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I. INTRODUCTION

ractional Calculus and special functions have contributed  a lot to mathematical physics  and its various 
branches. The great use of mathematical physics in  distinguished astrophysical problems has attracted 
astronomers and physicists to pay more attention  to available mathematical tools that can be widely used in 

solving  several problems of astrophysics/physics. The fractional kinetic equations discussed here  can be used to 
investigate a  wide class of known fractional kinetic equations. Fractional  kinetic equations have gained  importance  
during the last decade  due to their occurrence  in certain problems in  science and engineering. A spherically  
symmetric non-rotating , self-gravitating  model of star like the sun  is assumed  to be in  thermal equilibrium and 
hydrostatic equilibrium. The star is characterized by its mass, luminosity effective surface  temperature, radius 
central density and central temperature. The stellar  structures and their mathematical models  are investigated on 
the basis of  above characters and some additional information related to the equation of nuclear energy generation 
rate and the opacity.

Consider  an arbitrary reaction characterized by a time dependent  quantity .

It is possible to calculate rate of change .pddtdN +−
In general, through feedback or other interaction mechanism, destruction and  production depend on the 

quantity N itself: )(Ndd or )(Npp . This dependence is complicated since the destruction or production at 

time t  depends  not only on )(tN but also on the past history tN <ττ ),( , of the variable N .This may be 
represented by Haubold and Mathai[7]
                                                                                                                 )1.1(

where tN denotes the function defined by 

Haubold and Mathai[7] studied a special case  of this equation , when spatial fluctuation or inhomogenities  
in quantities )(tN are neglected, is given by the equation

                                                                                                                               )2.1(
with the initial condition that 0)0( NtNi is the number density of species i at time 0t ;constant 0>ic
,known as standard kinetic equation. A detailed discussion of the above equation  is given in Kourganoff[21]. The 
solution of (1.2) is given by 

                                                                                                                                     )3.1(
An alternative form of this equation can be obtained on integration:

                                                                                                                 
)4.1(
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where tD0
1− is the standard integral operator.Haubold and Mathai[7] have given the fractional 

generalization  of the standard kinetic equation(1.2) as 

                                                                                                                 )5.1(

where tD0
1− is  well known Riemann- -Liouville fractional integral operator (Oldham and Spanier[8]; 

Samko, Kilbas and Marichev[16]; Miller and Ross[10]) defined by 

                                                                            )6.1(

The solution of the fractional kinetic equation(1.5)  is given by (see Haubold and Mathai[7])

                                                                                                            )7.1(

Fractional kinetic equations are studied by many authors notably Hille and Tamarkin[5], Glockle and 
Nonnenmacher[22], Saichev and Zaslavsky[1], Saxena et al.[11-13], Zaslavsky[6], Saxena and Kalla[15], Chaurasia 
and Pandey[18-19], Chaurasia and Kumar[17] etc. for their importance in the solution of certain physical problems. 
Recently, Saxena et al. [14] investigated the solutions of the fractional reaction equation and the fractional diffusion 
equation. Laplace transform technique is used.                                    

The K 4 -function[9] is defined as 

                                                                                                                                 

( )8.1

where 0)( >− βαγR and ),...,2,1()( pia ni and njb )( ),...,2,1( qj are the Pochhammer symbols and 

none of the parameters sbj is a negative integer or zero. 
We now proceed to solve the generalized fractional kinetic equation in the next section.

II. GENERALIZED FRACTIONAL KINETIC EQUATION

Theorem 2.1 If 0,0,0,0,0 >>>≥> µνδbc and 0)( >− µδν then there exists the solution of the integral 
equation 

                                      
                                   )1.2(

given by 

                                                                                                        ( )

2.

2
Proof: Taking the Laplace transform of both sides of (2.1), we have
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" 'In this section we investigate the solution of generalized fractional kinetic equations'. . The results  are 
obtained in a compact form in terms of K 4 - Function and are suitable for computation. The result  is  presented in 
the form  of a  the     orem as follows:

2.

2



                              Finally, taking the inverse Laplace transform, we have

                              

Or

                                                                                                      
)5.2(

This completes the proof of the theorem(2.1). 
If we put 0sr in theorem 2.1, we get[18]
Cor.1.1 If 0,0,0,0,0 >>>≥> µνδbc and 0)( >− µδν then there exists the solution of the integral equation 

                                                                             ( )6.2
is given by 

                                                         
                                                          

( )7.2
 

Cor.1.2 If 0,0,0,0 >>>> µνδc and 0)( >− µδν then there exists the solution of the integral equation 

                                                                                ( )8.2

is given by 

                                                                  ( )9.2

Cor.1.3 Let 0,0,0,0,0 >>>≥> µνδbc and 0)( >− µδν then the equation 

                                               

                                                       ( )10.2is solvable and its solution is given by 

                                                         
                                           ( )11.2

where ),,(,, tcaG δµν is the G-function(but not the Meijer’s G-function) given by [2].
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IV. CONCLUSION

In the present paper, we have derived a solution of generalized fractional kinetic equation in terms of the 
K 4 - Function in a compact and elegant form with the help of Laplace transform. Most of the results obtained are 
suitable for numerical computation. Fractional kinetic equation can be used to calculate the particle reaction rate and 
describes the statistical mechanics associated with the particle distribution function. 
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If we take 0=b in Corollary.(1.1), we get[19]

If we take 0=b in Corollary.(1.1), we get[20]
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