A Quarter Symmetric Non-metric Connection in a Generalized Co-symplectic Manifolds

By S. Yadav, D. L. Suthar

Abstract - In this paper, we have derived some properties of quarter symmetric non-metric connection in a generalized co-symplectic manifold.

Keywords : Quarter symmetric non-connections, Almost contact metric manifolds, generalized co-symplectic manifold, generalized quasi-Sasakian manifold.

© 2011, S. Yadav, D. L. Suthar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
A Quarter Symmetric Non-metric Connection in a Generalized Co-symplectic Manifolds

S. Yadav, D. L. Suthar

Abstract - In this paper, we have derived some properties of quarter symmetric non-metric connection in a generalized co-symplectic manifold.

Keywords: Quarter symmetric non-connections, Almost contact metric manifolds, generalized co-symplectic manifold, generalized quasi-Sasakian manifold.

I. INTRODUCTION

II. PRELIMINARIES

An n-dimensional differentiable manifold M_n is an almost contact manifold if it admits a tensor field of type F, a vector field U and 1-form u satisfying for arbitrary vector field X.

\[(a) \quad \overline{X} + X = A(X) \quad (b) \quad U = 0 \quad (2.1)\]

where $\overline{X} \equiv FX$

Again (2.1) (a) and (2.1) (b), gives

\[(a) \quad u(\overline{X}) = 0 \quad (b) \quad u(U) = 1 \quad (2.2)\]

An almost contact manifold M_n in which a Riemannian metric tensor g of type $(0, 2)$ satisfies

\[(a) \quad g(\overline{X}, \overline{Y}) = g(X, Y) - u(X)u(Y) \quad (b) \quad g(X, U) = u(X) \quad (2.3)\]

for arbitrary vector field X and Y, is called an almost contact metric manifold.

Let us put

\[\ ^{I}F(X, Y) = g(\overline{X}, Y) \]

Then, we obtain

\[(a) \quad \ ^{I}F(\overline{X}, \overline{Y}) = \ ^{I}F(X, Y) \quad (b) \quad \ ^{I}F(X, Y) = g(\overline{X}, Y) = -g(X, \overline{Y}) = -\ ^{I}F(Y, X) \quad (2.4)\]

An almost contact metric manifold satisfying

\[(D_{X}^{\ ^{I}F})(Y, Z) = u(Y)(D_{X}u)(Z) - u(Z)(D_{X}u)(Y) \quad (2.5)\]

\[(D_{X}^{\ ^{I}F})(Y, Z) + (D_{Y}^{\ ^{I}F})(Z, X) + (D_{Z}^{\ ^{I}F})(X, Y) + u(X)[(D_{Y}u)(Z) - (D_{Z}F)(\overline{Y})] \quad (2.6)\]

\[+ u(Y)[(D_{Z}u)(\overline{Z}) - (D_{Y}u)(\overline{Z})] + u(Z)[(D_{X}u)(\overline{Y}) - (D_{Y}u)(\overline{X})] = 0\]

for arbitrary vector field X, Y, Z are respectively called generalized co-symplectic and generalized quasi-Sasakian manifolds[11].

Author**: Department of Mathematics Alwar Institute of Engineering & Technology, North Ext., Matsay Industrial Area, Alwar-301030 (India)
E-mail : prof_sky16@yahoo.com, dds_suthar@yahoo.co.in

© 2011 Global Journals Inc. (US)
If on any manifold U, satisfies

(a) $\left(D_{\chi}u\right)(Y) = -\left(D_{\xi}u\right)(Y) = \left(D_{\eta}u\right)(X)$ \hspace{1cm} (2.7)

(b) $\left(D_{\xi}u\right)(Y) = -\left(D_{\tau}u\right)(Y) = \left(D_{\eta}u\right)(X)$ and

(c) $\left(D_{U_{1}}F\right) = 0$

then U_{1} is said to be the first class.

If on an almost contact metric manifold U satisfies

(a) $\left(D_{\chi}u\right)(Y) = \left(D_{\tau}u\right)(Y) = -\left(D_{\eta}u\right)(X)$ \hspace{1cm} (2.8)

(b) $\left(D_{\xi}u\right)(Y) = -\left(D_{\tau}u\right)(Y) = \left(D_{\eta}u\right)(X)$ and

(c) $\left(D_{U_{2}}F\right) = 0$

then U_{2} is said to be the second class.

The Nijenhuis tensor in a generalized co-symplectic manifold is given by

(a) $N(X,Y) = \left(D_{\chi}F\right)Y - \left(D_{\tau}F\right)(X) - \left(D_{\eta}F\right)(Y) + \left(D_{\xi}F\right)(X)$ \hspace{1cm} (2.9)

(b) $\left(D_{\chi}F\right)(Y,Z) = \left(D_{\tau}F\right)(Y,Z) - \left(D_{\eta}F\right)(X,Z) + \left(D_{\xi}F\right)(X,Z) - \left(D_{\xi}F\right)(X,Z)$

III. Quarter Symmetric Non-Metric Connection in a Generalized Co-Symplectic Manifold

Let (M^n, g) be a generalized co-symplectic manifold with Riemannian connection D. We define a linear connection B on (M^n, g) by

$$B_XY = D_X Y + u(Y)X + a(X)FY$$ \hspace{1cm} (3.1)

where u and a is 1-form associated with vector field ξ and A on (M^n, g) that is

(a) $g(X, U) = u(X)$ and

(b) $g(X, A) = a(X)$ \hspace{1cm} (3.2)

for all vector field $X \in \mathcal{X}(M^n)$, where $\mathcal{X}(M^n)$ is the set of all differentiable vector fields on (M^n, g).

Using (3.1) the torsion tensor T of (M^n, g) with respect to connection B is given by

$$T(X,Y) = u(Y)X - u(X)FY + a(X)FY - a(Y)FX$$ \hspace{1cm} (3.3)

A linear connection satisfying (3.3) is called Quarter-symmetric connection and metric tensor g satisfies [10].

$$\left(B_X g\right)(Y,Z) = -u(Y)g(FX,Z) - u(Z)g(FY,Y) - 2a(X)g(FY,Z) - 2\left(H(X,Y)\right)$$ \hspace{1cm} (3.4)

for arbitrary vector field X, Y, Z.

Then a linear connection B defined by (3.1) satisfies (3.3) and (3.4) is called a quarter-symmetric non-metric connection.

If we put

$$B_XY = D_X Y + H(X,Y)$$

Where H is a tensor of type $(0, 2)$, then we have

$$\begin{align*}
(i) & \quad H(X,Y) = u(Y)X + a(X)FY \\
(ii) & \quad H(X,Y,Z) = u(Y)g(X,Z) + a(X)g(FY,Z) \\
(iii) & \quad T(X,Y,Z) = u(Y)g(FX,Z) - u(X)g(FY,Y) + a(X)g(FY,Z) - a(Y)g(FX,Z) \\
(iv) & \quad \left(B_X u\right)(Y) = \left(D_X u\right)(Y) + g(X,Y) + H(X,Y)
\end{align*}$$ \hspace{1cm} (3.5)
where

\[H(X,Y,Z) = \frac{1}{2} g(H(X,Y)Z) \]

\[T(X,Y,Z) = \frac{1}{2} g(T(X,Y)Z) \]

we have

\[X'(F,Y,Z) = (D_X F)(Y,Z) + (D_Y F)(Z,X) + F(Y,D_X Z) \]

\[= (B_X F)(Y,Z) + (B_Y F)(Z,X) + F(Y,D_X Z) \]

Using (3.1) in the above equation, we get

\[X'(F,Y,Z) = (B_X F)(Y,Z) + (B_Y F)(Z,X) + F(Y,D_X Z) + F(Y,F,Z) \]

(3.6)

The Nijenhuis tensor \(N \) in term of quarter symmetric non metric connection \(B \) is given by

\[
\begin{cases}
(i) & N(X,Y) = (B_X F)(Y) - (B_Y F)(X) + (B_X F)(Y) - (B_Y F)(X) \\
(ii) & N(X,Y,Z) = (B_X F)(Y,Z) - (B_Y F)(X,Z) - (B_X F)(Y,\bar{Z}) - (B_Y F)(X,\bar{Z})
\end{cases}
\]

(3.7)

Theorem 3.1: A generalized co-symplectic manifold admitting quarter symmetric non-metric connection such that \(B_X F = 0 \), then \(F \) is locally killing provided the vector fields \(X,Y,Z \) are orthogonal to \(U \).

Proof: From (3.6), we have

\[(B_X F)(Y,Z) = (D_X F)(Y,Z) + u(Y) F(X,Z) + a(X) F(\bar{Y},Z) + u(Z) F(Y,X) + a(X) F(Y,\bar{Z}) \]

Since \(B_X F = 0 \), we get

\[(D_X F)(Y,Z) = -u(Y) F(X,Z) - a(X) F(\bar{Y},Z) - u(Z) F(Y,Z) - a(X) F(Y,\bar{Z}) \]

(3.8)

Similarly

\[(D_Y F)(X,Z) = -u(X) F(Y,Z) - a(Y) F(\bar{X},Z) - u(Z) F(X,Z) - a(Y) F(X,\bar{Z}) \]

(3.9)

By virtue of equation (3.8) and (3.9), we get

\[(D_X F)(Y,Z) + (DF)(X,Z) = [u(Y) + u(Z)] F(Y,Z) - [u(Y) + u(Z)] F(Y,Z) \]

(3.10)

Taking the vector field \(X,Y,Z \) orthogonal to \(U \), we get

we get the required result.

Theorem 3.2: A generalized co-symplectic manifolds admitting quarter symmetric non-metric connection is locally closed with respect to this connection \(D \) if and only if it is locally closed with respect to Riemannian connection provided the vector fields \(X,Y,Z \) orthogonal to \(\xi \).

Proof: We have

\[X'(F,Y,Z) = (D_X F)(Y,Z) + (D_Y F)(Z,X) + F(Y,D_X Z) \]

\[= (B_X F)(Y,Z) + (B_Y F)(Z,X) + F(Y,D_X Z) \]

Using (3.1), we get

\[(B_X F)(Y,Z) = (D_X F)(Y,Z) + u(Y) F(X,Z) + a(X) F(\bar{Y},Z) + u(Z) F(Y,X) + a(X) F(Y,\bar{Z}) \]

(3.11)

from (3.11), we obtained

\[(B_X F)(Y,Z) + (B_Y F)(Z,X) + (B_Z F)(X,Y) = (D_X F)(Y,Z) + (D_Y F)(Z,X) + (D_Z F)(X,Y) \]

\[+ 2u(Y) F(X,Z) + a(X) F(\bar{Y},Z) + F(Y,\bar{Z}) \]

\[+ 2u(Z) F(Y,X) + a(Y) F(\bar{Z},X) + F(Z,\bar{X}) \]

\[+ 2u(X) F(Z,Y) + F(Z,Y) + a(Z) F(\bar{X},Y) + F(X,\bar{Y}) \]

Using (2.4)(b) in above, we have

\[(B_X F)(Y,Z) + (B_Y F)(Z,X) + (B_Z F)(X,Y) = (D_X F)(Y,Z) + (D_Y F)(Z,X) + (D_Z F)(X,Y) \]

\[+ 2u(Y) F(X,Z) + u(Y) F(X,Z) + u(Z) F(Y,X) \]

\[+ u(X) F(Z,Y) + u(Y) F(X,Z) + u(Z) F(Y,X) \]
Taking the vector field X, Y, Z orthogonal to U, we get
\[
(B_X F)(Y, Z) + (B_Y F)(Z, X) + (B_Z F)(X, Y)
= (D_X F)(Y, Z) + (D_Y F)(Z, X) + (D_Z F)(X, Y) = 0
\] (3.12)

Theorem 3.3: A generalized co-symplectic manifolds admitting quarter symmetric non-metric connection satisfies the following relations

i. $(B_X F)(Y) = (D_X F)(Y)$
ii. $(B_X F)(\bar{Y}) = (D_X F)(\bar{Y})$
iii. $N(X, Y) = 0$ (Complete integrable) if $D_X F = 0$

Proof: From (3.1), we have
\[
B_X Y = D_X Y + H(X, Y)
\] (3.13)
where
\[
H(X, Y) = u(Y)X + a(X)FY
\]
for any vector field for \bar{Y}, equation (3.13) can be written as
\[
(B_X F)(Y) = (D_X F)(Y) - B_X \bar{Y} + (D_X \bar{Y} - a(X)Y + A(Y)a(X)T)
\] (3.14)
Operating both side equation (3.13) by
\[
\frac{B_X \bar{Y} - D_X \bar{Y}}{\bar{Y}} = u(Y)X - a(X)Y + a(X)A(Y)T
\] (3.15)
Using (3.15) in (3.14), we get
\[
(B_X F)(Y) = (D_X F)(Y) - u(Y)\bar{X}
\] (3.16)
Barring X, Y and respectively in (3.16) and using (2.2) (a), we get the required result (i, ii).

Since $(D_X F)(Y) = 0$,
Then from (3.16), we get
\[
(B_X F)(Y) = -u(Y)\bar{X}
\] (3.17)
Barring X and using (2.1)(a), we get
\[
(B_X F)(Y) = u(Y)X - u(Y)A(X)T
\] (3.18)
Interchanging X and Y, we get
\[
(B_Y F)(X) = u(X)Y - u(X)A(Y)T
\] (3.19)
Operating both side equation (3.17) by F, we get
\[
B_X F)(Y) = u(Y)X - u(Y)A(X)T
\] (3.20)
Interchanging X and Y we get
\[
B_Y F)(\bar{X}) = u(X)Y - u(X)A(Y)T
\] (3.21)
Using (3.18),(3.19),(3.20)and(3.21)in (3.7)(i), we get the result (iii).

Finally barring X, Y, Z in (3.5) (ii, iii), we get the result (iv).

Theorem 3.4: If U is a killing on generalized co-symplectic manifolds with quarter symmetric non-metric connection then
\[
\{N(X, Y, Z) - (B_X F)(Y, Z) - (B_Y F)(X, Z) - (B_Z F)(X, Y) = n\}
(F(\bar{X}, Z)
\]

Proof: From (3.11) and (2.9) (b), we have
\[
\{N(X, Y, Z) - (B_X F)(Y, Z) - (B_Y F)(X, Z) - (B_Z F)(X, Y) = (D_X F)(Y, Z) - (D_Y F)(X, Z)
- (D_Z F)(X, Y) + u(Y)F(\bar{X}, Z) + u(Z)F(\bar{Y}, X) - u(X)F(X, \bar{Y}) - u(Z)F(\bar{Z}, X)
\]
Again using (2.5) in above equation, we get

\[-u(X)^i F(Y, Z)\]

\[
\begin{aligned}
&-N(X, Y, Z) = \langle B_x, F \rangle(Y, Z) - (B_y, F)(X, Z) - (B_z, F)(X, Y)
\quad = -u(X) \left[(D_x u)(Z) + (D_y u)(Y) \right] \\
&+ u(Y) \left[(D_x u)(Z) + (D_z u)(X) \right] + u(Z) \left[(D_x u)(Z) - (D_y u)(X) \right] \\
&+ (u(Y) + u(Z)) F(\bar{X}, Z)
\end{aligned}
\]

Since \(U \) is a killing then putting \(\langle D_x u \rangle(Y) + (D_y u)(x) = 0 \) in above equation, we obtained

\[
\begin{aligned}
(B_x, F)(Y, Z) + (B_y, F)(\bar{Z}, X) + (B_z, F)(X, Y)
&= -N(X, Y, Z) - u(Z)[(D_x u)(\bar{X}) - (D_y u)(\bar{Y})] \\
&- (u(Y) + u(Z)) F(\bar{X}, Z)
\end{aligned}
\]

(3.22)

By virtue of equation (2.7) (b), equation (3.22) will be reduces

\[
\begin{aligned}
(B_x, F)(Y, Z) + (B_y, F)(\bar{Z}, X) + (B_z, F)(X, Y)
&= -N(X, Y, Z) - u(Z)^i F(\bar{X}, Z)
\end{aligned}
\]

we get the required result.

Theorem 3.5: A generalized co-symplectic manifold of first class with quarter symmetric non-metric connection satisfy

\[
(B_x, F)(\bar{Y}, Z) + (B_y, F)(Z, \bar{X}) + (B_z, F)(\bar{X}, \bar{Y}) = 0
\]

Proof: From equation (2.5) and (3.11), we get

\[
\begin{aligned}
(B_x, F)(Y, Z) = u(Y) \left[(D_x u)(Z) + (D_y u)(\overline{Z}) \right] \\
&- u(Z)(D_x u)(\overline{Y}) + a(X)^i F(\overline{Y}, Z)
\end{aligned}
\]

(3.23)

Taking cyclic sum of equation (3.23) in \(X, Y, \) and \(Z \) we get

\[
\begin{aligned}
(B_x, F)(Y, Z) + (B_y, F)(Z, X) + (B_z, F)(X, Y)
&= u(X) \left[(D_x u)(\overline{Y}) - (D_y u)(\overline{Z}) \right] \\
&+ u(Y) \left[(D_x u)(\overline{Z}) - (D_z u)(X) \right] \\
&+ u(Z) \left[(D_x u)(\overline{X}) - (D_y u)(Y) \right] \\
&+ (u(Y) + u(Z)) F(\overline{X}, Z) + u(Z) F(\overline{Y}, X) \\
&+ (u(X)^i F(\overline{Z}, Y)
\end{aligned}
\]

(3.24)

Barring \(X, Y \) and \(Z \) in equation (3.24) and using (2.2)(a), we get

\[
\begin{aligned}
(B_x, F)(\overline{Y}, Z) + (B_y, F)(\overline{Z}, X) + (B_z, F)(\overline{X}, \overline{Y}) = 0
\end{aligned}
\]

we get the required result.

Theorem 3.6: An almost contact metric manifold admitting quarter symmetric non-metric connection \(B \) is a generalized co-symplectic if

\[
\begin{aligned}
(B_x, F)(Y, Z) = u(Y) \left[(B_x u)(\overline{Z}) + (B_y u)(\overline{X}) - (B_z u)(\overline{Y}) \right] + u(Z) \left[2^i F(X, Y) - (B_x u)(\overline{Y}) + F(\overline{X}, \overline{Y}) \right]
\end{aligned}
\]

Proof: From equation (2.5) and (3.11), we have

\[
\begin{aligned}
(B_x, F)(Y, Z) = u(Y) \left[(B_x u)(\overline{Z}) + (B_y u)(\overline{X}) - (B_z u)(\overline{Y}) \right] + u(Z) \left[F(X, Y) - (B_x u)(\overline{Y}) \right]
\end{aligned}
\]

(3.25)

Using (2.4)(b), (3.5)(iv) in (3.25), we obtain

\[
\begin{aligned}
(B_x, F)(Y, Z) = u(Y) \left[(B_x u)(\overline{Z}) + (B_y u)(\overline{X}) - (B_z u)(\overline{Y}) \right] + u(Z) \left[2^i F(X, Y) - (B_x u)(\overline{Y}) + F(\overline{X}, \overline{Y}) \right]
\end{aligned}
\]

(3.26)

we get the required result.

Theorem 3.7: A quasi-Sasakian manifold is normal if and only if

\[
\begin{aligned}
(B_x, F)(Y, Z) = u(Y) \left[(B_x u)(\overline{Z}) + (B_y u)(\overline{X}) - (B_z u)(\overline{Y}) \right] + u(Z) \left[-2^i F(X, Y) - (B_x u)(\overline{Y}) \right]
\end{aligned}
\]

Proof: The necessary and sufficient conditions for a quasi-Sasakian manifold to be normal [11] is

\[
\begin{aligned}
(D_x, F)(Y, Z) = u(Y) (D_z u)(\overline{X}) + u(Z) (D_x u)(Y)
\end{aligned}
\]

(3.27)

Using (3.11) in (3.27), we get

\[
\begin{aligned}
(B_x, F)(Y, Z) = u(Y) \left[(D_z u)(\overline{X}) + (B_x u)(\overline{Z}) \right] + u(Z) \left[(D_x u)(Y) + F(\overline{X}, \overline{Y}) \right]
\end{aligned}
\]

(3.28)
Theorem 3.8: A generalized co-symplectic manifold is quasi-Sasakian manifold if

\[(B_\chi u)(\overline{Z}) = (B_\chi u)(\overline{X}) + 2'F(X,Y) \]

where \(B \) is the quarter symmetric non-metric connection.

Proof: From (3.11), we have

\[
- 2u(Y) F(X,Z) - a(X) \left[F(\overline{Y},Z) + F(Y,\overline{Z}) \right]
- 2u(Z) F(Y,X) - a(Y) \left[F(\overline{Z},X) + F(Z,\overline{X}) \right]
- 2u(X) \left[F(Z,Y) + F(\overline{Z},\overline{Y}) \right]
\]

By virtue of equation (3.26) and (3.29), we get

\[
(D_\chi F)(Y,Z) + (D_Y F)(Z,X) + (D_Z F)(X,Y) = u(Y) (B_\chi u)(\overline{Z}) - 2'F(X,Z) - (B_\chi u)(\overline{X})
+ u(Z) (B_\chi u)(\overline{Y}) - (B_Y u)(\overline{Y}) - 2'F(Y,X)
+ 2u(X) (B_\chi u)(\overline{Y}) - (B_\chi u)(\overline{Z}) - 2'F(Z,Y)
\]

Since the manifold is quasi-Sasakian, therefore

\[(D_\chi F)(Y,Z) + (D_Y F)(Z,X) + (D_Z F)(X,Y) = 0\]

From equation (3.30) and (3.31), we get

\[(B_\chi u)(\overline{Z}) = (B_\chi u)(\overline{X}) + 2'F(X,Y) \]

we get the required result.

Theorem 3.9: If the generalized co-symplectic manifold is of first class with respect to Riemannian connection \(D \), then it is also first class with respect to the quarter symmetric non-metric connection \(B \) and satisfies

\[(B_\chi F)(Y,Z) = u(Y) (B_\chi u)(\overline{Z}) + 2'F(X,Z) - (B_\chi u)(\overline{X}) \]

Proof: Barring \(X \) and \(Y \) in (3.5) (iv) respectively and using (2.3) (a), we have

\[(D_\chi u)(Y) = (B_\chi u)(Y) - g(\overline{X},Y) - F(\overline{X},Y) \]

and

\[(D_\chi u)(\overline{Y}) = (B_\chi u)(\overline{Y}) - g(X,Y) - F(X,Y) \]

Adding (3.32), (3.33) and using (2.4) (b), we get

\[(D_\chi u)(Y) + (D_\chi u)(\overline{Y}) = (B_\chi u)(Y) + (B_\chi u)(\overline{Y}) \]

By virtue of (2.7) (a) and (3.34), we have

\[(B_\chi u)(Y) = -(B_\chi u)(\overline{Y}) \]

Again in similar way, we have

\[(B_\chi u)(\overline{Y}) = (B_\chi u)(\overline{X}) \]

From (3.35) and (3.36), we get

\[(B_\chi u)(\overline{Y}) = (B_\chi u)(\overline{X}) \]

Taking covariant derivative of \(FY = \overline{Y} \) with respect to \(B \) and using (2.1) (a), (2.2) (a) and (3.11), we get

\[(B_\chi F)(Y) = (D_\chi F)(Y) - u(Y) \overline{X} \]

Replacing \(X \) by \(U \) in (3.38) and using (2.1) (a), (2.8) (c), we obtain

\[(B_\chi u)(Y) = 0 \]

By virtue of equation (2.5), (3.5) (iv) and (3.11), we get
We get the required result.

REFERENCES RÉFÉRENCES REFERENCIAS
