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Sumudu Homotopy Perturbation Technique

Devendra Kumar® Jagdev Singh®, Sushila®

Abstract - In this paper, a combinatory method of the sumudu
transform and the homotopy perturbation method is proposed
for solving one dimensional non-homogeneous partial
differential equations with a variable coefficient. This method
presents an accurate methodology to solve non-
homogeneous partial differential equations with a variable
coefficient. The obtained approximate solutions are compared
with exact solutions and those obtained by other analytical
methods, showing reliability of the present method. The
comparison shows a precise agreement between the results,
and introduces this new method as an applicable one which it
needs fewer computations and is much easier and more
convenient than others, so it can be widely used in science
and engineering.

Keywords and Phrases : Sumudu transform, Homotopy
perturbation  method, Non-homogenous — partial
differential equations.

[. INTRODUCTION

Dartial differential equations are obtained in
modeling of real-life science and engineering

phenomena that are inherently nonlinear with
variable coefficients. Most of these types of equations
do not have an analytical solution. Therefore, these
problems should be solved by using numerical or semi-
analytical techniques. In numeric methods, computer
codes and more powerful processors are required to
achieve accurate results. Acceptable results are

obtained via semi-analytical methods which are more
convenient than numerical methods. The main
advantage of semi-analytical methods, compared with
other methods, is based on the fact that they can be
conveniently applied to solve various complicated
problems. In the semi-analytical methods such as the
homotopy perturbation method, the variational iteration
method, and the Adomian method, we can always
obtain conveniently acceptable results in analytical
forms instead of numerical ones for partial differential
equations. These methods have simple solution
procedures to solve various complicated problems [1-
3]. The non-homogeneous partial differential equations
with variable coefficients can be solved by the above
said methods, however, with less accurate
approximations  [4-6] which might not satisfy
initial/boundary conditions. To overcome this deficiency,
this paper suggests a new method which is a
combination of sumudu transform and homotopy
perturbation method (SHPM), so that the obtained
solutions satisfy the initial/boundary conditions. In early
90’s, Watugala [7] introduced a new integral transform,
named the sumudu transform and applied it to the
solution of ordinary differential equation in control
engineering problems. The sumudu transform is defined
over the set of functions.

A ={f®)13M, 7, >0, [f )k Me" ,if te(~1)x[0,:0)}

by the following formula

fuy=slf@®)]=] fuye'd,ue(-r,1,) )
0
For further detail and properties of this transform, see [8-10].

II.  SUMUDU HOMOTOPY PERTURBATION METHOD (SHPM)

To illustrate the basic idea of this method, we consider a general nonlinear form of one-dimension non-

homogenous partial differential equation with a variable coefficient of the form:

oy 0%y
=u(X)—=+o(X, 1),
p m(x) 2 o(x,t) )
with subject to the boundary conditions
y(0,t) =g, (1), yLt)=g,(1). 3
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And the initial condition
y(x,0) =f(x).
Taking the sumudu transform on equations (2) and (3), we get
d’y _you) | o0 u+fe)/u
dx®  up(x) u(x)

y(0,u)=g,(u), y(Lu)=g,(u),

which is second order boundary value problem. According to HPM, we construct a homotopy in the form

d>v d’y | [d>v v L dw+f /U]

HEP = @-P) = [P G o0 w0

where VB is the arbitrary function that satisfies boundary conditions (6), therefore

v(X,u) = ipivi (X,u) = v, (X, U) +p'v, (X, U) + p?v_ (X, U) +---
-0

Taking the inverse sumudu transform from both sides of (10), one obtains
[e 0]
_ [ _ 1 2
v(x,t) = Zp v, (x,t) = vo(x,t) +p vl(X,t) +p vz(x,t) 4+
i=0
Setting P=1 results in the approximate solutions of eq. (2)

Yy =y, () +y (X, ) +y, (X, 1) +---.

In this section, we use sumudu homotopy perturbation method (SHPM) in solving the one-dimension non-

homogenous partial differential equations.

Example 4.1 : Consider the problem

2
% _ 2)(_32/ +e7 (cos(t) —sin(t)),

subject to the initial condition

y(x,0) = x.
And the boundary conditions

y(0,t) =sin(t), y(Lt) =

This problem has an exact solution that is

y(X,t) =x+e *sin(t).

1+sn(t)

Taking the sumudu transform of eq. (11) and its boundary conditions with respect to t, and considering the

initial condition, we have

ﬂ—i+§+e‘x( 1-u ij
u 1+u?)

- u — u
ou)=——, =1+——
y(O,u) Y y(Lu) +e(1+u2)
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To solve eq. (15) by means of HPM, a homotopy equation can be readily constructed as follows
g—
d?v d7y,

d?v V. X e *(1-u)
dx? u”

A > (17)
dx dx? u u 1+u

H(v,p) = (1-p) =0,pe[0]]

Now, we obtain a solution of eq. (17) in the form v(X, U)= z p'vi (X,U). After substituting it into eq. (17)
i0
and rearranging the resultant equation based on powers of p-terms, following sets of linear differential equations can

be obtained:

J 0, v(Ou) 0, v (1,u) 0

d?v_ d?%y
22020, v (0,u)=0, v,(Lu)=0
dX2 dX ( ) ( )
'dzvl_vo+£_e (1 u
dX2 u u 1+u
- d?v. _
p 2' -1 -0, v.(0O,u)=0, v.(Lu)=0, i =2,34,...
dx i i
The initial approximation VO(X, U) can be freely chosen, Here we set
vy = BNy UK
1+u? e(1+u?)

which satisfies boundary conditions (16).

Using some mathematical software to solve eq. (18b-18c), and taking inverse sumudu transform, we get the

following result

y,(x,t) = x+e™ sin(t) +é(6+ 3x?-6e* +x3(e?

Comparison of the obtained result with those obtained by other methods is shown in Table 1. As can be
seen from Table 1, SHPM leads to more accurate solution.

—1) + x(4e™ —8) cos(t)).

(18.a)

(18.b)

(18.c)

(19)

Table 7 : Comparison between the results and those in open literature
X=0.1 u(x,t) SHPM u(x,)LHPM[11] | u (x,t) HPM [5] | u(x,t)VIM[6]
t u(x,t) exact (one iteration) | (one iteration) | (five iteration) | (five iteration)
0.1 0.190333011 0.187726613 0.187726613 0.19033301 0.19033301
0.3 0.367397741 0.364895251 0.364895251 0.367396826 0.367396826
0.5 0.533802166 0.531503352 0.531503352 0.533782618 0.533782618
0.9 0.808783498 0.807155201 0.807155201 0.8081252 0.8081252
1.5 1.002570788 1.002385493 1.002385493 0.988816989 0.988816989
3 0.227690664 0.230283934 0.230283934 -0.554986914 -0.554986914
4.5 -0.784505828 -0.783953651 -0.783953651 -8.178595887 -8.178595887
7 0.694466058 0.692491222 0.692491222 -67.88113901 -67.88113901
X=0.9
0.1 0.940589238 0.938138815 0.938138815 0.940589238 0.940589238
0.3 1.02014955 1.017796817 1.017796817 1.020149139 1.020149139
0.5 1.094919878 1.092758632 1.092758632 1.094911094 1.094911094
0.9 1.218476955 1.2169461 1.2169461 1.218181163 1.218181163
15 1.305551197 1.305376991 1.305376991 1.299371217 1.299371217
3 0.957375114 0.959813195 0.959813195 0.605695409 0.605695409
4.5 0.502565913 0.503085045 -0.503085045 -2.819812914 2.819812914
7 1.167110818 1.165254163 1.165254163 -29.64589477 -29.64589477

© 2011 Global Journals Inc. (US)

September 2011

H
-

[ssue VI Version I

Volume XI

Research

Frontier

Global Journal of Science



September 2011

(o))
N

VI Version I

Volume XI Issue

Research

Frontier

Global Journal of Science

SUMUDU HOMOTOPY PERTURBATION TECHNIQUE

Example 4.2 : Now, consider the problem

%y 0%y .
—2 =—2 +¢e"(cosh(t) —sinh(t)), 20
o (cosh(t) (1) (20)
subject to the initial condition
3
X
y(x.0) =~
And the boundary conditions
y(0,1) = sinh(t), y(Lt) =sinh(t)+ t+ %. 22)
This problem has an exact solution that is 3
. X
y(x,t) = " sinh(t) +€+ Xt. (23)

Taking the sumudu transform of eq. (20) and its boundary conditions with respect to t, and considering the
initial condition, we have

d2y x3 1
g—y+—+eX ——|=0, (24)
dx u 6u 1+u
yOU) =——, yLU) = — +u+= 25
To solve eq. (24) by means of HPM, a homotopy equation can be readily constructed as follow
2_ J—
d2v d%y d?v x> 1
H(v,p) =(1-p) —5——° —2—X+—+ex ——1|=0,pel0]] (26)
dx dx dx u 6u 1+u
Now, following the same procedure as example 4.1, we assume the solution of equation (26) has a form
o0
v(X,u) = Z p'vi (X,U), and choose an initial solution in the form
i0
' ul-x) (1 eu
vo(x,u)=—2+x —+u+ 5 |
1-u 6 1-u

which satisfies boundary conditions (26). Finally solving sets of linear differential equations that obtained from

substituting V(X, u) in eq. (26) and taking inverse sumudu transform, we get the following result

y,(x,t) =€*sin(t) + xt+%(6+ 3x%+x3-6e* +x3(e-1) + x(5e—8)cosh(t)). @7

Comparison of the obtained result with those obtained by other methods is shown in Table 2. As it can seen
it is so close to the exact solution.

Table 2 . Comparison between the results and those in open literature

X=0.1 ¢ ¢ u(x,t) SHPM UHLHPMI11] | u(xt) HPM[5] | u(x,bVIM[6]
t u(x.) exac (one iteration) | (one iteration) | (five iteration) | (five iteration)
0.1 0.120868046 0.114140161 0.114140161 0.131708767 0.120868044
0.3 0.366713639 0.35971574 0.35971574 0.458331767 0.366712518
0.5 0.626066044 0.618517281 0.618517281 0.870229167 0.626041953
0.9 1.224643099 1.215049466 1.215049466 1.951824767 1.223815452
15 2.503384397 2.48763646 2.48763646 4.222104167 2.485179894
3 11.3716307 11.30423389 11.30423389 13.25116667 10.05353534
4.5 50.18618582 49.88484395 49.88484395 26.71272917 31.61579702
7 606.6832 603.0125545 603.0125545 56.44116667 139.4441579
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X=0.9

0.1 0.45787045 0.329380987 0.329380987 0.4992421 0.457870447
0.3 1.140499061 1.011722397 1.011722397 1.3590651 1.140496567
0.5 1.853187635 1.723825043 1.723825043 2.3665625 1.853134019
0.9 3.456323732 3.324786111 3.324786111 4.8649581 3.454481771
1.5 6.708682372 6.570598712 6.570598712 9.9684375 6.668167506
3 27.46149634 27.26847624 27.26847624 31.372500 24.52802118
4.5 114.8610462 114.41919 114.41919 68.0090625 73.53188592
7 1355.061543 1351.035919 1351.035919 171.36250 315.201931

V. CONCLUSIONS

In this paper, a new modified HPM, namely the
sumudu homotopy perturbation method (SHPM) is
introduced and the obtained results are compared with
those obtained by LHPM, HPM, VIM and exact solutions
for non-homogeneous partial differential equations with
a variable coefficient. The results reveal that SHPM is an
efficient and has good agreement with the exact
solutions. In conclusion, the SHPM may be considered
as a nice refinement in existing numerical techniques
and might find the wide applications.
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