 
convergence show that the method is reliable and 
introduces a significant improvement in solving 
nonlinear differential equations over existing methods.
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