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[. INTRODUCTION

~ractional Calculus and special functions have contributed a lot to mathematical physics and its various
=== pranches. The great use of mathematical physics in distinguished astrophysical problems has attracted
astronomers and physicists to pay more attention to available mathematical tools that can be widely used in
solving several problems of astrophysics/physics. The fractional kinetic equations discussed here can be used to
investigate a wide class of known fractional kinetic equations. Fractional kinetic equations have gained importance
during the last decade due to their occurrence in certain problems in science and engineering. A spherically
symmetric non-rotating , self-gravitating model of star like the sun is assumed to be in thermal equilibrium and
hydrostatic equilibrium. The star is characterized by its mass, luminosity effective surface temperature, radius
central density and central temperature. The stellar structures and their mathematical models are investigated on
the basis of above characters and some additional information related to the equation of nuclear energy generation
rate and the opacity.

Consider an arbitrary reaction characterized by a time dependent quantity N = N(t) .

It is possible to calculate rate of change dN/dt =—d + p.

In general, through feedback or other interaction mechanism, destruction and production depend on the
quantity N itself: d=d(N)or p= p(N). This dependence is complicated since the destruction or production at
time t depends not only on N(t) but also on the past history N(7),7 <t, of the variable N .This may be
represented by Haubold and Mathai[7]

dN/dt = —d(N) + p(N), 1.1)
where Nt denotes the function defined by Ni(t) =N(t-t),t >0.

Haubold and Mathai[7] studied a special case of this equation , when spatial fluctuation or inhomogenities

in quantities N (t) are neglected, is given by the equation
dNi/dt = —GiNi(t) 1.2
with the initial condition that Ni(t = 0) = Nois the number density of species i at time t =0;constantCi > 0

,known as standard kinetic equation. A detailed discussion of the above equation is given in Kourganoff[21]. The
solution of (1.2) is given by

Ni(t) = Nog Ct (1.3)
An alternative form of this equation can be obtained on integration:
N(t) = No=CoD: *N(t), 1.4)
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where th_lis the standard integral operator.Haubold and Mathai[7] have given the fractional
generalization of the standard kinetic equation(1.2) as

N(t) - No=c oD *N(t), (L5)

where onlis well known Riemann-Liouville fractional integral operator (Oldham and Spanier[8];
Samko, Kilbas and Marichev[16]; Miller and Ross[10]) defined by

-V _ 1 t v-1 (16)
oD N(t) = ) jo (t —u)"*f (u)du, Re(v) > 0.
The solution of the fractional kinetic equation(1.5) is given by (see Haubold and Mathai[7])
w0 _1)k "
N =No> D (ery* (L7)
O =N o @

Fractional kinetic equations are studied by many authors notably Hille and Tamarkin[5], Glockle and
Nonnenmacher[22], Saichev and Zaslavsky[1], Saxena et al.[11-13], Zaslavsky[6], Saxena and Kalla[15], Chaurasia
and Pandey[18-19], Chaurasia and Kumar[17] etc. for their importance in the solution of certain physical problems.
Recently, Saxena et al. [14] investigated the solutions of the fractional reaction equation and the fractional diffusion
equation. Laplace transform technique is used.

The K 4-function[9] is defined as

(a,B.7)(a,c)(p;a) (a,B8.7),(a,c)(p;a)
Ke (... @b, .o x) = Ke (¥

& @nfa (), & (x-0)"
TE O (B)r NI+ p)a-p) (18)

where R(ay — ) >0 and (a)n(i =1,2,..., p)and (bi)n (] =1,2,...,Q) are the Pochhammer symbols and

none of the parameters B S is a negative integer or zero.
We now proceed to solve the generalized fractional kinetic equation in the next section.

II. GENERALIZED FRACTIONAL KINETIC EQUATION
"In this section we investigate the solution of generalized fractional kinetic equations'.. The results are
obtained in a compact form in terms of K ,- Function and are suitable for computation. The result is presented in
the form of a theorem as follows:

Theorem 2.1 If ¢>0,b6>0,6>0,v >0, >0and(6v —u) >0 then there exists the solution of the integral
equation (v, 6)(~" D) pia)

N{t)-No K, (t)=—§(n)c”th”N(t), (2.2

r=0\ r

given by
(v,u+vn,5+n),(~c",b):( p;q)

Proof: Taking the Laplace transform of both sides of (2.1), we have

(v,u,6),(=c".b)(p:a) n({n
Lno- e == £ one o) (22)
or N
N(p) = Nop ¢ 5 (ar)x....(ap)« (2.4)

(1+¢’ p‘v)m koo (by)x...(ba)x
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Finally, taking the inverse Laplace transform, we have

AT 4 No p’kwm)wpn(jbp s (aw)k...(ap)k
N =N{t} =
LN =N =L P S o o

Or
(v, u+n,5+n),(-c" b):( p;q)
N(t) = No Ka t (29

This completes the proof of the theorem(2.1).
If we put r = Ss=0intheorem 2.1, we get[18]
Cor1.11f¢>0,b>0,6 >0,v >0, > 0and (ov — 1) > 0 then there exists the solution of the integral equation
n n
N - NoG, (e b0 =~ 5[ | oDi” N

r=0\ r

(2.6)
is given by

N(t) = NOGv,y+m,5+n (Civ’b’t)' (2 )
If we take b = Qin Corollary.(1.1), we get[19]

Cor.1.21f €>0,6 >0,v >0, 12> 0and (6v ~ u) >0 then there exists the solution of the integral equation

N() - NoG, (¢ 0D =— 3 [ j ¢ oD NI), (28)
is given by
N =NoG, ,unsm(c”.01). (2.9)

If we take b= 0in Corollary.(1.1), we get[20]
Cor1.3Llet c>0,b>0,0 >0,v >0, > 0and(6v — 1) > 0 then the equation

N (t) - NOGv,ﬂ,b“ (C_V ’ b’t) =—coDt" N (t)’
is solvable and its solution is given by (2.10)

N (t) =N OGV,/HV,5+1 (C_V ! b’t) (211)

where Gy 4,5 (a,c,t) is the G-function(but not the Meijer's G-function) given by [2].
[1I. ACKNOWLEDGEMENT

The author is very thankful to the referees for giving several valuable suggestions in the improvement of the
paper.

IV. CONCLUSION

In the present paper, we have derived a solution of generalized fractional kinetic equation in terms of the
K 4- Function in a compact and elegant form with the help of Laplace transform. Most of the results obtained are

suitable for numerical computation. Fractional kinetic equation can be used to calculate the particle reaction rate and
describes the statistical mechanics associated with the particle distribution function.
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