

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

DISCOVERING THOUGHTS AND INVENTING FUTURE

Revolutions
IN
Science Domain

Zeniths

Validating Regression Models

Solar Power Distillation

Hypergeometric Functions

Household Consumption

Volume 11
Issue 6 | Version 1.0

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

VOLUME 11 ISSUE 6 (VER. 1.0)

OPEN ASSOCIATION OF RESEARCH SOCIETY

© Global Journal of Science
Frontier Research. 2011.

All rights reserved.

This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website <http://www.globaljournals.org/global-journals-research-portal/guideline/terms-and-conditions/menu-id-260/>

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374
Import-Export Code: 1109007027
Employer Identification Number (EIN):
USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; **Reg. Number: 0423089**)

Sponsors: [Open Association of Research Society](#)

[Open Scientific Standards](#)

Publisher's Headquarters office

Global Journals Inc., Headquarters Corporate Office, Cambridge Office Center, II Canal Park, Floor No. 5th, **Cambridge (Massachusetts)**, Pin: MA 02141 United States

USA Toll Free: +001-888-839-7392

USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Open Association of Research Society, Marsh Road, Rainham, Essex, London RM13 8EU United Kingdom.

Packaging & Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please email us at local@globaljournals.org

eContacts

Press Inquiries: press@globaljournals.org

Investor Inquiries: investers@globaljournals.org

Technical Support: technology@globaljournals.org

Media & Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):

For Authors:

22 USD (B/W) & 50 USD (Color)

Yearly Subscription (Personal & Institutional):

200 USD (B/W) & 250 USD (Color)

EDITORIAL BOARD MEMBERS (HON.)

John A. Hamilton,"Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software
Engineering
Director, Information Assurance
Laboratory
Auburn University

Dr. Henry Hexmoor
IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor
Department of Computer Science
Virginia Tech, Virginia University
Ph.D. and M.S. Syracuse University,
Syracuse, New York
M.S. and B.S. Bogazici University,
Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes
Associate Professor and Range
Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal
Nutrition
B.A. University of Dublin- Zoology

Dr. Wenyi Feng
Professor, Department of Computing &
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll
Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz
Computer Science & Information Systems
Department
Youngstown State University
Ph.D., Texas A&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He
Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS,
PhD., (University of Texas-Dallas)

Burcin Becerik-Gerber
University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley
& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and Finance
Professor of Finance
Lancaster University Management School
BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of Navarra
Doctor of Philosophy (Management), Massachusetts Institute of Technology (MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of Regina
Ph.D., M.Sc. in Mathematics
B.A. (Honors) in Mathematics
University of Windsor

Dr. Lynn Lim

Reader in Business and Marketing
Roehampton University, London
BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical Biology, Mount Sinai School of Medical Center
Ph.D., Eötvös Loránd University
Postdoctoral Training, New York University

Dr. Söhnke M. Bartram

Department of Accounting and Finance
Lancaster University Management School
Ph.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management
IESE Business School, University of Navarra
Ph.D in Industrial Engineering and Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.

Director, EP Laboratories, Philadelphia VA Medical Center
Cardiovascular Medicine - Cardiac Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D
Associate Professor and Research
Department Division of Neuromuscular Medicine
Davee Department of Neurology and Clinical Neuroscience
Northwestern University Feinberg School of Medicine

Dr. Pina C. Sanelli

Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic
Radiology
M.D., State University of New York at
Buffalo, School of Medicine and
Biomedical Sciences

Dr. Michael R. Rudnick

M.D., FACP
Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center,
Philadelphia
Nephrology and Internal Medicine
Certified by the American Board of
Internal Medicine

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical
Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D
Marketing
Lecturer, Department of Marketing,
University of Calabar
Tourism Consultant, Cross River State
Tourism Development Department
Co-ordinator , Sustainable Tourism
Initiative, Calabar, Nigeria

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences,
National Central University, Chung-Li,
TaiwanUniversity Chair Professor
Institute of Environmental Engineering,
National Chiao Tung University, Hsin-
chu, Taiwan.Ph.D., MS The University of
Chicago, Geophysical Sciences
BS National Taiwan University,
Atmospheric Sciences
Associate Professor of Radiology

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer
Science
AUST - American University of Science &
Technology
Alfred Naccash Avenue – Ashrafieh

PRESIDENT EDITOR (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences

Denham Harman Research Award (American Aging Association)

ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization

AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences

University of Texas at San Antonio

Postdoctoral Fellow (Department of Cell Biology)

Baylor College of Medicine

Houston, Texas, United States

CHIEF AUTHOR (HON.)

Dr. R.K. Dixit

M.Sc., Ph.D., FICCT

Chief Author, India

Email: authorind@computerresearch.org

DEAN & EDITOR-IN-CHIEF (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),

MS (Mechanical Engineering)

University of Wisconsin, FICCT

Editor-in-Chief, USA

editorusa@computerresearch.org

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant

CEO at IOSRD, GAOR & OSS

Technical Dean, Global Journals Inc. (US)

Website: www.suyogdixit.com

Email:suyog@suyogdixit.com

Sangita Dixit

M.Sc., FICCT

Dean & Chancellor (Asia Pacific)

deanind@computerresearch.org

Pritesh Rajvaidya

(MS) Computer Science Department

California State University

BE (Computer Science), FICCT

Technical Dean, USA

Email: pritesh@computerresearch.org

Luis Galárraga

J!Research Project Leader

Saarbrücken, Germany

CONTENTS OF THE VOLUME

- i. Copyright Notice
- ii. Editorial Board Members
- iii. Chief Author and Dean
- iv. Table of Contents
- v. From the Chief Editor's Desk
- vi. Research and Review Papers

- 1. On Validating Regression Models with Bootstraps and Data Splitting Techniques . **1-6**
- 2. Mathematical Morphology and Fractal Geometry . **7-12**
- 3. Integral Formulae for Certain Product of Special Function Generalized Fractional Calculus . **13-19**
- 4. A New Summation Formula Allied With Hypergeometric Function . **21-37**
- 5. Household Consumption of Cassava Products in Oyo State . **39-43**
- 6. Hyper geometric Forms of Well Known Partial Fraction Expansions of Some Meromorphic Functions . **45-52**
- 7. Solar Powered Distillation of Lagos Bar Beach Water . **53 – 58**
- 8. Sumudu Homotopy Perturbation Technique . **59 – 64**
- 9. On The Solutions of Generalized Fractional Kinetic Equations Involving the Functions for the Fractional Calculus . **65-67**

- vii. Auxiliary Memberships
- viii. Process of Submission of Research Paper
- ix. Preferred Author Guidelines
- x. Index

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 6 Version 1.0 September 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN: 0975-5896

On Validating Regression Models with Bootstraps and Data Splitting Techniques

By A.I Oredein , T.O Olatayo , A.C Loyinmi

Tai Solarin University of education, Ijebu-Ode, Nigeria.

Abstract - Model validity is the stability and reasonableness of the regression coefficients, the plausibility and usability of the regression function and ability to generalize inference drawn from the regression analysis. Model validation is an important step in the modeling process and helps in assessing the reliability of models before they can be used in decision making. This research work therefore seeks to study regression model validation process by bootstrapping approach and data splitting techniques. We review regression model validation by comparing predictive index accuracy of data splitting techniques and residual resampling bootstraps. Various validation statistic such as the mean square error (MSE), Mallow's cp and R² were used as criteria for selecting the best model and the best selection procedure for each data set. The study shows that bootstrap provides the most precise estimate of R² which reduce the risk over fitted models than in data splitting techniques..

Keywords : Validation, bootstrap, Data splitting techniques, coefficient of determination, and stepwise regression .

GJSFR Classification: FOR Code: 170202

Strictly as per the compliance and regulations of:

On Validating Regression Models with Bootstraps and Data Splitting Techniques

A.I Oredein^a, T.O Olatayo^a, A.C Loyinmi^b

Abstract - Model validity is the stability and reasonableness of the regression coefficients, the plausibility and usability of the regression function and ability to generalize inference drawn from the regression analysis. Model validation is an important step in the modeling process and helps in assessing the reliability of models before they can be used in decision making. This research work therefore seeks to study regression model validation process by bootstrapping approach and data splitting techniques.

We review regression model validation by comparing predictive index accuracy of data splitting techniques and residual resampling bootstraps. Various validation statistic such as the mean square error (MSE), Mallow's C_p and R^2 were used as criteria for selecting the best model and the best selection procedure for each data set. The study shows that bootstrap provides the most precise estimate of R^2 which reduce the risk over fitted models than in data splitting techniques.

Keywords : Validation, bootstrap, Data splitting techniques, coefficient of determination, and stepwise regression.

I. INTRODUCTION

Model selection and validation are critical in predicting a dependent variable given the independent variable. The correct selection of variables minimizes the model mismatch error while the selection of suitable model reduces the model estimation error. Models are validated to minimize the model prediction error. A more flexible model can better represent the data may also more easily lead the user astray by noise in the data. Determining the right form of the model in order to reduce model mismatch error is accomplished during model construction phase, whereas determining the correct model parameter can be achieved at the model selection and validation.

Once a regression model has been constructed, it is important to confirm the goodness of fit of the model and the statistic significance of the estimated parameters, commonly used are check of goodness of fit include analysis of the pattern of residuals and hypothesis testing, statistically significance checked by an f-test of the overall fit , followed

Author^a : Department of Mathematics, Tai Solarin University of education, Ijebu-Ode, Nigeria.

Author^a : Department of Mathematical Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria.

by t-test of individual parameters interpretation of these diagnostic tests.

Validation is an essential part of model building, its application and levels of confidence in usage are highly important. It entails checking the R^2 statistic from the regression fit, carrying out a diagnostic of the residual either through exploratory statistic, checking the mean confirmatory statistics, checking the mean square error and also the mallow C_p statistic.

Model validity refers to stability and reasonableness of the regression coefficients, the plausibility and usability of the regression function and ability to generalize inferences drawn from the regression analysis. Validation is a useful and necessary part of the model building process. A good fit of a model to the data set is not an only goal of model validation but also to get a perfect fit by $n-1$ parameter to a data set with n cases. i.e. its predictive accuracy of the model is how the model validates a new dataset.

Model validation requires checking the model against independent data to see how well is predicts. Several researchers have work extensively on model validation using Jacknifing, Data splitting techniques, data resampling bootstraps regression without assuring fixed X or identically distributed errors. A drawn back of cross validation is the choice of the number of observation to hold out each fit. Also cross validation may not fully represent the variability of variable selection. The major disadvantages of data splitting techniques in model validation is that different investigators using the same data could split the data differently generate different models, hence obtain different validating result. Snee (1997) researched extensively on method of validation, Neumann et al (1977) and Shapiro (1984) have employed Monte Carlo testing to estimate artificial predictability in tropical Cyclone prediction models. Renduer and Run (1980) and Lanzante (1984) carried out set of Monte Carlo test to examine false predictability and the inflation of R^2 as a function of sample size, size of the predictor and number of predictors selected.

Model validation is an important step in the modeling process and helps in assessing the reliability of models before they can be used in decision making (Jannath and Tsuchido 1988). Hall and Wilson(1991), Davison and Hinkely(1997), Efron(1998)

considered the application of bootstrap method to regression models from model based resampling approach.

These research works examine the validation of regression by comparing the predictive accuracy of data splitting techniques and the newly introduced bootstrapping approach by Efron (1993), to check the significance of each method in regression model validation. This work proposes a procedure for construction, selection and validation of regression models.

However, in regression model validation analysis, fewer reports have shown how bootstrap can be used in estimating the distribution of any validation statistic in random simulation with replicated runs. Unfortunately, this simplicity and versatile techniques of bootstrapping approach in validation seems not to be well known among simulation users and researchers. A few recent publication on bootstrapping in simulations are Cheng (2004), Deflandre and Kleijnen et al (2001) and Willemain et al (2003). This research work will extensively show how bootstrap technique can be applied in checking the validity of a regression models using residual resampling. This work will rely less on theoretical sampling distribution like the normal, X^2 , t and F, whose appropriateness for any given always rest on untestable assumptions. Instead we will construct appropriate sampling distribution empirically through bootstrap method using the data at hand.

II. MATERIAL AND METHODOLOGY

Validating regression model was implemented in this work by bootstrapping approach and using the technique of data splitting. In data splitting, three different regression procedures were used to fit regression model to two different data sets. The data sets have many variables predicting the response variable. In data splitting, we split the data sets into two separate samples using one part for modeling and the other for testing the model. We also hope to see if the peculiarities of the original set will be seen in the split modeling set.

The first data set is a stock exchange data using Number of deals; 'Quality traded' and 'values of shares' as the independent variables predicting the 'All share index' per week. The observations were selected over 50 weeks.

The second data set pertains to different hourly readings of bytes received in telecommunication industry. 'Bytes transmitted', link utilization received, link utilization transmitted, 'Real time' and 'Best effort' were used as the independent variables predicting, 'Bytes received'. The observations were recorded over 130 hours. In data splitting techniques we employed the approach of stepwise regression procedures in

selecting variables into a regression model. These include Forward Selection, Backwards Elimination and Best subset Regression. They add or remove variables one at a time until some stopping rule is satisfied.

The forward selection regression procedure sequentially adds variables to the model one at a time. It starts with an empty model and adds the variable that has the smallest p value usually less than 0.05 or 0.1 to the model.

Aside the p-value criterion, at any stage in the selection process, forward selection adds the variable that has the highest partial correlation, increases R^2 the most, and gives the largest absolute t of F statistic to the model. This procedure is a model reduction method. The Backward Elimination regression procedure starts with all the predictors in the model and sequentially deletes variables from the model. At any stage, in the selection process, it deletes the variables with the smallest absolute t or F-statistic, largest p-value and smallest R^2 , backward Elimination procedure gives an adequate model since the procedure involves starting the model building with all the variables and deleting the variables that add nothing to the model.

Best subset regression examines all possible models and chooses the one with the most favorable value of some summary measure such as large adjusted, R^2 smallest Mallow's C_p and smallest standard error. All possible regression has a large advantage over stepwise procedures in that it can let the analyst see competing models, models that are almost as good as the best.

Data splitting has the advantage of allowing hypothesis tests to be confirmed in the test sample, however, the major disadvantages it has is that different investigators using the same data could split the data differently and generate different models, hence obtaining different validating results.

a) Bootstrap Estimate Of Standard Error

The bootstrap was introduced in 1979 as a computer based method for estimating the standard error of $\hat{\theta}$. The bootstrap estimate of standard error requires no theoretical calculations, and is available no matter how mathematically complicated the estimator $\hat{\theta} = s(x)$. Bootstrap methods depend on the notion of a bootstrap sample. A bootstrap sample is defined to be a random sample of size n drawn from F , \mathbf{X}^* is defined as

$$\mathbf{X}^* = (\mathbf{x}_1^*, \mathbf{x}_2^*, \dots, \mathbf{x}_n^*)$$

And

$$\hat{\mathbf{F}} \rightarrow (\mathbf{x}_1^*, \mathbf{x}_2^*, \dots, \mathbf{x}_n^*)$$

The star notation indicates that x is not the actual data set x , but rather a randomized or resample version of X , in other word. Bootstrap sample can be

defined as bootstrap data points $x_1^*, x_2^*, \dots, x_n^*$ that are random sample of size n drawn with replacement from the population of n objects (x_1, x_2, \dots, x_n) . The bootstrap data set $(x_1^*, x_2^*, \dots, x_n^*)$ consists of the original data set (x_1, x_2, \dots, x_n) some appearing zero times, once, twice etc.

Corresponding to a bootstrap data set X^* is a bootstrap replication of $\hat{\theta}$,

$$\hat{\theta}^* = s(x^*)$$

$s(x^*)$ is the mean of the bootstrap data set.

$$\bar{x}^* = \frac{1}{n} \sum_{i=1}^n x_i^*$$

The bootstrap estimate of $S_{ef}(\hat{\theta})$ i.e. the standard error of a statistical $\hat{\theta}$, is a plug-in estimate that uses the empirical distribution function \hat{F} in place of the unknown distribution F . Specifically the bootstrap estimate of $S_{ef}(\hat{\theta})$, is defined by

$$S_{ef}(\hat{\theta}^*).$$

In other words, the bootstrap estimate of $S_{ef}(\hat{\theta})$ is the standard error of $\hat{\theta}$ for the data sets of size n randomly sampled from F .

b) The Bootstrap Algorithm For Estimating Standard Errors

1. Select B independent bootstrap samples $(X^{*1}, X^{*2}, \dots, X^{*B})$ each consisting of n data values drawn with replacement from $x = (x_1, x_2, \dots, x_n)$. (B is the number of bootstrap samples used).
2. Evaluate the bootstrap replication corresponding to each bootstrap sample:

$$\hat{\theta}(b) = S(X^{*b}) \text{ where } b = 1, 2, \dots, B.$$

3. Estimate the standard error $S_{ef}(\hat{\theta})$ by the sample standard deviation of the B replication where

$$S_{ef} = \sqrt{\frac{\sum_{b=1}^B (\hat{\theta}^*(b) - \bar{\theta}^*)^2}{(B-1)^{1/2}}}$$

where

$$\bar{\theta}^* = \frac{1}{B} \sum_{b=1}^B \hat{\theta}^*(b)$$

$$bias_B = \hat{\theta}^* - t(F)$$

The bootstrap algorithm above works by drawing many independent bootstrap samples, evaluating the corresponding bootstrap replications and estimating the standard error of $\hat{\theta}$ by the empirical standard deviation of the replications.

c) Bootstrap Estimate of Bias

F is an unknown probability distribution, given data $x = (x_1, x_2, \dots, x_n)$ by random sampling

$$F \rightarrow x$$

To estimate a real value parameter

$$\theta = (F)$$

Let statistic $\hat{\theta} = s(x)$ to be an estimator, using plug-in-estimate

$$\hat{\theta} = t(\hat{F})$$

The bias of $\hat{\theta} = s(x)$ as an estimate of θ is defined to be the difference between the expectation of $\hat{\theta}$ and the value of the parameter θ .

$$bias_f = bias_f(\hat{\theta}, \theta) = E_F[s(x)] - t(F)$$

The bootstrap estimate of bias is defined to be the estimate $bias_F$

$$bias_F = E_{\hat{F}}[s(X^*)] - t(\hat{F})$$

d) Validation Using Bootstrap

Efron and Gong, Efron and Tibshirani, (1993) describe several bootstrapping procedures for obtaining nearly unbiased estimates of future model performance without holding back data when making the final state of model parameters. With the “simple bootstrap”, one repeatedly fits the model in a bootstrap sample and evaluates the performance of the model on the original data.

A simple regression bootstrap called residual resampling was achieved through the following algorithm with the aid of computer

1. Perform regression with the original sample; calculate predicted values (\hat{Y}) and residuals(e)
2. Randomly resample the residuals, but leave X and (\hat{Y}) unchanged.
3. Construct new Y^* values by adding the original predicted values to the bootstrap residuals i.e $Y^* = \hat{Y} + e^*$
4. Regress Y^* on the original X variable(s).
5. Repeat step (ii) – (iv) several times.
6. Estimate parameter of interest in validation of regression models such as R^2 and MSE.

The ability to study the arbitrariness of how a stepwise variable selection algorithm selects “important” factors is a major benefit of bootstrapping.

III. RESULTS

Summary of result obtained in data splitting techniques using validating set of stock exchange data

	R ²	ADJ R ²	MSE
LSE	0.617	0.625	0.036
FORWARD	0.3955	0.3952	0.008
BACKWARD	0.3955	0.3922	0.008
BEST SUBSET	0.624	0.630	0.007

We went further in comparing the MSE obtained from the modeling set and validation of stock exchange data.

The table below shows the summary of the MSE obtained

Set	No. of Obs.	LSQ.	FWD	BKWD	Best Subset
Modeling	30	0.036	0.036	0.0362	0.0356
Validating	20	0.007	0.008	0.008	0.007

Hence the validated model is

$$Y = -1.417 - 0.023x_1 - 0.001x_2 + 0.176x_3$$

$$R^2 = 0.4985$$

$$R^2 \text{ Adj} = 0.4960$$

$$MSE = 0.007$$

$$SE = 0.08026$$

a) Analysis of Telecommunication Data

Summary of the result obtained in data splitting techniques using validating set of telecommunication data

	R ²	ADJ R ²	MSE
LSE	0.3124	0.2846	24.42
FORWARD	0.403	0.486	29.28
BACKWARD	0.402	0.482	29.28
BEST SUBSET	0.426	0.415	24.4

Summary of the MSE for Telecommunication Data

Set	No. of Obs.	LSQ.	FWD	BKWD	Best Subset
Modeling	110	163.18	157.5	157.52	163.07
Validating	20	24.42	29.28	29.28	24.4

MSE's from the validating set are smaller than those from the modeling set. This is not far from our expectation as this can be attributed to the distance of the observation of the validating set from the modeling set. Hence the validated model of telecommunication data is

$$Y = 3.67 + 0.87x_1 + 0.002x_4$$

$$R^2 = 0.426$$

$$Adj R^2 = 0.415$$

$$Cp = 4.78$$

$$S.E. = 4.93$$

$$MSE = 29.816$$

b) Statistical Analysis of Bootstrap Approach In Validating Regression Models

The validating model obtained for stock exchange data using bootstrap residual resampling is

$$Y = -34.4188 - 0.0793X_1 + 0.2684X_2 + 0.6504X_3$$

$$R^2 = 0.9854, \text{ Adj } R^2 = 0.9848, \text{ S.E.} = 0.6424, \text{ MSE} = 0.8015, \text{ N}=50$$

Also s

$$Y = 4.5094 + 0.6077X_1 - 0.0380X_2 + 0.0169X_3 + 0.0829X_4 - 0.0168X_5 \text{ with } R^2 = 0.9899, \text{ Adj } R^2 = 0.9895,$$

S.E. = 0.8826, MSE = 0.7790, N=130 was obtained as the validating model for telecommunication data set using bootstrap residual resampling procedures. The above models were chosen because they generated highest and lowest value of R² and MSE respectively, as a criterion of model validation. Summary of validating statistics in validated models using data splitting and bootstraps

VALIDATING TECHNIQUES		R ²	Adj R ²	MSE
Data Splitting	Stock	0.4985	0.4960	0.007
	Telecommunication	0.426	0.4150	29.816
Bootstrapping	Stock	0.9854	0.9848	0.8015
	Telecommunication	0.9899	0.9895	0.7790

IV. DISCUSSION OF RESULTS

The bootstrap models were obtained from 100 bootstrap replication. The bootstrap Y values were computed by adding resample residuals onto the ordinary least squares regression fit. The B=100 bootstrap samples were generated randomly to reflect the exact behaviour of bootstrap estimations.

Residual resampling assumes fixed X values and independently and identically distributed errors (but not necessarily normal) that i.e. it assumes that the residual found for the ith case could equally well have occurred with the jth case instead, residual resampling randomly reassigns the original-sample residuals to new case. The n sets of X values from the original sample remain unchanged in each bootstrap sample. Using a Monte Carlo algorithm, B bootstrap sample are generated by drawing from the empirical distribution with replacement. For each boot sample, the statistics of interest such as R², MSE, and standard error of estimate was calculated.

Two set of data samples were considered to check how bootstrap approach and data splitting techniques work on small and larger data set in validating regression models. The number of bootstrap replications B depends on the application and size of sample and computer availability.

From above results, it was discovered that the larger the bootstrap replicate, the higher and stable R² is i.e. it gives a better validity model. It was also observed that in validating regression model bootstrap approach gives a better and higher R² in each replicates than the value of R² in the validated models of data splitting techniques.

advantages of allowing hypothesis tests to be confirmed in the test samples, but the major disadvantages of this method compared to bootstrap approach in model validation is that different investigators using the same data could split the data differently and senate difference models, hence obtain different validating results. It was observed from the above, comparing the data set in Telecommunication and stock exchange data, bootstrap give a better R^2 both in small and large sample data sets compared to stepwise regression i.e. the risk of over fitting was reduced. Also R^2 varies inversely with SSE, and it also increases if and only if MSE decreases, R^2 does not take account of number of parameters in the regression model.

This research work has demonstrated the use of validating regression models by data splitting techniques and bootstrap. In data splitting techniques, the data were split according to time into two samples with a view of using the second samples to validate the predictions made by the first sample.

Three regression procedures were used to build models on each data set for comparison purposes and to test their predictive abilities on each unique data set. Our criterion for test was the validation MSE(s) which was obtained by predicting each dependent variable value in the validation sample and averting the squared errors.

In bootstrapping approach, validation of the regression models was achieved by adding the resample residuals unto the least square regression fit, holding the regression design fixed. The least squares estimate from each bootstrap samples was obtained and the validation statistic of interest such as R^2 than stepwise regression in data splitting techniques.

Bootstrapping seems to work better than stepwise regression in validating regression models. In the simplest form of bootstrapping, instead of repeatedly analyzing subset of the data, analyst repeatedly analyse subsamples of the data and each subsamples is a random sample with replacement from the full sample. Bootstrapping allows us to gather many alternative version of the single statistic that would ordinarily be calculated from one sample and compute the statistical interest for each of the data sets.

V. CONCLUSION

Bootstrapping the model fitting process is a much better way to get unbiased estimates of model performance without sacrificing sample size, here we are validating the full n- subject model.

The most important advantage of bootstrapping in validating regression models over data splitting techniques are to need smaller sample than data splitting techniques and its practical performance is frequently much better in the sense that the risk of over fitted models are reduced as it gives a better and stable value of R^2 .

Bootstrap method in regression model validation accomplish the goal of constructing appropriate sampling distributions empirically using the data at hand instead of statistician relying on theoretical sampling distributions like the normal, t and f where appropriateness for any given problem always rest on untestable assumptions.

In a nutshell in validating regression models, bootstrapping procedures are useful than data splitting in the following situation:

- (i) When the theoretical distribution of a statistic is complicated or unknown.
- (ii) When the sample size is insufficient for straightforward statistical inference.
- (iii) When power calculations have to be performed and a small pilot sample is available.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Cheng, R.C.H., 2004. *Resampling methods*. Working Paper, Southampton University, Southampton, UK, Chapter 16 in Elsevier Handbooks in Operations Research and Management Sciences.
2. Davison , A.C and Hinkely, D.V. 1997, Bootstrap methods and their application. Cambridge University Press.
3. Deffandre, D., Kleijnen, J.P.C., 2003. Statistical analysis of random simulations: *Bootstrap tutorial*. Simulation News Europe (38/39), 29-34.
4. Efron, B. and Gong, G. (1983) A leisurely look at the bootstrap, the jackknife and cross-validation. Amer. Statistician 37, 36-48.
5. Efron, B., Tibshirani. R.,(1993). Introduction to the Bootstrap. Chapman and Hall, London.
6. Efron, B., (1983), Estimating the error rate of a Prediction rule improvement on improvement on crossvalidation" Journal of the American Statistical Association.
7. Feng, C.-X., Yu, Z. and Kusiak, A., Selection and validation of predictive regression and neural networks modeling data from designed experiment. IIE Trans., 2004 (under third review).
8. Friedman, L.W., Friedman, H.H., 1995. Analyzing simulation output using the bootstrap method. Simulation 64 (2), 95-100.
9. Gershenfeld, N., The Nature of Mathematical modeling, 1999 (Cambridge University Press: Cambridge, UK).
10. Hall , P. and Wilson S.R. 1991. Two guidelines for bootstrap hypothesis testing. Biometrics, 20, 231-246.
11. Kleijnen, J.P.C., Cheng, R.C.H., Bettonvil, B., 2001. Validation of trace-driven simulation models: Bootstrapped tests. Management Science 47 (11), 1533-1538.te.
12. Lazante, J.R., 1984: Strategies for assessing skill and significance of screening regression models with

emphasis on Monte Carlo techniques. *J. Climate Appl. Meteor.*, 23, 1454-1458.

13. Mallows, C.L. (1997) C_p and prediction with many regressors: comments on Mallows (1995). *Technometric*, 39(1), 115-116.
14. Neuman,C.J., M.B.Lawrence and E.L, Caso, 1977; Monte Carlo significance testing as applied to statistical tropical cyclone prediction models. *J.App., Meteor.*, 16,1165-1174.
15. Olatayo T.O (2010). On Truncated Geometric Bootstrapping Method for Stochastic Time Series Process. Unpublished Ph.D Thesis. University of Ibadan, Nigeria.
16. Orediein A.I (2011) On Validating regression procedures with bootstraps and data splitting techniques. Unpublished M.Sc.Thesis. Olabisi Onabanjo University, Ago-Iwoye, Nigeria.
17. Rencher,A.C., and F.C.Pun 1980; Inflation of R^2 in best subset regression. *Technometrics*, 22, 49-53.
18. Shapiro, L.J.,1984: Sampling errors in statistical models of tropical cyclone motion: A comparison of predictor screening and EOF techniques. *Mon, Wea. Rev.*, 112, 1378-1388.
19. Snee, R.O, (1977), Validation of Regression Models, Methods and Examples, Techniques 19. 415 – 428.
20. Willemain, T.R., Bress, R.A., Halleck, L.S., 2003. Enhanced simulation inference using bootstraps of historical inputs. *IIE Transactions* 35(9), 851-862.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 6 Version 1.0 September 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN: 0975-5896

Mathematical Morphology and Fractal Geometry

By Ramkumar P.B , K.V Pramod

Abstract - Mathematical morphology examines the geometrical structure of an image by probing it with small patterns, called 'structuring elements', of varying size and shape. This procedure results in nonlinear image operators which are suitable for exploring geometrical and topological structures. A series of such operators is applied to an image in order to make certain features more clear. Scale-space is an accepted and often used formalism in image processing and computer vision. Today, this formalism is so important because it makes the choice at what scale visual observations are to be made explicit. Fractal Geometry is a very new branch in Mathematics. An attempt to link Morphological operators and Fractals is made in this paper.

Keywords : *Dilation , Erosion, Morphological Space, Fractal.*

GJSFR Classification: *MSC: 47A20*

Strictly as per the compliance and regulations of:

Mathematical Morphology and Fractal Geometry

Ramkumar P.B^a, K.V Pramod^Q

Abstract - Mathematical morphology examines the geometrical structure of an image by probing it with small patterns, called 'structuring elements', of varying size and shape. This procedure results in nonlinear image operators which are suitable for exploring geometrical and topological structures. A series of such operators is applied to an image in order to make certain features more clear. Scale-space is an accepted and often used formalism in image processing and computer vision. Today, this formalism is so important because it makes the choice at what scale visual observations are to be made explicit. Fractal Geometry is a very new branch in Mathematics. An attempt to link Morphological operators and Fractals is made in this paper.

Keywords : Dilation , Erosion, Morphological Space, Fractal.

September 2011

7

Global Journal of Science Frontier Research Volume XI Issue VI Version I

I. INTRODUCTION

Mathematical Morphology is a tool for extracting image components that are useful for representation and description. It provides a quantitative description of geometrical structures. Morphology is useful to provide boundaries of objects, their skeletons, and their convex hulls. It is also useful for many pre- and post-processing techniques, especially in edge thinning and pruning.

Most morphological operations are based on simple expanding and shrinking operations. Morphological operations preserve the main geometric structures of the object. Only features 'smaller than' the structuring element are affected by transformations. All other features at 'larger scales' are not degraded. (This is not the case with linear transformations, such as convolution).

The primary application of morphology occurs in binary images, though it is also used on grey level images. It can also be useful on range images. (A range image is one where grey levels represent the distance from the sensor to the objects in the scene rather than the intensity of light reflected from them).

a) Preliminaries

i. Notation and Image Definitions

Types of Images

An image is a mapping denoted as I , from a set, N_p , of pixel coordinates to a set, M , of values such that for every coordinate vector, $p = (p_1, p_2)$ in N_p , there is a value $I(p)$ drawn from M . N_p is also called the image plane.[1]

Under the above defined mapping a real image maps an n-dimensional Euclidean vector space into the real numbers. Pixel coordinates and pixel values are real.

A discrete image maps an n-dimensional grid of points into the set of real numbers. Coordinates are n-tuples of integers, pixel values are real. A digital image maps an n-dimensional grid into a finite set of integers. Pixel coordinates and pixel values are integers. A binary image has only 2 values. That is, $M = \{m_{fg}, m_{bg}\}$, where m_{fg} is called the foreground value and m_{bg} is called the background value.

The foreground value is $m_{fg} = 0$, and the background is $m_{bg} = -\infty$. Other possibilities are $\{m_{fg}, m_{bg}\} = \{0, \infty\}$, $\{0, 1\}$, $\{1, 0\}$, $\{0, 255\}$, and $\{255, 0\}$.

b) Dilation and Erosion

Morphology uses 'Set Theory' as the foundation for many functions [1]. The simplest functions to implement are 'Dilation' and 'Erosion'

i. Definition : Dilation of the object A by the structuring element B is given by

$$A \oplus B = \{x : \hat{B}_x \cap A \neq \emptyset\}.$$

Usually A will be the signal or image being operated on A and B will be the Structuring Element'

ii. Definition Erosion

The opposite of dilation is known as erosion. Erosion of the object A by a structuring element B is given by

$$A \ominus B = \{x : B_x \subseteq A\}.$$

Erosion of A by B is the set of points x such that B translated by x is contained in A .

iii. Definition Opening

The opening of A by B , denoted by $A \circ B$, is given by the erosion by B , followed by the dilation by B , that is

iv. Closing

The opposite of opening is 'Closing' defined by $A \bullet B = (A \oplus B) \ominus B$.

Closing is the dual operation of opening and is denoted by $A \bullet B$. It is produced by the dilation of A by B , followed by the erosion by B :

c) *Morphological Operators defined on a Lattice*i. *Definition Dilation*

Let (L, \leq) be a complete lattice, with infimum and minimum symbolized by \wedge and \vee , respectively.

[1],[2].[11]

A dilation is any operator $\delta : L \rightarrow L$ that distributes over the supremum and preserves the least element. $\bigvee_i \delta(X_i) = \delta\left(\bigvee_i X_i\right)$, $\delta(\emptyset) = \emptyset$.

8

ii. *Definition Erosion*

An erosion is any operator $\varepsilon : L \rightarrow L$ that distributes over the infimum $\bigwedge_i \varepsilon(X_i) = \varepsilon\left(\bigwedge_i X_i\right)$, $\varepsilon(U) = U$.

iii. *Galois connections*

Dilations and erosions form Galois connections. That is, for all dilation δ there is one and only one erosion ε that satisfies $X \leq \varepsilon(Y) \Leftrightarrow \delta(X) \leq Y$ for all $X, Y \in L$.

Similarly, for all erosion there is one and only one dilation satisfying the above connection.

Furthermore, if two operators satisfy the connection, then δ must be a dilation, and ε an erosion.

iv. *Definition Adjunctions*

Pairs of erosions and dilations satisfying the above connection are called "adjunctions", and the erosion is said to be the adjoint erosion of the dilation, and vice-versa.

v. *Opening and Closing*

For all adjunction (ε, δ) , the morphological opening $\gamma : L \rightarrow L$ and morphological closing $\phi : L \rightarrow L$ are defined as follows:[2]

$$\gamma = \delta\varepsilon, \text{ and } \phi = \varepsilon\delta.$$

The morphological opening and closing are particular cases of algebraic opening (or simply opening) and algebraic closing (or simply closing). Algebraic openings are operators in L that are idempotent, increasing, and anti-extensive. Algebraic closings are operators in L that are idempotent, increasing, and extensive.

II. MORPHOLOGICAL OPERATORS DEFINED AS AN ALGEBRAIC STRUCTURE

a) *Definition : Morphogenetic field*

Let $X \neq \emptyset$ and $W \subseteq P(X)$ such that i) $\phi, X \in W$, ii) If $B \in W$ then its complement $\overline{B} \in W$, iii) If $B \in W$ is a sequence of signals defined in X , then $\bigcup_{n=1}^{\infty} Bi \in W$.

Let $A = \{\phi : W \rightarrow U / \phi(\cup A_i) = \vee \phi(A_i) \& \phi(\wedge A_i) = \wedge \phi(A_i)\}$. Then W_u is called Morphogenetic field [16] where the family W_u is the set of all image signals defined on the continuous or discrete image Plane[11],[12] X and taking values in a set U . The pair (W_u, A) is called an operator space where A is the collection of operators defined on X .

i. *Definition : Morphological space*

The triplet (X, W_u, A) consisting of a set X , a morphogenetic field W_u and an operator A (or collection of operators) defined on X is called a Morphological space [16].

Note : If $X = \mathbb{Z}^2$ then it is called Discrete Morphological space

ii. *Definition : Concave morphological space*

Let (X, W_u, A) be a morphological space and (W_u, A) be an operator space in (X, W_u, A) .

If X is a class of concave functions [14],[15] then (X, W_u, A) is called concave morphological space. If X is a class of convex functions then (X, W_u, A) is called convex morphological space.[16].

iii. *Definition : Sensitive operator*

Let (X, W_u, A) be a Morphological space[16]. Let B_1 be the neighbourhood of $x \in X$ i.e., $N(x) = B_1 \subseteq X$. Then $\forall x \in X, x \in B_1, y \in B_1, \exists B_2$ such that $B_1 \subseteq B_2 \subseteq X$ and $\alpha^n(x) \in B_2$ and $\alpha^n(y) \notin \overline{B_2}, n \in \mathbb{Z}^+$. Then $\alpha \in A$ is called a sensitive operator and the operator space [16] (W_u, A) is called a sensitive space.

Example : Dilation is sensitive. Constant signals $f(x) = c$ are not sensitive.

iv. *Proposition*

Let $N: X \rightarrow P(X)$ be defined such that $N(x) = \{y \in X / x \rho y\}$ where ρ is the relation, dilation defined between x and $y \in X$ i.e., $x \rho y \Rightarrow y = \delta(x)$ where δ is the dilation [8],[9],[10],[11] and for $\alpha \in A, \alpha = \delta \Rightarrow \delta^n(x) \in B_2 = N(x), \delta^n(y) \notin \overline{B_2}, n \in \mathbb{Z}^+, x, y \in B_1$. Thus δ is sensitive.

v. *Definition : Perfect Set*

Let $F \subseteq X$. Define $S(F) = \{\alpha / \alpha \in (W_u, A) \text{ is sensitive [6] by } \alpha \in F\}$. If $S(F) \neq \emptyset$ and (X, W_u, A) is a convex morphological space [16] then F is called Perfect.

vi. *Definition : Stirring Operator*

(Let (X, W_u, A) be a Morphological space and let $U, V \subseteq X$ be two sets. Let $\alpha \in A$. Then α is called stirring [6] if given any neighbourhoods N_1 and N_2 of U and V , $\forall x \in U, y \in V$ in $X, \exists k \in \mathbb{Z}^+$ such that

$$\alpha^k(N_1) \cap \alpha^k(N_2) \neq \emptyset.$$

α is strongly stirring if $\exists k \in \mathbb{Z}^+$ and a set G in X such that $G \subseteq \alpha^k(N_1) \cap \alpha^k(N_2)$.

vii. *Definition : Partial Similarity*

Let (X, W_u, A) be a Morphological space.

Let $K \subseteq X$. K is called Partial self similar or α similar if $\exists K_1, K_2, \dots, K_t$ such that $K = \bigcup_{i=1}^t K_i$ and for each K_i, \exists contraction maps $\varphi^{(i,j,k)}$, for $i=1, \dots, t, j=1, \dots, t, k=1, \dots, t$ and $w(i, j)$ with $w(i, j) > 0$ such that K_i .

viii. *Definition : Scale space*

Let S a scaling on an image space L . The family $\{T(t)\}, t > 0$ of operators on L is called an $(S, +)$ scale – space [2],[5] if $T(t).T(s) = T(t+s)$, $s, t > 0$ and $T(t).S(t) = S(t).T(t)$, $t > 0$

ix. *Proposition*

The erosion $\varepsilon(f) = f \ominus b$ with a convex structuring element b induces an $(S^{1/2}, + 1/2)$ scale space and f is $1/2$ similar.

x. *Definition : Anamorphic Scaling*

A family $S = \{S(t) / t > 0\}$ of operators on L is called a scaling if $S(1) =$ identity element.

$S(t)S(s) = S(ts)$ for $s, t > 0$. Two scalings S and \tilde{S} are said to be anamorphic [2],[5] if \exists an increasing bijection γ on T such that $S(\gamma(t)) = \tilde{S}'(t) \forall t \in T$ Also .

xi. *Proposition*

Anamorphic scaling are α – similar

xii. *Proposition*

The erosion $\varepsilon(f) = f \ominus b$ with $b \in \text{ESP}(k)$ for $K > 1$ induces a $(S^\alpha, + \nu)$ scale space if $\nu = 1 - \alpha + K^*(2\alpha - 1)$ which implies that f is α - similar , b is called the structuring function.

xiii. *Proposition*

Let (X, W_u, A) be a Morphological space. Let f be α similar. Then $\exists \psi \in A$ such that $\psi^\alpha(f) = \alpha\psi(f)$.

xiv. *Definition*

The cross – section $X_t(f)$ [1],[2],[5] of f at level t is the set obtained by thresholding f at level t .

$$X_t(f) = \{x / f(x) \geq t\}, \text{ where } -\infty < t < \infty$$

xv. *Proposition*

If f is a fractal then $\exists i \in I$ such that $\forall i, X_{t_i}(f)$ are self similar and $X = \bigcup_{\forall i} X_{t_i}(f)$.

III. MORPHOLOGICAL FRACTALS

a) *Surface area of a compact set*

Morphological operators extracts the impact of a particular shape on images [13] using structuring elements. It encodes the primitive shape information. The transformed image is obtained by using a structuring element .Therefore it can be treated as a function of the structuring element.

Dilation of a set X [5],[17] with a structuring element Y is given by the expression $X \oplus Y = \{x / Y^x \cup X \neq \emptyset\}$,

Y^x denotes the translation of a set Y with x .

Dilation operation can be used to define the surface area of a compact set.

Surface area [19]of a compact set X with respect to a compact convex structuring element Y which is symmetrical with respect to the origin is given by

$$S(X, Y) = \lim_{\rho \rightarrow 0} \frac{V(\partial X \oplus \rho Y)}{2\rho}$$

Where ∂X is the boundary of set X and \oplus denotes the dilation of the boundary of X by the structuring element Y and ρ is a scaling factor. Volume of a set X is denoted by $V(X)$.

b) *Particular Case – Fractals*

If the object is regular, the surface area will not change with ρ_i .For a fractal object, S is increases exponentially with decreasing ρ .

c) *Definition : Fractal Identification*

An image is segmented into the regions R_1, R_2, \dots, R_n if \exists a relation ρ on Regions such that $R_i \rho R_j$ if $R_i \cap R_j = \emptyset$ and $\bigcup R_i = X$.

Also Image Property of $R_i \cap R_j = \emptyset$,if $i \neq j$.If Image Property of $R_i = \text{Property of } R_j$ then each R_i is a fractal.

Note : Converse is not always true. For every Fractal, it is not necessary that Image Property of $R_i = \text{Property of } R_j$

d) *Definition : Class of Fractal Regions- $X(k, t)$*

Let $F(p) = \prod_{i=1}^m f_i(p_i) \dots$ (1) where $(p = (p_1, p_2, \dots, p_m))$ and $f_i, i=1, 2, \dots, m$ is a set of completely defined functions and F is uniquely defined on R .

Define $G(F)$ as $p \in G(F)$ iff $F(p)=1$.i.e F is a characteristic function of $G(F)$.The set of graphs which can be generated from (1) by allowing each f_i to vary over all possible logic functions is defined as Class of Fractal Graphs, [18] denoted by $G(k, t)$ where the vectors $(k = (k_1, k_2, \dots, k_m))$ and $t = (t_1, t_2, \dots, t_m))$.

e) *Definition : Compression*

Let (X, Wu, A) be a Morphological space. Let $R = X$ be a rectangular plane and is divided into grids represented by $R(2^{n_1} \times 2^{n_2})$. X_1 is a region on R and $\chi: R \rightarrow \{0,1\}$ is its characteristic function.

Given two integers r_1 and $r_2, 0 < r_1 < n_1, 0 < r_2 < n_2$,construct a rectangular plane R' regarding its left lower corner as an origin. A function $\chi': R' \rightarrow \{0,1\}$ is defined as follows.

$\forall p' = (x', y') \in R'$,if \exists integers $\alpha_1 \& \alpha_2$ where $0 < \alpha_1 < 2^{r_1}, 0 < \alpha_2 < 2^{r_2}$ such that $\chi(p) = 1$ where $p = (x, y) \in R$ and then $\chi'(p') = 1$,otherwise $\chi'(p') = 0$.

Region X' with χ' as its characteristic function is called a compressed region [18] of X based on (r_1, r_2) and a compressed region of X is denoted by $X' = \text{Comp}(r_1, r_2)(X)$ and $\chi'(p') \forall p', p' \in R'$ is given below. $\chi'(p') = 1$, if there exist 'a' in R such that $\chi(p) = 1$, $\chi'(p') = 0$ otherwise.

f) Definition : Similarity

Let (X, Wu, A) be a Morphological space. Assume that X_1 and X_2 are two regions on a plane. If \exists a compression transformation in A , $\text{Comp}(r_1, r_2)$ such that X_1 is compressed into $X_3 = \text{Comp}(r_1, r_2)(X_1)$ and X_2 can coincide with X_3 through translating X_2 , then X_1 and X_2 are similar, denoted by $X_1 \cong X_2$.

Note: Compression is nonreversible. Therefore Similarity is an asymmetric relation.

g) Definition : Self Similarity

Let (X, Wu, A) be a Morphological space. If \exists a partition X_1, X_2, \dots, X_r of X and X_i is a proper sub region of X such that X and each non empty sub region X_i of X are similar.

For any two non empty sub regions X_i and X_j , X_i and X_j are similar or X_i and X_j are similar, [1], [4]. Then X is said to be a self similar region.

h) The Order of Self Similarity

Let (X, Wu, A) be a Morphological space. X is a self similar region, if any proper sub region among all partitions of X which satisfy the definition of self similarity [18] is not a self similar region, then the order of similarity of X is 1.

If the maximal order of sub regions among all partitions of X which satisfy the definition of self similarity is m , then the order of self -similarity of X is $m+1$.

i) Definition: Mutual Similarity

Let (X, Wu, A) be a Morphological space. Let X be partitioned into X_1, X_2, \dots of X and X_i is a proper sub region of X such that for any two non empty sub regions X_i and X_j , X_i and X_j are similar or X_j and X_i are similar, then X is a mutually similar region [18].

j) Definition: Fractal Regions $X(k, t)$

Let (X, Wu, A) be a Morphological space. If set X can be partitioned into several sub regions and the sub regions are mutually similar and each sub region can further be partitioned into mutually similar sub regions etc, then G is said to be a mutual- similar region.

Note: If X can be identified as a representation in terms of graphs then $X(k, t)$ is a mutual similar graph.

IV. CONCLUSION

Morphological operators [3], [4], [9] are very useful for gathering informations from images. Most of the operators can also be applied in Medical Imaging [7]. Some results are given in generalized structure [16]. The regions can also be taken as graph points. So we can also apply the results from the already developed Graph Theory. We can also reconstruct a fractal image using Dilation and a fractal structuring element. Morphological fractals are useful in Medical imaging and other areas. It is possible to construct soft wares for this particular job.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Mathematical Morphology, John Goutsias and Henk J.A.M Heijmans, I.O.S Press.
2. H.J.A.M Heijmans, Morphological Image Operators, Boston, M.A Academic, 1994 .
3. J.Serra, Image Analysis and Mathematical Morphology, New York Academic 1982.
4. P .Maragos and R.W Schafer, "Morphological system for multi dimensional signal processing" , Proc. IEEE, Vol,78,P.D 690-710, April 1990.
5. Image Processing and Mathematical Morphology ,Frank Y.Shih, eBook ISBN: 978-1-4200-8944-8
6. Chaos and Fractals, Ph .D Thesis paper, Vinod KumarP.B,2000.
7. J. Samarabandu , R.Acharya, E.Hausman & K.Allen, Analysis of Bone X-Rays Using Morphological Fractals, IEEE Transactions on Medical Imaging, Vol 12,No.3,September 1993.
8. G. Matheron (1975): Random Sets and Integral Geometry, Wiley, New York.
9. J. Serra (1982): Image Analysis and Mathematical Morphology, Academic Press, London.
10. E. R. Dougherty and J. Astola (1994): Introduction to Non-linear Image Processing, SPIE, Bellingham, Washington.
11. R. C. Gonzalez and R. E. Woods (1992): Digital Image Processing, Addison-Wesley, New York.
12. R. M. Haralick and L. G. Shapiro (1992): Computer and Robot Vision, Addison-Wesley, New York.

13. Pitas and A. N. Venetsanopoulos (1990): Nonlinear Digital Filters: Principles and Applications, Kluwer Academic Publishers, Boston, Massachusetts, U.S.A.
14. P. Maragos, R. W. Schafer and M. A. Butt, eds., (1996): Mathematical Morphology and its Applications to Image and Signal Processing, Kluwer Academic Publishers, Dordrecht- Boston-London.
15. H. J. A. M. Heijmans and J. B. T. M. Roerdink, eds., (1998): Mathematical Morphology and its Applications to Image and Signal Processing, Kluwer Academic Publishers, Dordrecht-Boston-London.
16. K.V Pramod, Ramkumar P.B , Convex Geometry and Mathematical Morphology, International Journal of Computer Applications,Vol:8,Page 40-45.
17. Petros Maragos, Lattice Image Processing: A Unification of Morphological and Fuzzy Algebraic Systems, Journal of Mathematical Imaging and Vision 22:333-353,2005.
18. Ling Zhang, Bo Zhang and Gang Chen, Generating and Coding of Fractal Graphs by Neural Network and Mathematical Morphology Methods ,IEEE transactions on Neural Networks,Vol.7, No.2, March 1996.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 6 Version 1.0 September 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN: 0975-5896

Integral Formulae for Certain Product of Special Function Generalized Fractional Calculus

By V.B.L. Chaurasia , Vinod Gill

University of Rajasthan , jaipur , Rajasthan , India

Abstract - Fractional calculus and special functions have contributed a lot to the science and engineering. In view of great importance and usefulness of fractional calculus operators in different directions, we derive the images of the product of certain special function under the multiple Erdélyi - Kober operator due to Galué et al. The result obtained are general in character and includes, as special cases, the result for Riemann -Liouville operator, Erdélyi - Kober operator and Saigo operator etc. involving the product of certain special function of general argument.

Keywords : *Multivariable H-function, Erdélyi-Kober operator, Saigo operator, Fractional calculus, Jacobi polynomials, Series representation of the H-function.*

GJSFR-F Classification: *MSC: 26A33, 33C05, 33C40*

Strictly as per the compliance and regulations of:

Integral Formulae for Certain Product of Special Function Generalized Fractional Calculus

V.B.L. Chaurasia^a, Vinod Gill ^Ω

Abstract - Fractional calculus and special functions have contributed a lot to the science and engineering. In view of great importance and usefulness of fractional calculus operators in different directions, we derive the images of the product of certain special function under the multiple Erdélyi - Kober operator due to Galué et al. The result obtained are general in character and includes, as special cases, the result for Riemann -Liouville operator, Erdélyi - Kober operator and Saigo operator etc. involving the product of certain special function of general argument.

Keywords: Multivariable H-function, Erdélyi-Kober operator, Saigo operator, Fractional calculus, Jacobi polynomials, Series representation of the H-function.

I. INTRODUCTION

Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of arbitrary orders. During the last three decades, fractional calculus has been applied to almost every field of science and engineering.

The multiple Erdélyi-Kober operator of Weyl type, introduced by Galué et al. [3] is defined as

$$K_{(\tau_w, (\lambda_w), r)}^{(\eta_w, (\zeta_w))} f(x) = \begin{cases} \int_1^\infty H_{r,r}^{r,0} \left[\frac{1}{y} \left(\eta_w + \zeta_w + 1/\tau_w, 1/\tau_w \right)_1^r \right] f(x,y) dy, & \text{if } \sum_1^r \zeta_w > 0 \\ f(x), & \text{If } \zeta_w = 0, \lambda_w = \tau_w, w = 1, 2, \dots, r, \end{cases} \dots (1.1)$$

$$\text{Where } \sum_{w=1}^r \frac{1}{\lambda_w} \geq \sum_{w=1}^r \frac{1}{\tau_w} \text{ and } f(x) \in C_\beta^*.$$

The class C_β^* is defined in the form [3, p.56]

$$C_\beta^* = \{ f(x) = x^q \mathbb{F}(x); q < \beta^*, \mathbb{F} \in C(0, \infty), |\mathbb{F}'(x)| < A_{\mathbb{F}} \} \dots (1.2)$$

$$\text{And } \beta^* \leq \max(\lambda_w, \eta_w).$$

Galué et al. [3, p.56] represented that

$$K_{(\tau_w, (\lambda_w), r)}^{(\eta_w, (\zeta_w))} x^\rho = \prod_{w=1}^r \frac{\Gamma(\eta_w - \rho/\lambda_w)}{\Gamma(\eta_w + \zeta_w - \rho/\lambda_w)} x^\rho. \dots (1.3)$$

In the form of Pochhammer symbol $(a)_n$, defined as

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1 & \text{if } n=0 \\ a(a+1)\dots(a+n-1), & \forall n \in \mathbb{N} \end{cases} \dots (1.4)$$

We can write

$$(1-x)^{-\alpha} = \sum_{n=0}^{\infty} \frac{(\alpha)_n}{n!} x^n. \dots (1.5)$$

Author^{aΩ} : Department of Mathematics, University of Rajasthan, Jaipur- 302004, Rajasthan, India.
E-mails : drvblc@yahoo.com, vinod.gill08@gmail.com

A general class of multivariable polynomials of Srivastava and Grag [14] is defined and represented in the following form

$$S_n^{w_1, \dots, w_s}[x_1, \dots, x_s] = \sum_{k_1, \dots, k_s=0}^{w_1 k_1 + \dots + w_s k_s \leq n} (-n)_{w_1 k_1 + \dots + w_s k_s} A(n : k_1, \dots, k_s) \frac{x_1^{k_1}}{k_1!} \dots \frac{x_s^{k_s}}{k_s!}, \quad (1.6)$$

$n, w_1, \dots, w_s \in N_0 \quad \{0, 1, 2, \dots\}$ and the coefficients $A(n : k_1, \dots, k_s)$, ($k_j \in N_0$; $j = 1, \dots, s$) are arbitrary constants, real or complex. For $s = 1$, the polynomial (1.6) reduces to a general class of polynomials due to Srivastava [12].

$$S_n^w[x] = \sum_{k=0}^{[n/w]} \frac{(-n)_{wk}}{k!} A_{n,k} x^k, \quad n=0, 1, 2, \dots \quad (1.7)$$

where w is an arbitrary positive integer, the coefficients $A_{n,k}$ ($n, k \in N_0$) are arbitrary constants, real are arbitrary constants, real or complex. The following are the interesting special cases of this polynomials [15].

14 (i) Since

$$H_n(x) = \sum_{k=0}^{[n/2]} \frac{(-1)^k n!}{k! (n-2k)!} (2x)^{n-2k} \quad (1.8)$$

define Hermite polynomials therefore in this case, if we take

$$w=2, A_{n,k}=(-1)^k, S_n^2(x) \rightarrow x^{n/2} H_n(1/2\sqrt{x}). \quad (1.9)$$

(ii) On setting $w=1, A_{n,k} = \binom{n+\alpha}{n} \frac{(\alpha+\beta+n+1)_k}{(\alpha+1)_k}, S_n^1$ reduces to the Jacobi polynomials $P_n^{(\alpha, \beta)}$ $(1-2x)$, defined by Szegö [16, p.68, eqn. (4.3.2)].

$$P_n^{(\alpha, \beta)}(x) = \sum_{k=0}^n \binom{n+\alpha}{n-k} \binom{n+\beta}{k} \left(\frac{x-1}{2}\right)^k \left(\frac{x+1}{2}\right)^{n-k} \cdot \binom{n+\alpha}{n} {}_2F_1\left[-n, \alpha+\beta+n+1; \alpha+1; \frac{1-x}{2}\right]. \quad (1.10)$$

The following series representation of the H-function of several complex variables has been recently studied and given by Olkha and Chaurasia [6, p.39], as follows:

$$H[z_1, \dots, z_r] = \sum_{m_i=1}^{u^{(i)}} \sum_{n_i=0}^{\infty} \frac{\prod_{j=1}^{\lambda} \Gamma(1-a_j + \sum_{i=1}^r \theta_j^{(i)} U_i)}{\prod_{j=\lambda+1}^A \Gamma(a_j - \sum_{i=1}^r \theta_j^{(i)} U_i) \prod_{j=1}^C \Gamma(1-c_j + \sum_{i=1}^r \psi_j^{(i)} U_i)} \\ \cdot \frac{\prod_{j=1}^{u^{(i)}} \Gamma(d_j^{(i)} - \delta_j^{(i)} U_i) \prod_{j=1}^{v^{(i)}} \Gamma(1-b_j^{(i)} + \phi_j^{(i)} U_i) \prod_{i=1}^r (z_i)^{U_i} (-1)^{\sum_{i=1}^r (n_i)}}{\prod_{j=u^{(i)}+1}^{D^{(i)}} \Gamma(1-d_j^{(i)} + \delta_j^{(i)} U_i) \prod_{j=v^{(i)}+1}^{B^{(i)}} \Gamma(b_j^{(i)} - \phi_j^{(i)} U_i) \prod_{i=1}^r (\delta_{m_i}^{(i)} n_i!)}, \quad (1.11)$$

where $U_i = \frac{d_{m_i}^{(i)} + n_i}{\delta_{m_i}^{(i)}}, \sum_{m_i=1}^{u^{(i)}} \text{ and } \sum_{n_i=0}^{\infty}$ denote the multiple sums $\sum_{m_1=1}^{u'} \dots \sum_{m_r=1}^{u^{(r)}}$
 $\sum_{n_1=0}^{\infty} \dots \sum_{n_r=0}^{\infty}$ respectively and $\forall i \in (1, \dots, r)$.

The multivariable H-function due to Srivastava and Panda [13] will be required in the proof.

II. THE MAIN RESULTS

Images under Multiple Erdélyi-Kober operator Letting

$$f(x) = x^\rho (x^\mu + c^\mu)^{-\sigma} S_m^{w_1, \dots, w_s} [x^{\ell_1} (x^\mu + c^\mu)^{-v_1}, \dots, x^{\ell_s} (x^\mu + c^\mu)^{-v_s}]$$

$$\cdot H[z_1 x^{-h_1} (x^\mu + c^\mu)^{-\rho_1}, \dots, z_N x^{-h_N} (x^\mu + c^\mu)^{-\rho_N}]$$

$$\cdot H[y_1 x^{t_1} (x^\mu + c^\mu)^{-\eta_1}, \dots, y_r x^{t_r} (x^\mu + c^\mu)^{-\eta_r}] \quad (2.1)$$

With

$$\operatorname{Re}[-\alpha^* + \min_{1 \leq k \leq r} (\lambda_k \gamma_k)] > 0, \sum_{i=1}^r \frac{1}{\lambda_i} \geq \sum_{j=1}^r \frac{1}{\tau_j} \text{ and}$$

$\rho, \sigma, h_i, \rho_i (i = 1, \dots, N), \ell_i, v_i (i = 1, \dots, s), \eta_i (i = 1, \dots, r) > 0$ then there holds the following formula

$$K_{(\tau_w),(\lambda_w),r}^{(\eta_w),(\zeta_w)} [f(x)] = x^\rho c^{-\mu\sigma} \sum_{k_1 \dots k_s=0}^{w_1 k_1 + \dots + w_s k_s \leq m} (-m)_{w_1 k_1 + \dots + w_s k_s} A(m : k_1 \dots k_s)$$

$$\cdot \frac{c^{-\mu \sum_{i=1}^s v_i k_i}}{k_1! \dots k_s!} x^{\sum_{i=1}^s \ell_i k_i} \sum_{n=0}^{\infty} \frac{(-1)^n x^{\mu n}}{n! c^{\mu n}} H_{p,q:[p_1, q_1]; \dots; [p_r, q_r]}^{0, \lambda_1: [m_1, n_1]; \dots; [m_r, n_r]}$$

$$\cdot \left[\begin{array}{l} [(e): \alpha^{(1)}, \dots, \alpha^{(r)}]; [(E^{(1)}): r^{(1)}], \dots, [(E^{(r)}): r^{(r)}]; \\ [(f): \beta^{(1)}, \dots, \beta^{(r)}]; [(F^{(1)}): W^{(1)}], \dots, [(F^{(r)}): W^{(r)}]; \end{array} \frac{y_1 x^{t_1}}{c^{\mu \eta_1}}, \dots, \frac{y_r x^{t_r}}{c^{\mu \eta_r}} \right]$$

$$H_{A+r+1, C+r+1: [B^{(1)}, D^{(1)}]; \dots; [B^{(N)}, D^{(N)}]}^{0, \lambda+r+1: (u^{(1)}, v^{(1)}); \dots; (u^{(r)}, v^{(r)})} \left[\begin{array}{l} \frac{z_1}{x^{h_1 c^{\mu \rho_1}}} \\ \vdots \\ \frac{z_n}{x^{h_N c^{\mu \rho_N}}} \end{array} \right] \left[\begin{array}{l} [1-\Delta-n: \rho_1, \dots, \rho_N] \left[1-\eta_w + E: \frac{h_1}{\lambda_w}, \dots, \frac{h_N}{\lambda_w} \right]^r, \\ [(c): \psi_1^{(1)}, \dots, \psi^{(N)}] [(d^{(1)}): \delta^{(1)}], \dots, [(d^{(N)}): \delta^{(N)}], \end{array} \right]$$

Where

$$\left. \begin{aligned} &[(a):\theta^{(1)}, \dots, \theta^{(N)}]:[(b^{(1)}):\phi^{(1)}], \dots, [(b^{(N)}):\phi^{(N)}] \\ &[1-\Delta:\rho_1, \dots, \rho_N], \left[1-\eta_w - \zeta_w + E: \frac{h_1}{\lambda_w}, \dots, \frac{h_N}{\lambda_w} \right]_1^r \end{aligned} \right\}, \quad \dots(2.2)$$

$$\Delta = \sigma + \sum_{i=1}^r v_i k_i + \sum_{i=1}^r \eta_i U_i,$$

$$E = \frac{\left[\rho + \sum_{i=1}^r \ell_i k_i + \sum_{i=1}^r t_i U_i + \mu n \right]}{\lambda_w}.$$

and the series (2.2) is convergent.

Proof of 2.2

To establish (2.2), we express the general class of polynomial, on multivariable H-function in series form by using (1.6) and (1.11) and another multivariable H-function in terms of Mellin-Barnes contour integrals [13]. Then changing the order of integration and summations which is permissible under the conditions surrounding (2.2) and appealing to the result (1.3), we arrive at the desired result.

III. APPLICATIONS

As an application of the result (2.2), we derive some interesting special cases. More special cases associated with various orthogonal polynomials and special functions can be derived by using the special cases of the polynomial $S_m^w[x]$ and the H-function of several variables.

(I) Taking $s = 1$ in (2.2), the polynomial (1.6) will reduce to and consequently, we obtain the following result

$$K_{(\tau_w),(\lambda_w),r}^{(\eta_w),(\zeta_w)} [f_1(x)] = x^\rho c^{-\mu\sigma} \sum_{k=0}^{[m/w]} \frac{(-m)_{wk}}{k!} A_{m,k} x^{\ell k} c^{-\mu v k}$$

$$\cdot \sum_{n=0}^{\infty} \frac{(-1)^n x^{\mu n}}{n! c^{\mu n}} H_{p,q:[p_1,q_1], \dots, [p_r,q_r]}^{0,\lambda_1:[m_1,n_1], \dots, [m_r,n_r]}$$

$$\cdot \left[\begin{aligned} &[(e):\alpha^{(1)}, \dots, \alpha^{(r)}]:[(E^{(1)}):r^{(1)}], \dots, [(E^{(r)}):r^{(r)}]; \frac{y_1 x^{t_1}}{c^{\mu n_1}} \dots \frac{y_r x^{t_r}}{c^{\mu n_r}} \\ &[(f):\beta^{(1)}, \dots, \beta^{(r)}]:[(F^{(1)}):W^{(1)}], \dots, [(F^{(r)}):W^{(r)}]; \end{aligned} \right]$$

$$\cdot H_{A+r+1, C+r+1: [B^{(1)}, D^{(1)}], \dots, [B^{(N)}, D^{(N)}]}^{0, \lambda+r+1: (u^{(1)}, v^{(1)}), \dots, (u^{(r)}, v^{(r)})} \left[\begin{array}{c} \frac{z_1}{x^{h_1} c^{\mu \rho_1}} \\ \vdots \\ \frac{z_n}{x^{h_N} c^{\mu \rho_N}} \end{array} \right] \left[\begin{aligned} &[1-\Delta^* - n:\rho_1, \dots, \rho_N] \left[1-\eta_w - \zeta_w + E^*: \frac{h_1}{\lambda_w}, \dots, \frac{h_N}{\lambda_w} \right]_1^r \\ &[(c):\psi_1^{(1)}, \dots, \psi^{(N)}]:[(d^{(1)}):\delta^{(1)}], \dots, [(d^{(N)}):\delta^{(N)}], \end{aligned} \right]$$

$$\left. \begin{aligned} &[(a):\theta^{(1)}, \dots, \theta^{(N)}]:[(b^{(1)}):\phi^{(1)}], \dots, [(b^{(N)}):\phi^{(N)}], \\ &[1-\Delta^*:\rho_1, \dots, \rho_N], \left[1-\eta_w - \zeta_w + E^* : \frac{h_1}{\lambda_w}, \dots, \frac{h_N}{\lambda_w} \right]_1^r \end{aligned} \right\}, \quad \dots(3.1)$$

$$\Delta^* = \sigma + vk + \sum_{i=1}^r \eta_i U_i, \quad E^* = \frac{\left[\rho + \ell k + \sum_{i=1}^r t_i U_i + \mu n \right]}{\lambda_w},$$

$$\text{and } f_1(x) = x^\rho (x^\mu + c^\mu)^{-\sigma} S_m^w [x^\ell (x^\mu + c^\mu)^{-v}] \\ \cdot H[z_1 x^{-h_1} (x^\mu + c^\mu)^{-\rho_1} \dots z_N x^{-h_N} (x^\mu + e^\mu)^{-\rho_N}] \\ \cdot H[y_1 x^{t_1} (x^\mu + c^\mu)^{-\eta_1} \dots y_r x^{t_r} (x^\mu + c^\mu)^{-\eta_r}].$$

(II) Setting $s = 1, w = 2$ and $A_{m,k} = (-1)^k$ in (2.2), the by virtue of the result (1.9), we find that

$$\begin{aligned} &K_{(\tau_w),(\lambda_w),r}^{(\eta_w),(\zeta_w)} [f_2(x)] = x^\rho c^{-\mu\sigma} \sum_{k=0}^{[m/2]} (-1)^k (-m)_{2k} \frac{c^{-\mu vk} x^{\ell k}}{k!} \\ &\cdot \sum_{n=0}^{\infty} \frac{(-1)^n x^{\mu n}}{n! c^{\mu n}} H_{p,q:[p_1,q_1], \dots, [p_r,q_r]}^{0,\lambda_1:[m_1,n_1], \dots, [m_r,n_r]} \\ &\cdot \left[\begin{aligned} &[(e):\alpha^{(1)}, \dots, \alpha^{(r)}]:[(E^{(1)}):r^{(1)}], \dots, [(E^{(r)}):r^{(r)}]; \frac{y_1 x^{t_1}}{c^{\mu \eta_1}}, \dots, \frac{y_r x^{t_r}}{c^{\mu \eta_r}} \\ &[(f):\beta^{(1)}, \dots, \beta^{(r)}]:[(F^{(1)}):W^{(1)}], \dots, [(F^{(r)}):W^{(r)}]; \frac{z_1}{x^{h_1} c^{\mu \rho_1}}, \dots, \frac{z_n}{x^{h_N} c^{\mu \rho_N}} \end{aligned} \right] \\ &\cdot H_{A+r+1,C+r+1:[B^{(1)},D^{(1)}], \dots, [B^{(N)},D^{(N)}]}^{0,\lambda+r+1:[(u^{(1)},v^{(1)}), \dots, (u^{(r)},v^{(r)})]} \left[\begin{aligned} &\frac{z_1}{x^{h_1} c^{\mu \rho_1}} \\ &\vdots \\ &\frac{z_n}{x^{h_N} c^{\mu \rho_N}} \end{aligned} \right] \\ &\left. \begin{aligned} &[(a):\theta^{(1)}, \dots, \theta^{(N)}]:[(b^{(1)}):\phi^{(1)}], \dots, [(b^{(N)}):\phi^{(N)}], \\ &[1-\Delta^*:\rho_1, \dots, \rho_N], \left[1-\eta_w - \zeta_w + E^* : \frac{h_1}{\lambda_w}, \dots, \frac{h_N}{\lambda_w} \right]_1^r \end{aligned} \right\}, \quad \dots(3.2) \end{aligned}$$

where E^* and Δ^* are defined in equation (3.1), the series in (3.2) is convergent and the conditions given with (2.2) are satisfied for $s = 1$ and

$$f_2(x) = x^{\rho + \frac{n\ell}{2}} (x^\mu + c^\mu)^{-\sigma - \frac{nv}{2}}$$

$$\begin{aligned} & \cdot H[z_1 x^{-h_1} (x^\mu + c^\mu)^{-\rho_1} \dots z_N x^{-h_N} (x^\mu + e^\mu)^{-\rho_N}] \\ & \cdot H[y_1 x^{t_1} (x^\mu + c^\mu)^{-\eta_1} \dots y_r x^{t_r} (x^\mu + c^\mu)^{-\eta_r}] H_n \left[\frac{(x^\mu + c^\mu)^{v/2}}{2x^{\ell/2}} \right]. \end{aligned}$$

(III) Next, if we set $s = 1, w = 1$ and

18

$$A_{m,k} = \binom{m+\alpha}{m} \frac{(\alpha+\beta+m+1)_k}{(\alpha+1)_k}$$

then by virtue of (1.10), $S_m^1(x)$ reduces to the Jacobi polynomials and consequently, it yields

$$K_{(\tau_w),(\lambda_w),r}^{(\eta_w),(\zeta_w)} [f_3(x)] = x^\rho c^{-\mu\sigma} \sum_{k=0}^m (-m)_k \binom{m+\alpha}{m} \frac{(\alpha+\beta+m+1)_k}{(\alpha+1)_k} \frac{x^{\ell k} c^{-\mu v k}}{k!}$$

$$\cdot \sum_{n=0}^{\infty} \frac{(-1)^n x^{\mu n}}{n! c^{\mu n}} H_{p,q:[p_1,q_1];\dots:[p_r,q_r]}^{0,\lambda_1:[m_1,n_1];\dots:[m_r,n_r]}$$

$$\cdot \left[\begin{array}{l} [(e):\alpha^{(1)},\dots,\alpha^{(r)}]:[(E^{(1)}):r^{(1)}];\dots;[(E^{(r)}):r^{(r)}]; \\ [(f):\beta^{(1)},\dots,\beta^{(r)}]:[(F^{(1)}):W^{(1)}];\dots;[(F^{(r)}):W^{(r)}]; \end{array} \frac{y_1 x^{t_1}}{c^{\mu \eta_1}} \dots \frac{y_r x^{t_r}}{c^{\mu \eta_r}} \right]$$

$$H_{A+r+1,C+r+1:[B^{(1)},D^{(1)}];\dots:[B^{(N)},D^{(N)}]}^{0,\lambda+r+1:[(u^{(1)},v^{(1)});\dots;(u^{(r)},v^{(r)})]} \left[\begin{array}{l} \frac{z_1}{x^{h_1} c^{\mu \rho_1}} \\ \vdots \\ \frac{z_N}{x^{h_N} c^{\mu \rho_N}} \end{array} \right] \left[\begin{array}{l} [1-\Delta^*-n:\rho_1,\dots,\rho_N] \left[\begin{array}{l} 1-\eta_w + E^* : \frac{h_1}{\lambda_w}, \dots, \frac{h_N}{\lambda_w} \end{array} \right]_1^r, \\ [(c):\psi_1^{(1)},\dots,\psi^{(N)}]:[(d^{(1)}):\delta^{(1)}];\dots;[(d^{(N)}):\delta^{(N)}], \end{array} \right]$$

$$\left. \begin{array}{l} [(a):\theta^{(1)},\dots,\theta^{(N)}]:[(b^{(1)}):\phi^{(1)}];\dots;[(b^{(N)}):\phi^{(N)}] \\ [1-\Delta^*:\rho_1,\dots,\rho_N], \left[\begin{array}{l} 1-\eta_w - \zeta_w + E^* : \frac{h_1}{\lambda_w}, \dots, \frac{h_N}{\lambda_w} \end{array} \right]_1^r \end{array} \right] \quad \dots(3.3)$$

where E^* and Δ^* are defined in equation (3.1), the series in (3.3) is convergent and the conditions given with (2.2) are satisfied for $s = 1$.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Chaurasia, V.B.L. and Gupta, N.- General fractional integral operators, general class of polynomials and Fox's H-function Soochow J. Math. 25(4), (1999), pp.333-339.
2. Chaurasia, V.B.L. and Dubey, Ravi Shanker - Images of certain special functions pertaining to multiple Erdélyi-Kober operator of Weyl type, Mathematical Sciences, Vol. 20 (2009), 37-43.
3. Galu, L., Kiryakova, V.S. and Kalla, S.L.- Solution of dual integral equations by fractional calculus, Mathematica Balkanica, Vol.7 (1993), pp.53-72.
4. Kalla, S.L. and Kiryakova, V.S. - An H-function generalized fractional calculus based upon compositions of Erdélyi-Kober operator in L_p , Math. Japan, 35 (1990), pp.1151-1171.
5. Mathai, A.M. and Saxena, R.K.- The H-function with application in statistics and other disciplines, John Wiley and Sons, New York (1978).
6. Olkha, G.S. and Chaurasia, V.B.L.- Series representation for the H-function of general complex variables, Math. Edu., 19 : 1 (1985), 38-40.
7. Saigo, M.- A remark on integral operators involving the Gauss hypergeometric function, Math. Rep. (Kyushu Univ.), 11 (1978), pp. 135-143.
8. Saxena, R.K., Ram, J. and Suthar, D.L.- Integral formulas for the H-functions generalized fractional calculus, South East Asian J. Math. and Math. Sci., 3 (2004), pp.69-74.
9. Saxena, R.K., Ram, J. and Chandak, S.- Integral formulas for the H-functions generalized fractional calculus associated with Erdélyi-Kober operator of Weyl type, Acta Ciencia, India Vol. XXXI, No.3 (2005), pp.761-766.
10. Saxena, R.K., Ram, J. and Chandak, S.- Integral formulas for the generalized Erdélyi-Kober operator of Weyl type, Journal of India Acad. Math. Vol.29, No.2 (2007), pp.495-504.
11. Sneddon, I.N.- The use in Mathematical Physics of Erdélyi-Kober operator and some of their generalizations. Lecture notes in Math. 457, Springer-Verlag, New York (1975), pp.37-99.
12. Srivastava, H.M.- A contour integral involving Fox's H-function, Indian J. Math., 14 (1979), pp. 1-6.
13. Srivastava, H.M. and Panda, R.- Some bilateral generating functions for a class of generalized hypergeometric polynomials, J. Reine Angew. Math., 283/284 (1976), pp.265-274.
14. Srivastava, H.M. and Garg, M.- Some integral involving a general class of polynomials and multivariable H-function, Rev. Romantic Phys., 32 (1987), pp.685-692.
15. Srivastava, H.M. and Singh, N.P.- The integration of certain products of multivariable H-function with a general class of polynomials, Rendiconti del circolo Mathematics di Palermo, 32 (1983), pp.157-187.
16. Szegö, G.- Orthogonal polynomials, Amer. Math. Soc., Colloq. Publ., Vol. XIII, fourth edition, Amer. Math. Soc. Providence, Rhode Island (1975).

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 6 Version 1.0 September 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN: 0975-5896

A New Summation Formula Allied With Hypergeometric Function

By Salahuddin

P.D.M College of Engineering, Bahadurgarh, Haryana, India

Abstract - The main objective of the present paper is to derive a summation formula of half argument associated to Bailey theorem .The result presented here is presumably new.

Keywords : Gaussian Hypergeometric function , Contiguous function, Re- currence relation, Bailey summation theorem and Legendre duplication formula.

GJSFR Classification: 2000 MSC No: 33C60 , 33C70.

A NEW SUMMATION FORMULA ALLIED WITH HYPERGEOMETRIC FUNCTION

Strictly as per the compliance and regulations of:

A New Summation Formula Allied With Hypergeometric Function

Salahuddin

Abstract - The main objective of the present paper is to derive a summation formula of half argument associated to Bailey theorem. The result presented here is presumably new.

Keywords and Phrases : Gaussian Hypergeometric function , Contiguous function, Re-currence relation, Bailey summation theorem and Legendre duplication formula.

I. INTRODUCTION

Generalized Gaussian hypergeometric function of one variable is defined by

$${}_A F_B \left[\begin{matrix} a_1, a_2, \dots, a_A & ; \\ b_1, b_2, \dots, b_B & ; \end{matrix} z \right] = \sum_{k=0}^{\infty} \frac{(a_1)_k (a_2)_k \dots (a_A)_k z^k}{(b_1)_k (b_2)_k \dots (b_B)_k k!}$$

or

$${}_A F_B \left[\begin{matrix} (a_A) & ; \\ (b_B) & ; \end{matrix} z \right] \equiv {}_A F_B \left[\begin{matrix} (a_j)_{j=1}^A & ; \\ (b_j)_{j=1}^B & ; \end{matrix} z \right] = \sum_{k=0}^{\infty} \frac{((a_A))_k z^k}{((b_B))_k k!} \quad (1)$$

where the parameters b_1, b_2, \dots, b_B are neither zero nor negative integers and A, B are non-negative integers.

Contiguous Relation is defined as follows [E. D. p.51(10), Andrews p.363(9.16), H.T. F. I p.103(32)]

$$(a-b) {}_2 F_1 \left[\begin{matrix} a, b & ; \\ c & ; \end{matrix} z \right] = a {}_2 F_1 \left[\begin{matrix} a+1, b & ; \\ c & ; \end{matrix} z \right] - b {}_2 F_1 \left[\begin{matrix} a, b+1 & ; \\ c & ; \end{matrix} z \right] \quad (2)$$

Recurrence relation of gamma function is defined as follows

$$\Gamma(z+1) = z \Gamma(z) \quad (3)$$

Legendre duplication formula is defined as follows

$$\sqrt{\pi} \Gamma(2z) = 2^{(2z-1)} \Gamma(z) \Gamma\left(z + \frac{1}{2}\right) \quad (4)$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} = \frac{2^{(b-1)} \Gamma(\frac{b}{2}) \Gamma(\frac{b+1}{2})}{\Gamma(b)} \quad (5)$$

$$= \frac{2^{(a-1)} \Gamma(\frac{a}{2}) \Gamma(\frac{a+1}{2})}{\Gamma(a)} \quad (6)$$

Bailey summation theorem [Prud, p.491(7.3.7.8)] is defined as follows

$${}_2 F_1 \left[\begin{matrix} a, 1-a & ; \\ c & ; \end{matrix} \frac{1}{2} \right] = \frac{\Gamma(\frac{c}{2}) \Gamma(\frac{c+1}{2})}{\Gamma(\frac{c+a}{2}) \Gamma(\frac{c+1-a}{2})} = \frac{\sqrt{\pi} \Gamma(c)}{2^{c-1} \Gamma(\frac{c+a}{2}) \Gamma(\frac{c+1-a}{2})} \quad (7)$$

Author : P.D.M College of Engineering , Bahadurgarh , Haryana , India . E-mail : sludn@yahoo.com

II. MAIN RESULT OF SUMMATION FORMULA

$$\begin{aligned}
 {}_2F_1 \left[\begin{matrix} a & , & -a-35 \\ c & & \end{matrix} ; \frac{1}{2} \right] &= \frac{\sqrt{\pi} \Gamma(c)}{2^{c+35}} \times \left[\frac{4(415017197290314178560000)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \right. \\
 &+ \frac{4(-701134724741952836966400a + 346312606003048571708160a^2 - 63044905774814277068160a^3)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(2520162030955804023312a^4 + 347909921081488886400a^5 - 17050603760335860120a^6)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-1215731406744910440a^7 + 22493679752250729a^8 + 2293529179788000a^9 + 21722140394460a^{10})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-1179007608240a^{11} - 30913573194a^{12} - 149940000a^{13} + 3136500a^{14} + 42840a^{15} + 153a^{16})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(995391244148036404838400c - 1188738087797910855260160ac + 433443627220853784109824a^2c)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-54690068587015435432320a^3c + 222494190743852311824a^4c + 308870212868652946560a^5c)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-2605193255977346328a^6c - 811390918393061160a^7c - 7344331962050919a^8c)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(809731932055200a^9c + 20301736826844a^{10}c - 49464547440a^{11}c - 6878340714a^{12}c - 76792800a^{13}c)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-92940a^{14}c + 2520a^{15}c + 9a^{16}c + 940737212685399702896640c^2 - 842944939817358014300160ac^2)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(229804932215451704039424a^2c^2 - 19087576455710013350400a^3c^2 - 598038150920943774720a^4c^2)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(97496924379205317120a^5c^2 + 1795534443248012544a^6c^2 - 172218004133868000a^7c^2)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-4900104145807200a^8c^2 + 63835461597600a^9c^2 + 3660595210272a^{10}c^2 + 32261090400a^{11}c^2)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-301193760a^{12}c^2 - 5997600a^{13}c^2 - 24480a^{14}c^2 + 493113450686876996861952c^3)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-340008605858413227294720ac^3 + 69119287604777891371008a^2c^3 - 3360401286427327654400a^3c^3)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-259295274674166545920a^4c^3 + 14355397477659293440a^5c^3 + 651193244570304128a^6c^3)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 &+ \frac{4(-13393051014173600a^7c^3 - 809327950990240a^8c^3 - 4254392973600a^9c^3 + 232222999008a^{10}c^3)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} +
 \end{aligned}$$

$$\begin{aligned}
& + \frac{4(3623373600a^{11}c^3 + 8336160a^{12}c^3 - 117600a^{13}c^3 - 480a^{14}c^3 + 165393111855973216813056c^4)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-88619859281749602508800ac^4 + 13234031762431394360320a^2c^4 - 267732463853898489600a^3c^4)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-50852045281263121280a^4c^4 + 885721501247352000a^5c^4 + 92742286806954400a^6c^4)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(188394608001600a^7c^4 - 58996252798560a^8c^4 - 853038648000a^9c^4 + 3592105440a^{10}c^4)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(131947200a^11c^4 + 628320a^12c^4 + 38348155565012206485504c^5 - 15980556939785111511040ac^5)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(1703747269799832083456a^2c^5 + 7094137991114845440a^3c^5 - 5780224308733390208a^4c^5)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-22987619341431360a^5c^5 + 6958079968315168a^6c^5 + 100932053893440a^7c^5 - 1873167815904a^8c^5)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-45925387200a^9c^5 - 162823584a^{10}c^5 + 1552320a^{11}c^5 + 7392a^{12}c^5 + 6441077978373336596480c^6)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-2075899486553471631360ac^6 + 150541710347476783104a^2c^6 + 4035388382214604800a^3c^6)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-406469269661199360a^4c^6 - 7894718282626560a^5c^6 + 279461650288128a^6c^6 + 7133593420800a^7c^6)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-4463585280a^8c^6 - 1055577600a^9c^6 - 6031872a^{10}c^6 + 807369926207525617664c^7)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-198998299950923038720ac^7 + 9013154655402692608a^2c^7 + 464897900224665600a^3c^7)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-17366159133649920a^4c^7 - 603327725468160a^5c^7 + 4491951518208a^6c^7 + 237685324800a^7c^7)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(1232056320a^8c^7 - 8870400a^9c^7 - 50688a^{10}c^7 + 76952353200486612992c^8)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-14260711716681830400ac^8 + 337711544275522560a^2c^8 + 30600618278630400a^3c^8)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-376535905025280a^4c^8 - 24535845734400a^5c^8 - 73578785280a^6c^8 + 3920716800a^7c^8)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(28005120a^8c^8 + 5637067161272188928c^9 - 766928822089830400ac^9 + 5176262833730560a^2c^9)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(1300268697728000a^3c^9 + 1160910150400a^4c^9 - 575089715200a^5c^9 - 4430666240a^6c^9)}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{4(25625600a^7c^9 + 183040a^8c^9 + 318647139652075520c^{10} - 30797759499386880ac^{10})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-191736922144768a^2c^{10} + 36337203302400a^3c^{10} + 305641656320a^4c^{10} - 7318671360a^5c^{10})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-69701632a^6c^{10} + 13865952926498816c^{11} - 909358510161920ac^{11} - 14383991078912a^2c^{11})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(646743552000a^3c^{11} + 8097689600a^4c^{11} - 39137280a^5c^{11} - 372736a^6c^{11} + 460065647362048c^{12})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-19154958950400ac^{12} - 430851133440a^2c^{12} + 6653337600a^3c^{12} + 95047680a^4c^{12})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(11421693509632c^{13} - 272285081600ac^{13} - 7252725760a^2c^{13} + 30105600a^3c^{13} + 430080a^4c^{13})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(205308559360c^{14} - 2339635200ac^{14} - 66846720a^2c^{14} + 2522349568c^{15} - 9175040ac^{15})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4(-262144a^2c^{15} + 18939904c^{16} + 65536c^{17})}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-6110663484726998765568000a + 5999292753779459361024000a^2 - 1835414095881644284688640a^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{173306115070278868568448a^4 + 6847363087839492659280a^5 - 1277125239887448714064a^6}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-29403101847991115160a^7 + 3471963027381725856a^8 + 126277195151524725a^9}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-2216897933318673a^{10} - 171425296918260a^{11} - 2149251178156a^{12} + 31660673310a^{13}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{1068483738a^{14} + 8985060a^{15} + 852a^{16} - 315a^{17} - a^{18} + 6110663485082686193664000c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-16508266755118513166131200ac + 9924029599401067550100480a^2c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-2045268821850893695203840a^3c + 97069461886560854657088a^4c + 11370086277363321580800a^5c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-633824951895804745440a^6c - 41696927468297529120a^7c + 867582829527332292a^8c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{81786749980320000a^9c + 738130579599600a^{10}c - 42829190268480a^{11}c - 1109263754088a^{12}c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-5325868800a^{13}c + 113207760a^{14}c + 1542240a^{15}c + 5508a^{16}c + 10508974002562459395686400c^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{-15912338427674300616560640ac^2 + 6627726370166439060112896a^2c^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-923720755083133693512960a^3c^2 + 8432672530427463216672a^4c^2 + 5300412627789403850880a^5c^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-58323559225558629744a^6c^2 - 14359766640878791440a^7c^2 - 117708974158778046a^8c^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{14649826634150400a^9c^2 + 361244419738488a^{10}c^2 - 955517381280a^{11}c^2 - 123959873268a^{12}c^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-1380153600a^{13}c^2 - 1664280a^{14}c^2 + 45360a^{15}c^2 + 162a^{16}c^2 + 7823722925976479795773440c^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-8155904534327159641866240ac^3 + 2452519572753235312705536a^2c^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-222301377892875933388800a^3c^3 - 5989963989578329635840a^4c^3 + 1148054756503305530880a^5c^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{19344109390635085056a^6c^3 - 2070540243026640000a^7c^3 - 57385728514224000a^8c^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{786409798204800a^9c^3 + 43840425315456a^{10}c^3 + 383966352000a^{11}c^3 - 3629404800a^{12}c^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-71971200a^{13}c^3 - 293760a^{14}c^3 + 3400140872524649384116224c^4 - 2609068981199287139205120ac^4}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{572280147968391303917568a^2c^4 - 30389538700606098585600a^3c^4 - 2162804762047330894080a^4c^4}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{129800158011581904000a^5c^4 + 5652662058893572800a^6c^4 - 123530509599789600a^7c^4}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-7227575616428640a^8c^4 - 36913079095200a^9c^4 + 2094884247456a^{10}c^4 + 32563792800a^{11}c^4}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{74803680a^{12}c^4 - 1058400a^{13}c^4 - 4320a^{14}c^4 + 976353339464085078540288c^5}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-566616560808405897216000ac^5 + 89945371865302855372800a^2c^5 - 2065831359960639237120a^3c^5}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-351591072886247394816a^4c^5 + 6655650171513235200a^5c^5 + 657666695443443840a^6c^5}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{1100553967054080a^7c^5 - 424605744275328a^8c^5 - 6103877472000a^9c^5 + 26080306560a^{10}c^5}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{950019840a^{11}c^5 + 4523904a^{12}c^5 + 198112157533999839838208c^6 - 87792282223271875952640ac^6}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{9845815694276704106496a^2c^6 + 23495206427488857600a^3c^6 - 33951590707313368320a^4c^6}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-112788683080698240a^5c^6 + 41558256232312512a^6c^6 + 595618580430720a^7c^6 - 11290688684352a^8c^6}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-275179766400a^9c^6 - 974812608a^{10}c^6 + 9313920a^{11}c^6 + 44352a^{12}c^6 + 29589228584336306995200c^7}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-10006928347290172784640ac^7 + 757910734442793271296a^2c^7 + 19302863566552473600a^3c^7}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-2072186286738923520a^4c^7 - 39427376325765120a^5c^7 + 1440727996409856a^6c^7}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{36498857472000a^7c^7 - 24299827200a^8c^7 - 5428684800a^9c^7 - 31021056a^{10}c^7}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{3338242567056453009408c^8 - 854705277266778685440ac^8 + 40269792261059260416a^2c^8}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{2022273891437184000a^3c^8 - 78204798453196800a^4c^8 - 2683947042120960a^5c^8 + 20452779502848a^6c^8}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{1068200179200a^7c^8 + 5534369280a^8c^8 - 39916800a^9c^8 - 228096a^{10}c^8 + 289112052804832198656c^9}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-55212638992422912000ac^9 + 1361953471309516800a^2c^9 + 120228388600320000a^3c^9}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-1524394295424000a^4c^9 - 97704262656000a^5c^9 - 290133043200a^6c^9 + 15682867200a^7c^9}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{112020480a^8c^9 + 19391941584781049856c^{10} - 2701252922655006720ac^{10} + 19575184610961408a^2c^{10}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{4638318400235520a^3c^{10} + 3645345639936a^4c^{10} - 2067739914240a^5c^{10} - 15925797888a^6c^{10}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{92252160a^7c^{10} + 658944a^8c^{10} + 1010033600684359680c^{11} - 99417087242403840ac^{11}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-596583567949824a^2c^{11} + 118442715955200a^3c^{11} + 993438351360a^4c^{11} - 23952015360a^5c^{11}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-228114432a^6c^{11} + 40711783303872512c^{12} - 2706854827622400ac^{12} - 42586761584640a^2c^{12}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{1937882419200a^3c^{12} + 24259522560a^4c^{12} - 117411840a^5c^{12} - 1118208a^6c^{12} + 1256826574209024c^{13}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-52847972352000ac^{13} - 1187511091200a^2c^{13} + 18424627200a^3c^{13} + 263208960a^4c^{13}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{29143244734464c^{14} - 699335884800ac^{14} - 18626273280a^2c^{14} + 77414400a^3c^{14} + 1105920a^4c^{14}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{490922311680c^{15} - 5615124480ac^{15} - 160432128a^2c^{15} + 5668601856c^{16} - 20643840ac^{16}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} + \\
& + \frac{-589824a^2c^{16} + 40108032c^{17} + 131072c^{18}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+36}{2})} \quad (8)
\end{aligned}$$

Derivation of result (8):

putting $b = -a - 35$, $z = \frac{1}{2}$ in known result (2), we get

$$\begin{aligned}
& (2a + 35) {}_2F_1 \left[\begin{matrix} a & -a - 35 \\ c & \end{matrix} ; \frac{1}{2} \right] \\
& = a {}_2F_1 \left[\begin{matrix} a + 1 & -a - 35 \\ c & \end{matrix} ; \frac{1}{2} \right] + (a + 35) {}_2F_1 \left[\begin{matrix} a & -a - 34 \\ c & \end{matrix} ; \frac{1}{2} \right]
\end{aligned}$$

Now involving Bailey theorem, we get

$$\begin{aligned}
\text{L.H.S} & = a \frac{\sqrt{\pi} \Gamma(c)}{2^{c+34}} \times \left[\frac{-52105549254577201152000 + 32287323345849598924800a}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \right. \\
& \frac{46653140804973773057280a^2 - 32233367555303050334592a^3 + 5488847144083484177904a^4}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-54214188346631854864a^5 - 36652142002941599400a^6 + 150767267386517376a^7}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{107897200878606183a^8 + 1994945981790927a^9 - 88817701723740a^{10} - 3580089931276a^{11}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-26449725078a^{12} + 660294138a^{13} + 13846860a^{14} + 81492a^{15} - 9a^{16} - a^{17}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& - 69462745690104564940800c - 70551909979177708154880ac + 130073489024108901355008a^2c \\
& \left. + \frac{-44658168180463416436992a^3c + 4094833228285214588448a^4c + 167923996196793338880a^5c}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \right. \\
& + \frac{-23094422267494862256a^6c - 724759463408214960a^7c + 37308814013226162a^8c}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{1755542571140160a^9c + 2970742369848a^{10}c - 923367713184a^{11}c - 16387628628a^{12}c}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& \left. + \frac{-44372160a^{13}c + 1185000a^{14}c + 9936a^{15}c + 18a^{16}c + 11388523676642067087360c^2}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} \right]
\end{aligned}$$

$$\begin{aligned}
& + \frac{-155921903756648262623232ac^2 + 112318874429912316822528a^2c^2 - 23342463632776772242176a^3c^2}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{948734345567285867520a^4c^2 + 115372423132311768192a^5c^2 - 4022722642181044032a^6c^2}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-324387436581812208a^7c^2 + 834141495369600a^8c^2 + 336406309039680a^9c^2 + 5563247526144a^{10}c^2}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-34990935840a^{11}c^2 - 1631387520a^{12}c^2 - 12667200a^{13}c^2 - 8640a^{14}c^2 + 144a^{15}c^2}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{55442465016311593304064c^3 - 111068382282816419364864ac^3 + 48393399324811963375616a^2c^3}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-6287216055695980984320a^3c^3 + 11555176589730762240a^4c^3 + 28950333169561579776a^5c^3}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{43930305906512256a^6c^3 - 51101370444273600a^7c^3 - 876496444556480a^8c^3 + 20374584310080a^9c^3}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{670195665216a^{10}c^3 + 3981539520a^{11}c^3 - 39305280a^{12}c^3 - 463680a^{13}c^3 - 960a^{14}c^3}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{37527463344249570066432c^4 - 42645015165231037800448ac^4 + 12397193443150168611840a^2c^4}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-965457019813117879040a^3c^4 - 32609399371332685440a^4c^4 + 3593283013890036544a^5c^4}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{91343821462370400a^6c^4 - 3395230689331360a^7c^4 - 121523975385120a^8c^4 - 212408787360a^9c^4}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{28154760480a^{10}c^4 + 301328160a^{11}c^4 + 433440a^{12}c^4 - 3360a^{13}c^4 + 13510118305163970347008c^5}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-10323758302057734266880ac^5 + 2056491071757425938432a^2c^5 - 82878606240028752384a^3c^5}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-6734959096606402816a^4c^5 + 219850789996252800a^5c^5 + 11976686903483456a^6c^5}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-41557606941312a^7c^5 - 6696675023808a^8c^5 - 68070119040a^9c^5 + 307699392a^{10}c^5 + 6120576a^{11}c^5}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{14784a^{12}c^5 + 3130056044504000102400c^6 - 1700270404273278939136ac^6}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{230786652805037564928a^2c^6 - 2689356571921800704a^3c^6 - 686916413160848640a^4c^6}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{2920295995931776a^5c^6 + 740064574884096a^6c^6 + 7029696406656a^7c^6 - 157484194560a^8c^6}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{-2561623680a^9c^6 - 5854464a^{10}c^6 + 29568a^{11}c^6 + 504999310792104869888c^7}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-198785130849392001024ac^7 + 17819207207827030016a^2c^7 + 206447555264163840a^3c^7}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-41382372982579200a^4c^7 - 488097174039552a^5c^7 + 23698855842816a^6c^7 + 422140815360a^7c^7}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-551823360a^8c^7 - 34974720a^9c^7 - 101376a^{10}c^7 + 59161852372726185984c^8}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-16900386070258380800ac^8 + 937163970349009920a^2c^8 + 30707029480765440a^3c^8}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-1489251061267200a^4c^8 - 35818350720768a^5c^8 + 316518935040a^6c^8 + 9989168640a^7c^8}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{33834240a^8c^8 - 126720a^9c^8 + 5152744512277446656c^9 - 1056982167398277120ac^9}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{31698064973752320a^2c^9 + 1844571268700160a^3c^9 - 28075061414400a^4c^9 - 1155058544640a^5c^9}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-1891169280a^6c^9 + 101038080a^7c^9 + 366080a^8c^9 + 337670204648325120c^{10} - 48683180589801472ac^{10}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{546819979689984a^2c^{10} + 65208351143936a^3c^{10} - 65191526400a^4c^{10} - 19405754368a^5c^{10}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-98402304a^6c^{10} + 292864a^7c^{10} + 16698720466501632c^{11} - 1635615902269440ac^{11}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{-3551832653824a^2c^{11} + 1420850995200a^3c^{11} + 8211374080a^4c^{11} - 154312704a^5c^{11} - 745472a^6c^{11}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{619584954433536c^{12} - 39175823138816ac^{12} - 436475719680a^2c^{12} + 18239836160a^3c^{12}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{150958080a^4c^{12} - 372736a^5c^{12} + 16973437272064c^{13} - 640631685120ac^{13} - 10411089920a^2c^{13}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{118702080a^3c^{13} + 860160a^4c^{13} + 332921733120c^{14} - 6598082560ac^{14} - 116490240a^2c^{14}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{245760a^3c^{14} + 4420796416c^{15} - 36175872ac^{15} - 524288a^2c^{15} + 35586048c^{16} - 65536ac^{16} + 131072c^{17}}{\Gamma(\frac{c+a+35}{2}) \Gamma(\frac{c-a}{2})} + \\
& + \frac{12449059983360000 - 383597871711526547712000a + 349847372475982144108800a^2}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{-91897064286234680718720a^3 + 5349183000720094955952a^4 + 624669804151667381584a^5}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-35315751928499458920a^6 - 2851177925475811680a^7 + 30576386460688299a^8}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{5649027499407633a^9 + 106277649831540a^{10} - 1707700340180a^{11} - 85722805854a^{12}}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-1008568218a^{13} + 167580a^{14} + 89580a^{15} + 603a^{16} + a^{17} + 383597914530722217984000c}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-984494237718394284134400ac + 533683276801989101360640a^2c - 88673539520059738539264a^3c}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{937411648798849628448a^4c + 602576665340697774720a^5c - 3095068771370511600a^6c}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-1813741731860501520a^7c - 32446407661384398a^8c + 1545568399393920a^9c + 60904486614840a^{10}c}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{428069571552a^{11}c - 11769254868a^{12}c - 240186240a^{13}c - 1381080a^{14}c + 432a^{15}c + 18a^{16}c}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{634646928998497701888000c^2 - 891544960641224822353920ac^2 + 323497946519474767570944a^2c^2}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-33039865708098194060544a^3c^2 - 1069107709209191124480a^4c^2 + 191538372418841669760a^5c^2}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{5047298563885611264a^6c^2 - 336320453706868752a^7c^2 - 14028936710025600a^8c^2}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{13044949325760a^9c^2 + 8229644260992a^{10}c^2 + 133856866080a^{11}c^2 + 220993920a^{12}c^2 - 11282880a^{13}c^2}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-86400a^{14}c^2 - 144a^{15}c^2 + 449758803541459552174080c^3 - 424361084473430996287488ac^3}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{106699621776076144541696a^2c^3 - 5943566750811274905600a^3c^3 - 511600651806731988480a^4c^3}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{26180828185511231232a^5c^3 + 1593174370131501696a^6c^3 - 15025123090190400a^7c^3}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-1913536321611200a^8c^3 - 25716298386240a^9c^3 + 304613660736a^{10}c^3 + 9607590720a^{11}c^3}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{64478400a^{12}c^3 - 20160a^{13}c^3 - 960a^{14}c^3 + 184187526298792576843776c^4}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-124561329541509091192832ac^4 + 21709061172519601090560a^2c^4 - 431132806280069582080a^3c^4}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{-101975664292724745600a^4c^4 + 1054283755518504896a^5c^4 + 206173676796780000a^6c^4}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{2226847463869600a^7c^4 - 108572981600160a^8c^4 - 2646472345440a^9c^4 - 9261917280a^{10}c^4}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{225573600a^{11}c^4 + 2005920a^{12}c^4 + 3360a^{13}c^4 + 49339504936023346905088c^5}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-24507367998079394856960ac^5 + 2888874316719236392960a^2c^5 + 28254033881806182912a^3c^5}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-11337146664891072256a^4c^5 - 141887361281339520a^5c^5 + 13500845824262720a^6c^5}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{327039780203136a^7c^5 - 1523026642368a^8c^5 - 105685050240a^9c^5 - 851484480a^{10}c^5 + 266112a^{11}c^5}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{14784a^{12}c^5 + 9243724230164377927680c^6 - 3392714026389984235520ac^6}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{256000715426159176704a^2c^6 + 9560726388764655104a^3c^6 - 745346714565277440a^4c^6}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-22673639805013120a^5c^6 + 402088325683968a^6c^6 + 17963712945024a^7c^6 + 103427976960a^8c^6}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-1653590400a^9c^6 - 17563392a^{10}c^6 - 29568a^{11}c^6 + 1260981912550139494400c^7}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-340145536546911879168ac^7 + 14669030470350012416a^2c^7 + 1031175960548659200a^3c^7}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-26915981666365440a^4c^7 - 1466661042975744a^5c^7 - 1392908504064a^6c^7 + 483138754560a^7c^7}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{4867737600a^8c^7 - 1520640a^9c^7 - 101376a^{10}c^7 + 128421640911359803392c^8}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-25086382139421306880ac^8 + 461793624582343680a^2c^8 + 64904964334172160a^3c^8}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-257288995434240a^4c^8 - 52460877756672a^5c^8 - 476345802240a^6c^8 + 5667340800a^7c^8}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{74891520a^8c^8 + 126720a^9c^8 + 9909451880787869696c^9 - 1367832022323486720ac^9}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-554339253811200a^2c^9 + 2617395227166720a^3c^9 + 21121170470400a^4c^9 - 1046816010240a^5c^9}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
& + \frac{-14068454400a^6c^9 + 4392960a^7c^9 + 366080a^8c^9 + 583327157087600640c^{10} - 54833650369372160ac^{10}}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} +
\end{aligned}$$

$$\begin{aligned}
 & + \frac{-799709448265728a^2c^{10} + 67865020647424a^3c^{10} + 1036668272640a^4c^{10} - 9819729920a^5c^{10}}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
 & + \frac{-172204032a^6c^{10} - 292864a^7c^{10} + 26186417921064960c^{11} - 1586469855559680ac^{11}}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
 & + \frac{-39937560592384a^2c^{11} + 1065864683520a^3c^{11} + 21495685120a^4c^{11} - 6709248a^5c^{11} - 745472a^6c^{11}}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
 & + \frac{889333785919488c^{12} - 31864244199424ac^{12} - 1058624286720a^2c^{12} + 8328785920a^3c^{12}}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
 & + \frac{218050560a^4c^{12} + 372736a^5c^{12} + 22449979654144c^{13} - 409953976320ac^{13} - 16542310400a^2c^{13}}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
 & + \frac{5160960a^3c^{13} + 860160a^4c^{13} + 408015175680c^{14} - 2744729600ac^{14} - 143032320a^2c^{14} - 245760a^3c^{14}}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
 & + \frac{5043650560c^{15} - 1572864ac^{15} - 524288a^2c^{15} + 37945344c^{16} + 65536ac^{16} + 131072c^{17}}{\Gamma(\frac{c+a+36}{2}) \Gamma(\frac{c-a-1}{2})} + \\
 & + (a+35) \frac{\sqrt{\pi} \Gamma(c)}{2^{c+34}} \times \left[\frac{-179725396599156215808000a + 176278465478072598681600a^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \right. \\
 & + \frac{-53998442915060528352000a^3 + 5212143058443128698752a^4 + 163094646060428607216a^5}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
 & + \frac{-34870989959766941120a^6 - 631093555519267400a^7 + 86522703948738904a^8}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
 & + \frac{2692481789166367a^9 - 51357622524560a^{10} - 3216119281100a^{11} - 33810573664a^{12} + 474997418a^{13}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
 & + \frac{12624080a^{14} + 81500a^{15} + 8a^{16} - a^{17} + 179725396620079005696000c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
 & + \frac{-480079894993878915993600ac + 286607538218612078876160a^2c - 58923681600767092598016a^3c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
 & + \frac{2936554833613340252448a^4c + 289401323546004593280a^5c - 17122889417978895600a^6c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
 & + \frac{-960678744526651920a^7c + 21786918677930802a^8c + 1678621152574080a^9c + 12060050654520a^{10}c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
 & + \frac{-730595054112a^{11}c - 15707443668a^{12}c - 59928960a^{13}c + 1038120a^{14}c + 9648a^{15}c + 18a^{16}c}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
 & + \frac{303801429586540599705600c^2 - 453783256859086929100800ac^2 + 186831429964357434200064a^2c^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
 & + \frac{-25914595017961243846656a^3c^2 + 322902132293612363520a^4c^2 + 132690881259963290880a^5c^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} +
 \end{aligned}$$

$$\begin{aligned}
& + \frac{-1755729792096314496a^6c^2 - 319627807778725248a^7c^2 - 1938186903906000a^8c^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{279199198531440a^9c^2 + 5844089982192a^{10}c^2 - 16398985680a^{11}c^2 - 1467565680a^{12}c^2}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-12531120a^{13}c^2 - 10800a^{14}c^2 + 144a^{15}c^2 + 221174161658527623413760c^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-226618912242782832033792ac^3 + 67036582057662381981696a^2c^3 - 6046549868935001753600a^3c^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-130812769244615790080a^4c^3 + 27665106534009564928a^5c^3 + 375525399579949696a^6c^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-43434993087041600a^7c^3 - 1030384714673600a^8c^3 + 13899929883840a^9c^3 + 623936233536a^{10}c^3}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{4417385280a^{11}c^3 - 33364800a^{12}c^3 - 450240a^{13}c^3 - 960a^{14}c^3 + 93499020907827110608896c^4}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-70187939957957661523968ac^4 + 15063413339614862888960a^2c^4 - 801025517520925777920a^3c^4}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-49095298146212102400a^4c^4 + 2980691863620575104a^5c^4 + 111731381007400000a^6c^4}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-2433965084610400a^7c^4 - 118394832346560a^8c^4 - 477481102560a^9c^4 + 24869718720a^{10}c^4}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{295864800a^{11}c^4 + 477120a^{12}c^4 - 3360a^{13}c^4 + 25966303486948763762688c^5}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-14657409272023175741440ac^5 + 2262698965968343705600a^2c^5 - 53980880947959178752a^3c^5}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-7653568354604736256a^4c^5 + 147484321071669120a^5c^5 + 12085862944232000a^6c^5}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{9530353117824a^7c^5 - 6071200056768a^8c^5 - 70813733760a^9c^5 + 241348800a^{10}c^5 + 5943168a^{11}c^5}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{14784a^{12}c^5 + 5063113354325031649280c^6 - 2167153902409193062400ac^6}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{234714970109273206784a^2c^6 + 72965393203383296a^3c^6 - 690673666259709440a^4c^6}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-1363969989536000a^5c^6 + 686661075881088a^6c^6 + 8198063803776a^7c^6 - 134697911040a^8c^6}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-2501452800a^9c^6 - 6179712a^{10}c^6 + 29568a^{11}c^6 + 721356330294449274880c^7}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{-233641252827241971712ac^7 + 16956797879563452416a^2c^7 + 366636901242163200a^3c^7}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-38601213445386240a^4c^7 - 621398831133696a^5c^7 + 20731335668736a^6c^7 + 425308477440a^7c^7}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-241612800a^8c^7 - 33960960a^9c^7 - 101376a^{10}c^7 + 76967242257705992192c^8}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-18676816839483883520ac^8 + 836470098009722880a^2c^8 + 36299867555466240a^3c^8}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-1305758760176640a^4c^8 - 37509602473728a^5c^8 + 247552757760a^6c^8 + 9713932800a^7c^8}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{34974720a^8c^8 - 126720a^9c^8 + 6239553251386064896c^9 - 1114738046535393280ac^9}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{26007420905523200a^2c^9 + 1945362268129280a^3c^9 - 22331646937600a^4c^9 - 1141610229760a^5c^9}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-2588185600a^6c^9 + 98109440a^7c^9 + 366080a^8c^9 + 386834950982205440c^{10} - 49581031165952000ac^{10}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{350996352458752a^2c^{10} + 65277038002176a^3c^{10} + 30350960640a^4c^{10} - 18809190400a^5c^{10}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-100452352a^6c^{10} + 292864a^7c^{10} + 18329372050063360c^{11} - 1624283296563200ac^{11}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{-7763585449984a^2c^{11} + 1386477281280a^3c^{11} + 8971755520a^4c^{11} - 149839872a^5c^{11} - 745472a^6c^{11}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{658306213347328c^{12} - 38248757886976ac^{12} - 490285752320a^2c^{12} + 17632276480a^3c^{12}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{152821760a^4c^{12} - 372736a^5c^{12} + 17603540025344c^{13} - 619456839680ac^{13} - 10762035200a^2c^{13}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{115261440a^3c^{13} + 860160a^4c^{13} + 339403079680c^{14} - 6364364800ac^{14} - 117227520a^2c^{14}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{245760a^3c^{14} + 4456448000c^{15} - 35127296ac^{15} - 524288a^2c^{15} + 35651584c^{16} - 65536ac^{16}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{131072c^{17}}{\Gamma(\frac{c-a+1}{2}) \Gamma(\frac{c+a+34}{2})} + \\
& + \frac{830034394580628357120000 - 1377065451088614086553600a + 650917761399667233123840a^2}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-106441825212269888974848a^3 + 1797340338149203219104a^4 + 775661574779850021264a^5}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{-14952856152307795120a^6 - 2905674724521079336a^7 - 15241731062500822a^8}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{4510465479373073a^9 + 119693002445720a^{10} - 757636334884a^{11} - 72635836868a^{12} - 1001843738a^{13}}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-1104440a^{14} + 80068a^{15} + 586a^{16} + a^{17} + 1990782488296072809676800c}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-2318612026053359499816960ac + 799293299722875962131968a^2c - 86397059455847148780288a^3c}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-2060870095990900419552a^4c + 585055100899622895360a^5c + 8575377898850894544a^6c}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-1505688369793705680a^7c - 43691973648968238a^8c + 962487629468640a^9c + 55486260156888a^{10}c}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{551069327424a^{11}c - 8772675828a^{12}c - 220815840a^{13}c - 1385400a^{14}c + 144a^{15}c + 18a^{16}c}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{1881474425370799405793280c^2 - 1632458853872025818923008ac^2 + 414369892955453180203008a^2c^2}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-26959982583521703297024a^3c^2 - 1940300862028789774080a^4c^2 + 154977103409202885888a^5c^2}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{7009302342933356928a^6c^2 - 224562920489457792a^7c^2 - 13797969990591600a^8c^2}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-61945879319280a^9c^2 + 6774945182544a^{10}c^2 + 130356127440a^{11}c^2 + 359874480a^{12}c^2}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-10088400a^{13}c^2 - 84240a^{14}c^2 - 144a^{15}c^2 + 986226901373753993723904c^3}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-653423370678042386006016ac^3 + 121223070338904522633216a^2c^3 - 3667640265557653038080a^3c^3}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-618211944332780994560a^4c^3 + 16410099785215273984a^5c^3 + 1646990973593760256a^6c^3}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-676053491748800a^7c^3 - 1669935333999680a^8c^3 - 28248215244480a^9c^3 + 203190542016a^{10}c^3}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{8832626880a^{11}c^3 + 64653120a^{12}c^3 - 6720a^{13}c^3 - 960a^{14}c^3 + 330786223711946433626112c^4}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-168860896838707866058752ac^4 + 22383105664203945687040a^2c^4 - 16726986497183746560a^3c^4}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-104239686251248880640a^4c^4 - 130245440433036544a^5c^4 + 187765957371977600a^6c^4}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} +
\end{aligned}$$

$$\begin{aligned}
 & + \frac{3001342598673760a^7c^4 - 85207747806720a^8c^4 - 2541885524640a^9c^4 - 11611797120a^{10}c^4}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{201764640a^{11}c^4 + 1962240a^{12}c^4 + 3360a^{13}c^4 + 76696311130024412971008c^5}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{-30155794084574210375680ac^5 + 2737703814670849841152a^2c^5 + 71925252918545478144a^3c^5}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{-10436737037868418816a^4c^5 - 215952412981683840a^5c^5 + 11177621240050496a^6c^5}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{335521585779072a^7c^5 - 610214582208a^8c^5 - 97158821760a^9c^5 - 853435968a^{10}c^5 + 88704a^{11}c^5}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{14784a^{12}c^5 + 12882155956746673192960c^6 - 3873167547042866888704ac^6}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{223078849412160974848a^2c^6 + 12307957883649455104a^3c^6 - 626568475975805440a^4c^6}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{-24714927694057216a^5c^6 + 279373545365376a^6c^6 + 17078857724544a^7c^6 + 117524816640a^8c^6}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{-1479582720a^9c^6 - 17238144a^{10}c^6 - 29568a^{11}c^6 + 1614739852415051235328c^7}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{-366289727284047609856ac^7 + 11428642405941026816a^2c^7 + 1124217772101980160a^3c^7}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{-19620139023513600a^4c^7 - 1448430437465088a^5c^7 - 4638476688384a^6c^7 + 444154275840a^7c^7}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{4876861440a^8c^7 - 506880a^9c^7 - 101376a^{10}c^7 + 153904706400973225984c^8}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{-25814484746842316800ac^8 + 266052344275998720a^2c^8 + 65419232628034560a^3c^8}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{-2322924172800a^4c^8 - 49487966744832a^5c^8 - 513930869760a^6c^8 + 5072770560a^7c^8 + 73751040a^8c^8}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{126720a^9c^8 + 11274134322544377856c^9 - 1358960792457748480ac^9 - 8269540861204480a^2c^9}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{2522723887523840a^3c^9 + 26144095577600a^4c^9 - 962333532160a^5c^9 - 14088954880a^6c^9}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{1464320a^7c^9 + 366080a^8c^9 + 637294279304151040c^{10} - 53034831151464448ac^{10}}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
 & + \frac{-996988880183296a^2c^{10} + 63623584088064a^3c^{10} + 1083194112000a^4c^{10} - 8792655872a^5c^{10}}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} +
 \end{aligned}$$

$$\begin{aligned}
& + \frac{-170153984a^6c^{10} - 292864a^7c^{10} + 27731905852997632c^{11} - 1503483152138240ac^{11}}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{-43006124621824a^2c^{11} + 979829760000a^3c^{11} + 21518049280a^4c^{11} - 2236416a^5c^{11} - 745472a^6c^{11}}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{920131294724096c^{12} - 29722879606784ac^{12} - 1082306068480a^2c^{12} + 7460311040a^3c^{12}}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{216186880a^4c^{12} + 372736a^5c^{12} + 22843387019264c^{13} - 376857313280ac^{13} - 16552632320a^2c^{13}}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{1720320a^3c^{13} + 860160a^4c^{13} + 410617118720c^{14} - 2459402240ac^{14} - 142295040a^2c^{14} - 245760a^3c^{14}}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} + \\
& + \frac{5044699136c^{15} - 524288ac^{15} - 524288a^2c^{15} + 37879808c^{16} + 65536ac^{16} + 131072c^{17}}{\Gamma(\frac{c-a}{2}) \Gamma(\frac{c+a+35}{2})} \quad \boxed{37}
\end{aligned}$$

After simplification, the result (8) is proved.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Arora, Asish, Singh, Rahul, Salahuddin. ; Development of a family of summation formulae of half argument using Gauss and Bailey theorems *Journal of Rajasthan Academy of Physical Sciences.*, 7(2008), 335-342.
2. Erd'elyi, A., Magnus, W., Okerhettlinger, F. and Tricomi, F. G.; *Higher transcendental functions* Vol.1 (Bateman Manuscript Project) McGraw- Hill book P. Inc. New York, Toronto and London, 1953.
3. Krupnikov, E. D., K"olbig, K. S.; Some special cases of the generalized hypergeometric function ${}_q+1F_q$ *Journal of computational and Applied Math.*, 78(1997), 79-95.
4. Lavoie, J. L.; Notes on a paper by J. B. Miller, *J. Austral. Math. Soc. Ser. B*, 29(1987), 216-220.
5. Lavoie, J. L.; Some summation formulae for the series ${}_3F_2$, *Math. Comput.*, 49(1987), 269-274.
6. Lavoie, J. L., Grondin, F. and Rathie, A.K.; Generalizations of Watson's theorem on the sum of a ${}_3F_2$, *Indian J. Math.*, 34(1992), 23-32.
7. Lavoie, J. L., Grondin, F. and Rathie, A.K.; Generalizations of Whipple's theorem on the sum of a ${}_3F_2$, *J. Comput. Appl. Math.*, 72(1996), 293-300.
8. Lavoie, J. L., Grondin, F. Rathie, A. K. and Arora, K.; Generalizations of Dixon's theorem on the sum of a ${}_3F_2$, *Math. Comput.*, 62, 267-276.
9. Mitra, C. S.; *J. Indian Math. Soc. (N.S.)*, 7(1943), 102-109.
10. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; *Integrals and Series Vol. 3: More Special Functions*. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers .
11. New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
12. Rainville, E. D.; The contiguous function relations for pFq with applications to Bateman's $J_n^{u,v}$ and Rice' $H_n(\zeta p, \nu)$, *Bull. Amer. Math. Soc.*, 51(1945), 714-723.
13. Salahuddin, Chaudhary, M.P ; Development of Some Summation Formulae Using Hypergeometric Function, *Journal of Science Frontier Research*, 10(2010), 36- 48.

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 6 Version 1.0 September 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN: 0975-5896

Household Consumption of Cassava Products in Oyo State

By Ogunniyi,L.T.

Extension Ladoke Akintola University of Technology Ogbomoso

Abstract - This paper analyses household consumption of cassava products in Oyo State using Almost Ideal Demand System. Information on different type's cassava products consumed by the household was obtained using a multistage random technique. The result showed that demand for gari and fufu are elastic than demands for lafun meaning that lafun is a price inelastic cassava products. Expenditure elasticities of all the cassava products were examined and were found to be less than one. The highest expenditure elasticity is found for fufu suggesting that its demand will grow faster than the demand for other products as the economy develops and income increases.

Strictly as per the compliance and regulations of:

Household Consumption of Cassava Products in Oyo State

Ogunniyi,L.T.

Abstract - This paper analyses household consumption of cassava products in Oyo State using Almost Ideal Demand System. Information on different type's cassava products consumed by the household was obtained using a multistage random technique. The result showed that demand for gari and fufu are elastic than demands for lafun meaning that lafun is a price inelastic cassava products. Expenditure elasticities of all the cassava products were examined and were found to be less than one. The highest expenditure elasticity is found for fufu suggesting that its demand will grow faster than the demand for other products as the economy develops and income increases.

I. INTRODUCTION

Cassava was probably first cultivated by the Maya from which its use as food was introduced to many parts of the tropical world. The starchy root was considered of low food value hence its use as slave food. This was prejudicial to the emergence of cassava as an essential food crop with commercial potential (Mroso, 2003). The large population of the inhabitants in the tropics depends on tuber crops for the supply of carbohydrate in their diet. This is more so in the rain forest zone of the tropics where the growing of cereal is difficult (Akanbi *et al.*, 2004).

Cassava is a very versatile commodity with numerous uses and by-products. Each components of the plant can be valuable to its cultivator. The leaves may be consumed as a vegetable, or cooked as a soup ingredient or dried and fed to livestock as a protein feed supplement. The stem is used for planting propagation and grafting. The roots are typically processed for human and industrial consumption. Various products can be gotten from cassava which includes gari, lafun, wet pulp, starch, smoked cassava balls ("Kumkum"), dried cassava among others. (Truman *et al.*, 2004).

According to Tonukari (2004), cassava ranks very high among crops that convert the greatest amount of solar energy into soluble carbohydrates per unit of area. Nigeria is the largest cassava producing country in the world, Nigeria's production is 19% of world output, 34% of Africa's output and 46% of West African countries output (West Africa's countries accounts for 75% of Africa's output). Among the starchy staples, cassava gives a carbohydrate production which is about 40%

Author : Department of Agricultural Economics And Extension Ladoke Akintola University of Technology Ogbomoso.
E-mail : titiogunniyi@yahoo.com.

higher than rice and 25% more than maize, with the result that cassava is the cheapest source of calories for both human nutrition and animal feeding. A typical composition of the cassava root is moisture (70%), starch (24%), fiber (2%), protein (1%) and other substances including minerals (3%). A recent study on cassava shows that it accounts for about 70% of the total calories intake of more than half of the population (Nneoyi *et al.*, 2008).

Household consumption of cassava products is not possible without processing of cassava parts to finished products. Fresh cassava roots cannot be stored for long because they rot within 3-4days of harvest. They are bulky with about 70% moisture content and roots and leaves which contain varying amounts of cyanide which is toxic to humans and animals, while the raw cassava roots and uncooked leaves are not palatable. Reasons for processing cassava are to increase the shelf life of the products, facilitate transportation and marketing, reduce cyanide content and improve palatability, to also improve the nutritional status through fortification with other protein rich crops, to reduce food losses and stabilize seasonal fluctuations in the supply of the crop. (Hahn,1989).

World's processed products commonly known are Gari, Lafun, Fufu a dry granular meal made from moist and fermented cassava commonly used in West Africa (FAO, 1999) and are produced for human consumption(Kormawa and Akoroda,2003). It is produced mainly by small farmers especially in South and Central Nigeria and cultivated as a food and cash crop (TARCA, 2005).

Cassava therefore performs 5 major roles according to Nweke *et al.*, (2002) namely; Famine reserve crops, rural food staple, cash crop for urban consumption, industrial raw materials and earner of foreign exchange.

There exists a well-developed literature on the relationship between consumer theory and demand functions, and on empirical specification of demand functions. Deaton and Muellbauer (1980b) provide excellent reviews of both the consumer theory's implications on demand and empirical specifications. Other works on the same subjects, with somewhat different focuses, are Barten and Böhm (1982), Deaton (1986), Blundell (1988), Pollak and Wales (1992) and Barten (1993). Pollak and Wales (1992) also give a thorough treatment of functional forms used in analyses

of demand systems. In this analysis, I employ the linear approximate almost ideal demand system's (LA-AIDS) technique (Deaton and Muellbauer, 1980a) via a cross-sectional model. The AIDS technique was preferred to alternative functional forms (such as the Rotterdam and translog systems) because it has the advantage that it is linear and formulated in levels. It may accordingly be encountered as more intuitive and easier to use.

In view of the above, this study therefore examined the household consumption of cassava product in Oyo State, Nigeria.

II. METHODOLOGY

The data for this study were obtained from Oyo state of Nigeria. Multistage random sampling technique was employed in the selection of respondents for the study. In the first stage the study area was stratified into four strata based on agricultural zone. The second stage involved purposive selection of two zones due to the high number of cassava product consumers. In the third stage, two local government areas (LGAs) were randomly selected from each of the zone making a total of four LGAs. The fourth stage involved random selection of two villages from each LGA making a total of eight villages. The last stage involved random selection of fifteen households in each village making a total of one hundred and twenty (120) respondents.

The study employed the Almost Ideal Demand System (AIDS) developed by Deaton and Muellbauer (1980a). The model is flexible enough to allow the assumptions of homogeneity and symmetry to be tested or successfully imposed during empirical analysis. It is easy to estimate, gives arbitrary first order estimation to any demand system, and satisfies the axioms of choice. Many of these good attributes have contributed tremendously to the application of the model to demand equation estimation in many parts of the world.

The (Almost Ideal Demand System) AIDS model of Deaton and Muelbauer (1980b) has enjoyed great popularity in applied demand analysis. Starting from a specific cost function, the AIDS model gives the share equations in an n-good system as

$$w_i = \alpha_i + \sum_j^n \gamma_{ij} \ln P_j + \beta_i \ln \left(\frac{X}{P^*} \right) + e_i \quad (1)$$

where w_i = budget share of ith commodity defined by

$$\frac{P_j Q_i}{X}$$

P_j = price of jth commodity within the group

γ_{ij} = estimated coefficient of prices

β_i = estimated expenditure coefficient

X= total expenditure on the group of goods being analyzed

P=price index for the group

The price index can be further defined as:

$$\ln P = \alpha_0 + \sum_k \alpha_k \ln P_k + \frac{1}{2} \sum_j \sum_k \gamma_{jk} \ln P_k \ln P_j \quad (2)$$

The price index makes equation 1 to be non-linear. In order to linearize it, the Stone's index has been incorporated.

$$\ln P^* = \sum w_j \ln p_j \quad (3)$$

Homogeneity, symmetry, and adding up are respectively imposed on the system through the following parameter restrictions:

$$\begin{aligned} \sum_j \gamma_{ij} &= 0; \gamma_{ij} = \gamma_{ji}; \sum_i a_i = 1; \sum a_{is} = 0; \sum \beta_i \\ &= 0; \sum \gamma_{ij} = 0. \end{aligned} \quad (4)$$

Following Chalfant (1984) and Ahmed and Shams (1994), the Marshalian and Hicksian elasticities are computed from the estimated parameters of the Linear Approximation AIDS model (LA-AIDS) in equation 4 as follows;

Marshalian (Uncompensated)

$$\varepsilon_{ij} = -1 + \left(\frac{\gamma_{ij}}{w_i} \right) - \beta_i \quad (\text{Own- price}) \quad (5)$$

$$\varepsilon_{ij} = \left(\frac{\gamma_{ij}}{w_i} \right) - \beta_i \left(\frac{w_j}{w_i} \right) \quad (\text{Cross- price}) \quad (6)$$

The expenditure elasticity is derived as

$$E_i = -1 + \beta_i / w_i \quad (7)$$

III. RESULTS AND DISCUSSIONS

Consumption of Cassava Products

Table 1 shows that majority of the respondents consume gari, lafun and fufu with a percentage of 79.2%, 92.5% and 71.7% respectively. From this finding, one can say that cassava products are highly consumed in the study area. The Table also shows that 20.8% of the respondents did not consume Gari, 28.3% of the respondents did not consume fufu while 7.5% did not consume Lafun. This implies that Lafun is the major staple food of the respondents.

Table 1: Distribution of Respondents by Gari Consumption

Cassava products	Yes	No
Gari	95(79.2)	25(20.8)
Lafun	111(92.5)	9(7.5)
Fufu	86(71.7)	34(28.3)
Starch	47(39.2)	73(60.8)
Tapioca	59(49.2)	61(50.8)
Total	120	100.00

Source : Field Survey; 2010

Note : The figures in parentheses are percentages
Almost Ideal Demand System.

The almost ideal Demand Systems (AIDS) was derived by Deaton and Muelbauer (1980a) from expenditure or cost function. Using this model i.e. AIDS, the demand equation for cassava products were estimated without imposition of any restrictions. From the table, the test for homogeneity was carried out. The results of the tests showed that in the consumption of cassava products, there is a significant violation of the homogeneity conditions. This result is in line with the findings of Deaton and Muellbauer (1980a), Ahmed and Shams (1994), Tsegai and Kormawa(2002) and Awoyemi *et al.*, (2006). The result of the analysis present in Table 2 shows the unconstraint parameter estimates. All the Durbin -Watson statistics were shown to be within the plausible region in Table 2. The dependent and the independent variable can therefore be said to have performed their roles.

Using the budget share of Gari as the dependent variable, three variables were found to be significant which are soup at 5%, rice at 5% and expenditure at 1% level of significance. It simply implies that as the household expenditure increases, there is a decrease in the budget share of Gari. Also, there is an indirect relationship between the price of Gari and its budget share. A 1% increase in the price of soup will lead to a 0.012% increase in their budget share. Also a 1% increase in the price of rice will lead to a 0.025% increase in their budget share.

Table 2: Unconstraint parameter estimates and test of homogeneity

Com-modities	Const	Gari	Lafun	Fufu	Veg	Soup	Fish	Meat	Rice	Yam	Exp	R2	DW
Gari	0.075 (2.131)	-0.002 (-1.094)	0.002 (0.737)	0.002 (1.002)	0.012 (0.870)	0.012** (2.009)	0.015 (0.183)	0.030 (0.758)	0.025** (2.070)	-0.045 (-0.652)	-0.016*** (-3.031)	0.53	1.987
Lafun	0.529 (0.000)	0.002 (0.760)	0.012*** (3.245)	0.005** (2.020)	0.007 (0.029)	0.049*** (6.075)	-0.013 (-0.922)	-0.010 (-1.494)	0.028 (1.317)	0.002* (1.911)	-0.103*** (-32.663)	0.937	1.959
Fufu	0.174 (0.000)	0.001 (1.025)	0.002 (1.006)	-0.003 (-1.591)	0.012 (0.682)	0.013** (2.133)	0.020 (0.217)	-0.526 (-1.184)	-0.034** (-2.516)	0.011 (1.521)	-0.028*** (-5.151)	0.323	2.176

Source : Field survey, 2010.

NOTE : Value in parenthesis represents t-value

*Represents significant at 10% level of significance

** Represents significant at 5% level of significance

***Represents significant at 1% level of significance

Own Price and Cross Price Elasticities

Table 3 presents the full matrices of the uncompensated (Marshallian) own price and cross price elasticities. The own-price elasticities of all cassava products under study show a negative sign (as expected), which is consistent with the law of demand. This is in line with earlier findings by Tsegai and Kormawa(2002) and Jumah *et al.*, (2008).

The estimates of own price elasticities of lafun is less than one while that of Fufu and Gari are greater than one. The own-price elasticity of lafun is equal to -0.834, meaning that an increase in the price of lafun by 10percent would decrease lafun consumption by 8.34 percent. To compensate for such consumption, household would increase gari and fufu consumption by 0.2% and 0.36% respectively. So lafun is a price inelastic cassava products and the indication of this is that households in Oyo State are insensitive to changes in the price of lafun because it serves as their major staple food. Gari and fufu however have elastic own price elasticities which means that households in Oyo State are sensitive to changes in the price of gari and fufu as they are secondary to Lafun as a staple food. The implication of this is that if the price of lafun comes

down, or there is an increase in the per capita income, household consumption will not be so much affected.

The cross price elasticities are recorded as non-diagonal elements in Table 3. Yam, fufu, lafun and rice have a positive sign with respect to Gari which shows that, they bear a substitute relationship with gari. Also, fish has a negative sign implying its complementary relationship with Lafun other commodities have a substitute relationship with lafun owing to their positive signs.

Rice and meat both have negative signs indicative of their complementary relationship with fufu while other commodities have positive signs which implies that they are substitute to fufu

The gari-to lafun, the gari-to-fufu, the lafun-to-fufu etc cross-price elasticities are positive showing that they are strong substitute goods. Since all the products are substitute, higher prices for gari will lead to an increase in demand for fufu and lafun. Given that all the products are produced from cassava, an increase in the price of cassava leads to an increase in the prices of all products simultaneously, and a subsequent rise in the consumption of all products. This study is not consistent with earlier findings by Jumah *et al.*, (2008).

Table 3 : Own Price and Cross Price Elasticities

Commodities	Gari	Lafun	Fufu	Veg	Soup	Fish	Meat	Rice	Yam
Gari	-1.092	0.272	0.123	0.684	0.727	0.916	1.708	1.420	2.351
Lafun	0.021	-0.834	0.036	0.059	0.308	-0.004	0.107	0.192	0.167
Fufu	0.089	0.429	-1.148	0.772	0.913	1.374	-30.776	-1.868	0.868

Source: Field survey, 2010

Expenditure Elasticity

As shown in Table 4, the expenditure elasticities are all positive suggesting that all the cassava products are normal goods whose consumption will increase with increasing total expenditure on cassava products (see also, Abdulai and Jain, 1999: Jumah *et al.*,2008). The expenditure elasticity of all the cassava products is less than one. Cassava products are expenditure inelastic. The consumption of each of these products will decline as per capita income increases. According to the AIDS setting, the sign of the coefficient for the expenditure variable establishes whether a product group is a luxury

good or a necessity. These revelations suggest that all the cassava products are necessities. This implies that as total expenditure on cassava food products increases, consumers tend to spend proportionately less on gari, lafun and fufu. The expenditure elasticity obtained for this study were not similar to that obtained by Tsegai and Kormawa (2002) for the Kaduna area and Jumah *et al.*,2008 for Lagos.

The mean budget share is considered. The highest percentage of budget for cassava product went for Lafun (84%) followed by Gari (8.2%) while Fufu had 7.8%.

Table 4 : Elasticities of Cassava Product

Commodities	Mean Budget Share (%)	Expenditure Elasticity
Gari	8.2	0.135
Lafun	84.0	0.455
Fufu	7.8	0.647

Source: Field Survey; 2010.

IV. CONCLUSION

The study conclude that all the estimates of own price elasticities conform to the law of demand with negative signs. Using the estimated coefficients,

uncompensated price and expenditure elasticities are evaluated at the sample means. Own-price elasticity for gari is -1.092 and that of fufu is 1.148, which is relatively more elastic than that for lafun. This result indicates that demand for gari and fufu are elastic than demands for

lafun in this study. All the cassava products are expenditure inelastic with fufu having the highest expenditure followed by lafun and gari respectively. Based on findings, it can be concluded that cassava products are well established staples among the inhabitants of Oyo State.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Ahmed, A.U. and Y. Shams. 1994. Demand Elasticities in Rural Bangladesh: An Application of the AIDS Model, IFPRI, Washington, D.C., USA.
2. Akambi,W.B., Olabode, O.S.,Olaniyi, J.O and Ojo O.A. (2004): "Roots and Tuber Crops". *Introduction to Tropical Crops*. Published by Raflink Computers, Eleyele, Ibadan P. 15, 16.
3. Awoyemi T.T., Amao, A.O and Fatogun, O.O,(2006). "Household Expenditure Pattern on Food in Ibadan Oyo State, Nigeria". *Journal of Rural Economics and Development*, 15(1):79-86.
4. Barten, A.P. (1993)."Consumer Allocation Models: Choice of Functional Forms", *Empirical Economics*, 18, 129-158.
5. Barten, A.P. and Bohm V.(1982). "Consumer Theory" in K. J. Arrow & M.D. Intrilligator (eds.) *Handbook of Mathematical Economics*, North Holland, pp.381-429.
6. Blundell, R.W.,(1988). "Consumer Behaviour: Theory and Empirical Evidence - A Survey", *Economic Journal*, 98, 16-65.
7. Abdulai, A. and Jain D.K.(1999). "Using Microlevel Data to Analyse Consumption of Milk and Milk Products in India", *Quarterly Journal of International Agriculture*, 38, 53-64.
8. Chalfant, J (1984).: "A Globally Flexible Almost Ideal Demand Systems" . *Journal of Business and Economic Statistics*, 5:233-242
9. Deaton, A.S. (1986). "Demand Analysis" in Z. Griliches and M.D. Intrilligator (eds.) *Handbook of Econometrics*, North Holland, pp.381-429
10. Deaton, A. and Meulbauer, J. (1980a): "An Almost Ideal Demand System". *The American Economic Review* 70 (3):312-326.
11. Deaton, A. and Meulbauer, J. (1980b): *Economics and Consumer Behaviour*. Cambridge University Press, New York.
12. FAO. (1999): "Food Outlook April" 1999, No. 2, P. 1.
13. Hahn, S.K. (1989): "An Overview of Traditional Processing and Utilization of Cassava in Africa" *Outlook on Agriculture*, 4: 2.
14. Jumah, A., Dipeola, A.O., Ayinde, I.A. and Adebayo, K.(2008): "An La- AIDS Analysis of Cassava Food Products Demand in Lagos". *Journal of Developing Areas*, the spring.
15. Kormawa, P. and Akoroda, M.O. (2003): Cassava Supply Chain Arrangement for Industrial Utilization in Nigeria. IITA, Ibadan, Nigeria.
16. Mroso, P.V. (2003): "Cassava: An emerging food product: The Consequence of its Popularity in Canning and Preserving", [www.suite101.com/article.cfm/African - food..../99964](http://www.suite101.com/article.cfm/African-food..../99964).
17. Nneoyi, I.O., M.N. Henry, A.M.Walter and E.E. Ebingha. 2008. Group Dynamics and Technology Use among Female Cassava Farmers in Akpabuyo Local Government Area, Cross River State, Nigeria. *Agricultural Journal*. 3 (4): 292-298.
18. Nweke, F.I., Spencer, D.S.C., and Lynam , J.K.. (2002): The Cassava Transformation: Africa's best kept secret. Michigan State University, East Lansing Michigan. 273 Pp.
19. Pollak, R.A. and Wales T.J.(1992). "Demand System Specification and Estimation", Oxford University Press.
20. Technical Assistance to the House of Representative on Agriculture, (2005): "Promoting Value Adding in Nigerian Agriculture: The Cassava Industry Example" Policy Brief No. 3 P. 4.
21. Tonukari, N.J. 2004. Cassava and the future of starch. *Electronic Journal of Biotechnology*. 7(1): Issue of April 15.
22. Truman,P.P., Daphnes, S.T., Lateef, S. and Malachy, O.A.(2004): The Global Cassava Development Strategy, A Cassava Industrial Revolution in Nigeria. The Potential for a New Industrial Crop". International Fund for Agricultural Development Food and Agriculture Organization of the United Nations P. 9, 16.
23. Tsegai, D and Kormawa, P(2002): Determinants of urban households' demand for cassava and cassava products in Kaduna, northern Nigeria: The application of AIDS model. Conference on International Agricultural Research for Development. Deutscher Tropentag – Witzenhausen, 9-11 October 2002.

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 6 Version 1.0 September 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN: 0975-5896

Hypergeometric Forms of Well Known Partial Fraction Expansions of Some Meromorphic Functions

By M.I. Qureshi , Izharul H. Khan , M.P.Chaudhary

Amity Institute of Biotechnology, Amity University, NOIDA (U.P.), India

Abstract - In this paper, we obtain hypergeometric forms of some meromorphic functions $e^{\frac{1}{z-1}}$, $\sec^2 z$, $\operatorname{cosec}^2 z$, $\tan z$, $\cot z$, $\operatorname{cosec} z$, $\sec z$, $\operatorname{sech}^2(z)$, $\operatorname{cosech}^2(z)$, $\tanh(z)$, $\coth(z)$, $\operatorname{cosech}(z)$, $\operatorname{sech}(z)$, $\frac{\pi}{8z^3} \frac{\sinh(2\pi z) + \sin(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)}$, $\frac{\pi}{4z} \frac{\sinh(2\pi z) - \sin(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)}$ and $\frac{\pi}{4z^2} \frac{\sinh(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)}$, from corresponding partial fraction expansions .

Keywords : *Maclaurin expansion, Mittag-Leffler theorem, Bernoulli and Euler numbers, Ramanujan's transcendental functions.*

2010 A.M.S. Subject Classifications: 33-Special Functions.

Strictly as per the compliance and regulations of:

Hypergeometric Forms of Well Known Partial Fraction Expansions of Some Meromorphic Functions

M.I. Qureshi^α, Izharul H. Khan^Ω, M.P.Chaudhary^β

Abstract - In this paper, we obtain hypergeometric forms of some meromorphic functions $\frac{1}{e^z-1}$, $\sec^2 z$, $\operatorname{cosec}^2 z$, $\tan z$, $\cot z$, $\operatorname{cosec} z$, $\sec z$, $\operatorname{sech}^2(z)$, $\operatorname{cosech}^2(z)$, $\tanh(z)$, $\coth(z)$, $\operatorname{cosech}(z)$, $\operatorname{sech}(z)$, $\frac{\pi}{8z^3} \frac{\sinh(2\pi z) + \sin(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)}$, $\frac{\pi}{4z} \frac{\sinh(2\pi z) - \sin(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)}$ and $\frac{\pi}{4z^2} \frac{\sinh(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)}$, from corresponding partial fraction expansions.

Keywords : Maclaurin expansion, Mittag-Leffler theorem, Bernoulli and Euler numbers, Ramanujan's transcendental functions.

I. INTRODUCTION

In the monumental work of Prudnikov et al.[8,Chapter 7] and other literature of Special functions, hypergeometric forms of following functions $\sin z, \cos z, \sin^2 z, \cos^2 z, \sinh(z), \cosh(z), \sinh^2 z, \cosh^2 z, \sin^{-1} z, (\sin^{-1} z)^2, \cos^{-1} z, \sec^{-1} z, \operatorname{cosec}^{-1} z, \tan^{-1} z, \cot^{-1} z, \frac{\sin^{-1} z}{\sqrt{1-z^2}}, \sinh^{-1} z, (\sinh^{-1} z)^2, \cosh^{-1} z, \operatorname{sech}^{-1} z, \operatorname{cosech}^{-1} z, \tanh^{-1} z, \coth^{-1} z, \frac{\sinh^{-1} z}{\sqrt{1+z^2}}, \log_a(1 \pm z), \ln(1 \pm z), e^{\pm z}, a^{\pm z}, (1 \pm z)^{\pm a}, \sin(a \sin^{-1} z), \cos(a \sin^{-1} z), \frac{\cos(a \sin^{-1} z)}{\sqrt{1-z^2}}, \frac{\sin(a \sin^{-1} z)}{\sqrt{1-z^2}}$, associated composite functions and transcendental functions, are available.

In the Maclaurin's expansions of $\tan z, \cot z, \operatorname{cosec} z, \tanh(z), \coth(z), \operatorname{cosech}(z)$ and $\sec z, \operatorname{sech}(z)$, the coefficients of z^n are associated with Bernoulli numbers and Euler numbers [15] respectively. From Maclaurin's expansions, we are unable to obtain their corresponding hypergeometric forms.

Now we shall find the hypergeometric forms of $\tan z, \operatorname{cosec} z, \cot z, \sec z$ and other associated composite functions by means of corresponding partial fraction expansions obtained by Mittag-Leffler theorem or Fourier series method [5; pp.602-603].

The Pochhammer's symbol or Shifted factorial $(h)_r$ is defined by

$$(h)_r = \frac{\Gamma(h+r)}{\Gamma(h)} = \begin{cases} 1 & ; \text{ if } r = 0 \\ h(h+1) \cdots (h+r-1) & ; \text{ if } r = 1, 2, 3, \dots \end{cases} \quad (1)$$

where $h \in 0, -1, -2, \dots$ and the notation (Γ) stands for Gamma function.

Lemma: If a, p and n are suitably adjusted real or complex numbers such that associated Pochhammer's symbols are well-defined, then we have

$$(a + pn) = \frac{a \left(\frac{a+p}{p} \right)_n}{\left(\frac{a}{p} \right)_n} \quad (2)$$

Mittag - Leffler's expansion theorem[4;7;14;15;16]

(i) Suppose that the only singularities of $f(z)$, except at infinity, in the finite plane are the simple poles at the points $z = a_1, z = a_2, z = a_3, \dots$ arranged in order of increasing absolute value, that is:
 $\dots \geq |a_3| \geq |a_2| \geq |a_1| > 0$

Author ^α : Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi-110025, India.

Author ^Ω : Department of Allied Sciences and Computer Applications, Amity Institute of Biotechnology, Amity University, NOIDA (U.P.), India.

Author ^β : International Scientific Research and Welfare Organization, New Delhi-110018, India. E-mail : mpchaudhary2000@yahoo.com.

(ii) Let the residues of $f(z)$ at a_1, a_2, a_3, \dots be b_1, b_2, b_3, \dots respectively.

(iii) Let C_N be circles of radius R_N which do not pass through any poles and on which $|f(z)| < M$, where M is independent of N and $R_N \rightarrow \infty$ as $N \rightarrow \infty$.

When these conditions are satisfied then Mittag-Leffler's expansion theorem states that

$$f(z) = f(0) + \sum_{n=1}^{\infty} b_n \left\{ \frac{1}{z - a_n} + \frac{1}{a_n} \right\} \quad \dots (3)$$

for all values of z except the poles.

In the literature of calculus of residues [2 to 7; 12 to 16], following partial fraction expansions are available.

[2, pp.296-297; 6, p.240(Q.No.3); 16, p.113]

$$\frac{1}{e^z - 1} = \frac{1}{z} - \frac{1}{2} + 2z \sum_{n=1}^{\infty} \frac{1}{4n^2\pi^2 + z^2} \quad ; z \neq 0, \pm 2i\pi, \pm 4i\pi, \quad \dots (4)$$

[15, p.187]

$$\begin{aligned} \sec^2 z &= 4 \left\{ \frac{1}{(\pi - 2z)^2} + \frac{1}{(\pi + 2z)^2} + \frac{1}{(3\pi - 2z)^2} + \frac{1}{(3\pi + 2z)^2} + \dots \right\} \\ &= 4 \sum_{n=-\infty}^{+\infty} \frac{1}{[(2n+1)\pi + 2z]^2} \quad ; z \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \end{aligned} \quad \dots (5)$$

[7, p.135; 16, p.113]

$$\begin{aligned} \operatorname{cosec}^2 z &= \frac{1}{z^2} + \frac{1}{(z - \pi)^2} + \frac{1}{(z + \pi)^2} + \frac{1}{(z - 2\pi)^2} + \frac{1}{(z + 2\pi)^2} + \dots \\ &= \sum_{n=-\infty}^{+\infty} \frac{1}{(z - n\pi)^2} \quad ; z \neq 0, \pm \pi, \pm 2\pi, \pm 3\pi, \end{aligned} \quad \dots (6)$$

[2, p.296; 4, p.157(Q.No.36); 16, p.113]

$$\begin{aligned} \tan z &= 8z \left\{ \frac{1}{\pi^2 - 4z^2} + \frac{1}{9\pi^2 - 4z^2} + \frac{1}{25\pi^2 - 4z^2} + \dots \right\} \quad ; z \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots \\ &= 2z \sum_{n=0}^{\infty} \frac{1}{(n + \frac{1}{2})^2\pi^2 - z^2} = - \sum_{n=-\infty}^{+\infty} \left\{ \frac{1}{z - (n + \frac{1}{2})\pi} + \frac{1}{(n + \frac{1}{2})\pi} \right\} \end{aligned} \quad \dots (7)$$

[3, p.122(Q.No.8); 5, p.602; 12, p.310(Q.No.14)]

$$\begin{aligned} \cot z &= \frac{1}{z} + 2z \left\{ \frac{1}{z^2 - \pi^2} + \frac{1}{z^2 - 4\pi^2} + \frac{1}{z^2 - 9\pi^2} + \dots \right\} \\ &= \frac{1}{z} + 2z \sum_{n=1}^{\infty} \frac{1}{z^2 - n^2\pi^2} \quad ; z \neq 0, \pm \pi, \pm 2\pi, \pm 3\pi, \end{aligned} \quad \dots (8)$$

[3, p.122(Q.No.9); 4, p.147; 7, pp.132-133]

$$\begin{aligned} \operatorname{cosec} z &= \frac{1}{z} - 2z \left\{ \frac{1}{z^2 - \pi^2} - \frac{1}{z^2 - 4\pi^2} + \frac{1}{z^2 - 9\pi^2} - \dots \right\} \\ &= \frac{1}{z} + 2z \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2\pi^2 - z^2} \quad ; z \neq 0, \pm\pi, \pm 2\pi, \pm 3\pi, \end{aligned} \quad \dots (9)$$

[4, p.156(Q.No.34); 5, p.603; 7, p.137(Q.No.18)]

$$\begin{aligned} \sec z &= 4\pi \left\{ \frac{1}{\pi^2 - 4z^2} - \frac{3}{9\pi^2 - 4z^2} + \frac{5}{25\pi^2 - 4z^2} - \dots \right\} \\ &= 2\pi \sum_{n=0}^{\infty} \frac{(-1)^n (n + \frac{1}{2})}{(n + \frac{1}{2})^2 \pi^2 - z^2} \quad ; z \neq \pm\frac{\pi}{2}, \pm\frac{3\pi}{2}, \pm\frac{5\pi}{2}, \end{aligned} \quad \dots (10)$$

[2, p.296; 15, p.187]

$$\begin{aligned} \tanh(z) &= 8z \left\{ \frac{1}{\pi^2 + 4z^2} + \frac{1}{9\pi^2 + 4z^2} + \frac{1}{25\pi^2 + 4z^2} + \dots \right\} \\ &= 2z \sum_{n=0}^{\infty} \frac{1}{(n + \frac{1}{2})^2 \pi^2 + z^2} \quad ; z \neq \pm\frac{i\pi}{2}, \pm\frac{3i\pi}{2}, \pm\frac{5i\pi}{2}, \end{aligned} \quad \dots (11)$$

[2, p.296; 7, p.134]

$$\begin{aligned} \coth(z) &= \frac{1}{z} + 2z \left\{ \frac{1}{z^2 + \pi^2} + \frac{1}{z^2 + 4\pi^2} + \frac{1}{z^2 + 9\pi^2} + \dots \right\} \\ &= \frac{1}{z} + 2z \sum_{n=1}^{\infty} \frac{1}{z^2 + n^2\pi^2} \quad ; z \neq 0, \pm i\pi, \pm 2i\pi, \pm 3i\pi, \end{aligned} \quad \dots (12)$$

[2, p.296; 7, p.135]

$$\begin{aligned} \operatorname{cosech}(z) &= \frac{1}{z} - 2z \left\{ \frac{1}{z^2 + \pi^2} - \frac{1}{z^2 + 4\pi^2} + \frac{1}{z^2 + 9\pi^2} - \dots \right\} \\ &= \frac{1}{z} + 2z \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2\pi^2 + z^2} \quad ; z \neq 0, \pm i\pi, \pm 2i\pi, \pm 3i\pi, \end{aligned} \quad \dots (13)$$

[14, p.175; 15, p.187]

$$\begin{aligned} \operatorname{sech}(z) &= 4\pi \left\{ \frac{1}{\pi^2 + 4z^2} - \frac{3}{9\pi^2 + 4z^2} + \frac{5}{25\pi^2 + 4z^2} - \dots \right\} \\ &= 2\pi \sum_{n=0}^{\infty} \frac{(-1)^n (n + \frac{1}{2})}{(n + \frac{1}{2})^2 \pi^2 + z^2} \quad ; z \neq \pm\frac{i\pi}{2}, \pm\frac{3i\pi}{2}, \pm\frac{5i\pi}{2}, \end{aligned} \quad \dots (14)$$

Ramanujan's partial fraction expansions [1, Part-IV, pp.380-381]

Ramanujan's systematic work on ordinary hypergeometric series is contained primarily in Chapters XII, XIII, XV of first notebook [9] and Chapters III, X and XI of second notebook [10]. Ramanujan evidently had an affinity for partial fraction expansions, which can be found in several places in his notebooks. The heaviest concentrations lie in Chapters 14 and 18 and in the unorganized pages at the end of the second notebook. See Berndt's books [part-II] and [part-III] for accounts of the material in Chapters 14 and 18, respectively. In this paper, we obtain the hypergeometric forms of three partial fraction decompositions in the unorganized pages of second notebook.

When $z \neq \frac{m}{2}(1 \pm i)$; $m = 0, \pm 1, \pm 2, \pm 3, \dots$

then [1(Part-IV), pp.380-381, Entry 13; see also 7, p.137 (Q.No.20 i)]

$$\frac{\pi}{8z^3} \frac{\sinh(2\pi z) + \sin(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)} = \frac{1}{8z^4} + \sum_{n=1}^{\infty} \frac{1}{4z^4 + n^4} \quad (15)$$

[1(Part-IV), pp.380-381, Entry 14]

$$\frac{\pi}{4z} \frac{\sinh(2\pi z) - \sin(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)} = \sum_{n=1}^{\infty} \frac{n^2}{4z^4 + n^4} \quad (16)$$

[1(Part-IV), pp.380-381, Entry 15]

$$\frac{\pi}{4z^2} \frac{\sinh(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)} = \frac{1}{8z^3} + \sum_{n=1}^{\infty} \frac{n}{4z^4 + n^4} + \frac{1}{2z} \sum_{n=1}^{\infty} \frac{1}{z^2 + (z + n)^2} \quad (17)$$

II. HYPERGEOMETRIC FORMS OF SOME PARTIAL FRACTION EXPANSIONS

If we apply the Lemma (2) in real or complex linear factors of quadratic and biquadratic polynomials in n , associated with the denominators of partial fraction expansions (4) to (17), we get the following hypergeometric forms:

$$\frac{1}{e^z - 1} = \frac{1}{z} - \frac{1}{2} + \frac{2z}{(z^2 + 4\pi^2)} {}_3F_2 \left[\begin{matrix} 1, \frac{2\pi + iz}{2\pi}, \frac{2\pi - iz}{2\pi} ; \\ \frac{4\pi + iz}{2\pi}, \frac{4\pi - iz}{2\pi} ; \end{matrix} 1 \right] ; z \neq 0, \pm 2i\pi, \quad \dots (18)$$

$$\sec^2 z = \frac{4}{(2z + \pi)^2} {}_2H_2 \left[\begin{matrix} \frac{\pi + 2z}{2\pi}, \frac{\pi + 2z}{2\pi} ; \\ \frac{3\pi + 2z}{2\pi}, \frac{3\pi + 2z}{2\pi} ; \end{matrix} 1 \right] ; z \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \quad \dots (19)$$

$$\sec^2 z = \frac{4}{(2z - \pi)^2} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi - 2z}{2\pi}, \frac{\pi - 2z}{2\pi} ; \\ \frac{3\pi - 2z}{2\pi}, \frac{3\pi - 2z}{2\pi} ; \end{matrix} 1 \right] + \frac{4}{(2z + \pi)^2} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi + 2z}{2\pi}, \frac{\pi + 2z}{2\pi} ; \\ \frac{3\pi + 2z}{2\pi}, \frac{3\pi + 2z}{2\pi} ; \end{matrix} 1 \right] \quad (20)$$

$$\operatorname{cosec}^2 z = \frac{1}{z^2} {}_2H_2 \left[\begin{matrix} -\frac{z}{\pi}, -\frac{z}{\pi} ; \\ \frac{\pi - z}{\pi}, \frac{\pi - z}{\pi} ; \end{matrix} 1 \right] ; z \neq 0, \pm \pi, \pm 2\pi, \pm 3\pi, \quad \dots (21)$$

$$\operatorname{cosec}^2 z = \frac{1}{(z + \pi)^2} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi + z}{\pi}, \frac{\pi + z}{\pi} ; \\ \frac{2\pi + z}{\pi}, \frac{2\pi + z}{\pi} ; \end{matrix} 1 \right] + \frac{1}{z^2} {}_3F_2 \left[\begin{matrix} 1, -\frac{z}{\pi}, -\frac{z}{\pi} ; \\ \frac{\pi - z}{\pi}, \frac{\pi - z}{\pi} ; \end{matrix} 1 \right] \quad (22)$$

$$\tan z = \frac{8z}{(\pi^2 - 4z^2)} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi+2z}{2\pi}, \frac{\pi-2z}{2\pi}; \\ \frac{3\pi+2z}{2\pi}, \frac{3\pi-2z}{2\pi}; \end{matrix} 1 \right] ; z \neq \pm\frac{\pi}{2}, \pm\frac{3\pi}{2}, \pm\frac{5\pi}{2}, \quad \dots(23)$$

$$\cot z = \frac{1}{z} + \frac{2z}{(z^2 - \pi^2)} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi+z}{\pi}, \frac{\pi-z}{\pi}; \\ \frac{2\pi+z}{\pi}, \frac{2\pi-z}{\pi}; \end{matrix} 1 \right] ; z \neq 0, \pm\pi, \pm 2\pi, \quad \dots(24)$$

$$\operatorname{cosec} z = \frac{1}{z} + \frac{2z}{(\pi^2 - z^2)} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi+z}{\pi}, \frac{\pi-z}{\pi}; \\ \frac{2\pi+z}{\pi}, \frac{2\pi-z}{\pi}; \end{matrix} -1 \right] ; z \neq 0, \pm\pi, \pm 2\pi, \quad \dots(25)$$

$$\sec z = \frac{4\pi}{(\pi^2 - 4z^2)} {}_4F_3 \left[\begin{matrix} 1, \frac{3}{2}, \frac{\pi+2z}{2\pi}, \frac{\pi-2z}{2\pi}; \\ \frac{1}{2}, \frac{3\pi+2z}{2\pi}, \frac{3\pi-2z}{2\pi}; \end{matrix} -1 \right] ; z \neq \pm\frac{\pi}{2}, \pm\frac{3\pi}{2}, \quad \dots(26)$$

By replacing z by iz in (19) to (26) and using the identities $\sec(iz) = \operatorname{sech}(z)$, $\operatorname{cosec}(iz) = -i \operatorname{cosech}(z)$, $\tan(iz) = i \operatorname{tanh}(z)$, $\cot(iz) = -i \operatorname{coth}(z)$, we get the hypergeometric forms of corresponding hyperbolic functions.

$$\operatorname{sech}^2(z) = \frac{4}{(2iz + \pi)^2} {}_2H_2 \left[\begin{matrix} \frac{\pi+2iz}{2\pi}, \frac{\pi+2iz}{2\pi}; \\ \frac{3\pi+2iz}{2\pi}, \frac{3\pi+2iz}{2\pi}; \end{matrix} 1 \right] ; z \neq \pm\frac{i\pi}{2}, \pm\frac{3i\pi}{2}, \quad \dots(27)$$

$$\operatorname{sech}^2(z) = \frac{4}{(\pi - 2iz)^2} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi-2iz}{2\pi}, \frac{\pi-2iz}{2\pi}; \\ \frac{3\pi-2iz}{2\pi}, \frac{3\pi-2iz}{2\pi}; \end{matrix} 1 \right] + \frac{4}{(\pi + 2iz)^2} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi+2iz}{2\pi}, \frac{\pi+2iz}{2\pi}; \\ \frac{3\pi+2iz}{2\pi}, \frac{3\pi+2iz}{2\pi}; \end{matrix} 1 \right] \quad \dots(28)$$

$$\operatorname{cosech}^2(z) = \frac{1}{z^2} {}_2H_2 \left[\begin{matrix} -\frac{iz}{\pi}, -\frac{iz}{\pi}; \\ \frac{\pi-iz}{\pi}, \frac{\pi-iz}{\pi}; \end{matrix} 1 \right] ; z \neq 0, \pm i\pi, \pm 2i\pi, \pm 3i\pi, \quad \dots(29)$$

$$\operatorname{cosech}^2(z) = \frac{1}{z^2} {}_3F_2 \left[\begin{matrix} 1, -\frac{iz}{\pi}, -\frac{iz}{\pi}; \\ \frac{\pi-iz}{\pi}, \frac{\pi-iz}{\pi}; \end{matrix} 1 \right] - \frac{1}{(\pi + iz)^2} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi+iz}{\pi}, \frac{\pi+iz}{\pi}; \\ \frac{2\pi+iz}{\pi}, \frac{2\pi+iz}{\pi}; \end{matrix} 1 \right] \quad \dots(30)$$

$$\operatorname{tanh}(z) = \frac{8z}{(\pi^2 + 4z^2)} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi+2iz}{2\pi}, \frac{\pi-2iz}{2\pi}; \\ \frac{3\pi+2iz}{2\pi}, \frac{3\pi-2iz}{2\pi}; \end{matrix} 1 \right] ; z \neq \pm\frac{i\pi}{2}, \pm\frac{3i\pi}{2}, \quad \dots(31)$$

$$\operatorname{coth}(z) = \frac{1}{z} + \frac{2z}{(z^2 + \pi^2)} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi+iz}{\pi}, \frac{\pi-iz}{\pi}; \\ \frac{2\pi+iz}{\pi}, \frac{2\pi-iz}{\pi}; \end{matrix} 1 \right] ; z \neq 0, \pm i\pi, \pm 2i\pi, \quad \dots(32)$$

$$\text{cosech}(z) = \frac{1}{z} - \frac{2z}{(\pi^2 + z^2)} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi+iz}{\pi}, \frac{\pi-iz}{\pi} ; \\ \frac{2\pi+iz}{\pi}, \frac{2\pi-iz}{\pi} ; \end{matrix} -1 \right]; z \neq 0, \pm i\pi, \pm 2i\pi, \dots \quad (33)$$

$$\text{sech}(z) = \frac{4\pi}{(\pi^2 + 4z^2)} {}_4F_3 \left[\begin{matrix} 1, \frac{3}{2}, \frac{\pi+2iz}{2\pi}, \frac{\pi-2iz}{2\pi} ; \\ \frac{1}{2}, \frac{3\pi+2iz}{2\pi}, \frac{3\pi-2iz}{2\pi} ; \end{matrix} -1 \right]; z \neq \pm \frac{i\pi}{2}, \pm \frac{3i\pi}{2}, \dots \quad (34)$$

When $z \neq \frac{m}{2}(1 \pm i)$; $m = 0, \pm 1, \pm 2, \pm 3, \dots$, then

$$\begin{aligned} \frac{\pi}{8z^3} \frac{\sinh(2\pi z) + \sin(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)} &= \frac{1}{8z^4} + \frac{1}{(4z^4 + 1)} \times \\ &\times {}_5F_4 \left[\begin{matrix} 1, -z+1+iz, -z+1-iz, z+1+iz, z+1-iz ; \\ -z+2+iz, -z+2-iz, z+2+iz, z+2-iz ; \end{matrix} 1 \right] \end{aligned} \quad (35)$$

$$\begin{aligned} \frac{\pi}{4z} \frac{\sinh(2\pi z) - \sin(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)} &= \frac{1}{(4z^4 + 1)} \times \\ &\times {}_6F_5 \left[\begin{matrix} 2, 2, -z+1+iz, -z+1-iz, z+1+iz, z+1-iz ; \\ 1, -z+2+iz, -z+2-iz, z+2+iz, z+2-iz ; \end{matrix} 1 \right] \end{aligned} \quad (36)$$

$$\begin{aligned} \frac{\pi}{4z^2} \frac{\sinh(2\pi z)}{\cosh(2\pi z) - \cos(2\pi z)} &= \frac{1}{8z^3} + \\ &+ \frac{1}{(4z^4 + 1)} {}_5F_4 \left[\begin{matrix} 2, -z+1+iz, -z+1-iz, z+1+iz, z+1-iz ; \\ -z+2+iz, -z+2-iz, z+2+iz, z+2-iz ; \end{matrix} 1 \right] + \\ &+ \frac{1}{(4z^3 + 4z^2 + 2z)} {}_3F_2 \left[\begin{matrix} 1, z+1+iz, z+1-iz ; \\ z+2+iz, z+2-iz ; \end{matrix} 1 \right] \end{aligned} \quad (37)$$

Above hypergeometric forms are not available in the literature. It is to be noted that the hypergeometric series ${}_3F_2$, ${}_4F_3$, ${}_5F_4$ and ${}_6F_5$ are convergent.

III. PROOFS

To derive (18), consider the following partial fraction expansion

$$\begin{aligned} \frac{1}{e^z - 1} &= \frac{1}{z} - \frac{1}{2} + 2z \sum_{n=1}^{\infty} \frac{1}{z^2 + 4n^2\pi^2} ; z \neq 0, \pm 2i\pi, \pm 4i\pi, \pm 6i\pi, \dots \\ &= \frac{1}{z} - \frac{1}{2} + 2z \sum_{n=0}^{\infty} \frac{1}{[z + 2i(n+1)\pi] [z - 2i(n+1)\pi]} \\ &= \frac{1}{z} - \frac{1}{2} + 2z \sum_{n=0}^{\infty} \frac{1}{[(z + 2i\pi) + (2i\pi)n] [(z - 2i\pi) + (-2i\pi)n]} \end{aligned}$$

Now using the beautiful Lemma (2), we get

$$\begin{aligned} \frac{1}{e^z - 1} &= \frac{1}{z} - \frac{1}{2} + 2z \sum_{n=0}^{\infty} \frac{\left(\frac{z+2i\pi}{2i\pi}\right)_n \left(\frac{z-2i\pi}{-2i\pi}\right)_n}{(z+2i\pi) \left(\frac{z+4i\pi}{2i\pi}\right)_n (z-2i\pi) \left(\frac{z-4i\pi}{-2i\pi}\right)_n} \\ &= \frac{1}{z} - \frac{1}{2} + \frac{2z}{(z^2 + 4\pi^2)} {}_3F_2 \left[\begin{matrix} 1, \frac{2i\pi+z}{2i\pi}, \frac{2i\pi-z}{2i\pi} ; \\ \frac{4i\pi+z}{2i\pi}, \frac{4i\pi-z}{2i\pi} ; \end{matrix} 1 \right] \\ \frac{1}{e^z - 1} &= \frac{1}{z} - \frac{1}{2} + \frac{2z}{(z^2 + 4\pi^2)} {}_3F_2 \left[\begin{matrix} 1, \frac{2\pi+iz}{2\pi}, \frac{2\pi-iz}{2\pi} ; \\ \frac{4\pi+iz}{2\pi}, \frac{4\pi-iz}{2\pi} ; \end{matrix} 1 \right] \end{aligned}$$

To derive (21) and (22), consider the following expansion

$$\begin{aligned} \operatorname{cosec}^2 z &= \sum_{n=-\infty}^{+\infty} \frac{1}{(z - n\pi)^2} \quad ; z \neq 0, \pm\pi, \pm 2\pi, \pm 3\pi, \dots \dots \\ &= \sum_{n=-\infty}^{+\infty} \frac{1}{[z + (-\pi)n][z + (-\pi)n]} \end{aligned}$$

Now using the beautiful Lemma (2), we get

$$\operatorname{cosec}^2 z = \sum_{n=-\infty}^{+\infty} \frac{\left(\frac{z}{-\pi}\right)_n \left(\frac{z}{-\pi}\right)_n}{z \left(\frac{z-\pi}{-\pi}\right)_n z \left(\frac{z-\pi}{-\pi}\right)_n} = \frac{1}{z^2} {}_2H_2 \left[\begin{matrix} -\frac{z}{\pi}, -\frac{z}{\pi} ; \\ \frac{\pi-z}{\pi}, \frac{\pi-z}{\pi} ; \end{matrix} 1 \right]$$

which is the hypergeometric form (21).

Now replacing z by iz and using suitable circular-hyperbolic identity, we get (29).
Now again consider,

$$\begin{aligned} \operatorname{cosec}^2 z &= \sum_{n=-\infty}^{+\infty} \frac{1}{(z - n\pi)^2} \quad ; z \neq 0, \pm\pi, \pm 2\pi, \pm 3\pi, \dots \dots \\ &= \sum_{n=-\infty}^{-1} \frac{1}{(z - n\pi)^2} + \sum_{n=0}^{\infty} \frac{1}{(z - n\pi)^2} = \sum_{n=1}^{\infty} \frac{1}{(z + n\pi)^2} + \sum_{n=0}^{\infty} \frac{1}{(z - n\pi)^2} \\ &= \sum_{n=0}^{\infty} \frac{1}{[(z + \pi) + \pi n]^2} + \sum_{n=0}^{\infty} \frac{1}{[z + (-\pi)n]^2} \end{aligned}$$

Now using the Lemma (2), we get

$$\begin{aligned} \operatorname{cosec}^2 z &= \sum_{n=0}^{\infty} \frac{\left(1\right)_n \left(\frac{z+\pi}{\pi}\right)_n^2}{(z + \pi)^2 \left(\frac{z+2\pi}{\pi}\right)_n^2 n!} + \sum_{n=0}^{\infty} \frac{\left(1\right)_n \left(\frac{z}{-\pi}\right)_n^2}{z^2 \left(\frac{z-\pi}{-\pi}\right)_n^2 n!} \\ &= \frac{1}{(z + \pi)^2} {}_3F_2 \left[\begin{matrix} 1, \frac{\pi+z}{\pi}, \frac{\pi+z}{\pi} ; \\ \frac{2\pi+z}{\pi}, \frac{2\pi+z}{\pi} ; \end{matrix} 1 \right] + \frac{1}{z^2} {}_3F_2 \left[\begin{matrix} 1, -\frac{z}{\pi}, -\frac{z}{\pi} ; \\ \frac{\pi-z}{\pi}, \frac{\pi-z}{\pi} ; \end{matrix} 1 \right] \end{aligned}$$

which is the hypergeometric form (22).

Now replacing z by iz , we get (30).

Similarly, we can obtain the hypergeometric forms (19), (20), (23) to (28), (31) to (37) of remaining partial fraction expansions.

IV. ACKNOWLEDGEMENT

The authors are thankful to Prof. R. Y. Denis and Prof. M. A. Pathan for their valuable suggestions during the preparation of this research paper. The corresponding author (MPC) is also thankful to the Library Staff and Scientists of CRM, Marseille, France, EUROPE for their cooperation during his academic visit in winter 2010.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Berndt, B. C.; *Ramanujan's notebooks*. Parts I-V, Springer-Verlag, New York, 1985, 1989, 1991, 1994, 1998.
2. Bromwich, T. J. I'A.; *An introduction to the theory of infinite series. Second Edition*. Macmillan and Co. 1931.
3. Conway, J. B.; *Functions of one complex variable*. Narosa Publishing House, New Delhi, Bombay, Calcutta, Second Edition, 1980.
4. Copson, E. T.; *An introduction to the theory of function of a complex variable*. Oxford Univ. Press, London and New York, Geoffrey, Cum Berlege, 1935.
5. Courant, R. and John, F.; *Introduction to calculus and analysis, Volume I*. Springer-Verlag, New York, Inc., 1989. First Indian Reprint, 2004.
6. Kyrala, A.; *Applied functions of a complex variable*. John Wiley & Sons, Inc., New York, London, Toronto, 1972.
7. Phillips, E. G.; *Functions of a complex variable with applications*. Longman Group Limited, London, 1975.
8. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I.; *Integrals and series Vol. 3: More special functions*. Nauka, Moscow, 1986. Translated from the Russian by G. G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
9. Ramanujan, S.; *Notebooks of Srinivasa Ramanujan*. Vol. I, Tata Institute of Fundamental Research, Bombay, 1957; Reprinted by Narosa, New Delhi, 1984.
10. Ramanujan, S.; *Notebooks of Srinivasa Ramanujan*. Vol. II, Tata Institute of Fundamental Research, Bombay, 1957; Reprinted by Narosa, New Delhi, 1984.
11. Ramanujan, S.; *The Lost notebook and other unpublished papers*. Narosa PublishingHouse, New Delhi, 1988.
12. Rudin, W.; *Real and complex analysis*. McGraw-Hill, Inc., New York, 1966.
13. Slater, L. J.; *Generalized hypergeometric functions*. Cambridge Univ. Press, Cambridge, London and New York, 1966.
14. Spiegel, M. R.; *Theory and problems of complex variables with an introduction to conformal mapping and its application*. Schaum's outline series, McGraw- Hill Book Company, SI (Metric) Edition, Singapore, 1981.
15. Spiegel, M. R.; *Mathematical handbook of formulas and tables*. Schaum's outline series, McGraw-Hill Publishing Company, New York, 1990.
16. Titchmarsh, E. C.; *The theory of functions*. Oxford University Press, Ely House, London, Second Edition, 1939.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 6 Version 1.0 September 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN: 0975-5896

Solar Powered Distillation of Lagos Bar Beach Water

By J. I. Eze, Onyekwere, Ojikeand Ejilah, I.R

University of Nigeria, Nsukka

Abstract - In this study Lagos Bar-beach water was distilled using a rectangular solar still. The solar still is a single slope type inclined 22° to the horizontal in the north-south direction. The various chemical and biological parameters of the seawater were analysed before and after distillation. The results showed a total dissolved solid value of 4,014 mg/l and total coliform count of 380 cfu/ml. Thus, Lagos bar-beach water is not suitable for human consumption due to basically high total coliform count far above acceptable maximum limit of 10 cfu/ml. However after the solar distillation zero coliform count and no dissolved solids were recorded. Data generated from the performance evaluation of the solar still over an ambient day time temperature range of between 23–31 °C, and a daily global irradiation range of between 7.5–17.1 MJ m² that involved physical monitoring of the temperatures of different components of the solar still to determine its efficiency, also validated this result.

Keywords : Solar still, Distillation, Seawater, parameters.

GJSFR Classification: FOR Code: 090605

Strictly as per the compliance and regulations of:

Solar Powered Distillation of Lagos Bar Beach Water

J. I. Eze, Onyekwere^a, Ojikeand Ejilah, I.R^Q

Abstract - In this study Lagos Bar-beach water was distilled using a rectangular solar still. The solar still is a single slope type inclined 22° to the horizontal in the north-south direction. The various chemical and biological parameters of the seawater were analysed before and after distillation. The results showed a total dissolved solid value of 4,014 mg/l and total coliform count of 380 cfu/ml. Thus, Lagos bar-beach water is not suitable for human consumption due to basically high total coliform count far above acceptable maximum limit of 10 cfu/ml. However after the solar distillation zero coliform count and no dissolved solids were recorded. Data generated from the performance evaluation of the solar still over an ambient day time temperature range of between 23–31 °C, and a daily global irradiation range of between 7.5–17.1 MJ m² that involved physical monitoring of the temperatures of different components of the solar still to determine its efficiency, also validated this result.

Keywords : Solar still, Distillation, Seawater, parameters.

I. INTRODUCTION

Safe drinking water remains inaccessible for about 1.1 billion people in the world, and the hourly toll from biological contamination of drinking water is 400 deaths of children below age 5 (Gadgil, 1998). Availability of plentiful and safe water for domestic use has long been known to be fundamental to the development process, with benefits, such as labour productivity, spread across all sectors. Most recently, the UN General Assembly declared the period from 2005 to 2015 as the International Decade for Action, "Water for Life" (WHO, 2008). According to Kalogirou (2005) "Water is one of the most abundant resources on earth, covering three-fourths of the planet's surface. About 97% of the earth's water is salt water in the oceans and 3% (about 36 million km³) is fresh water contained in the poles, ground water, lakes and rivers, which supply most of human and animal needs. Nearly, 70% from this tiny 3% of the world's fresh water is frozen in glaciers, permanent snow cover, ice and permafrost. Thirty percent of all fresh water is underground, most of it in deep, hard-to-reach aquifers. Lakes and rivers together contain just a little more than 0.25% of all fresh water". The only nearly inexhaustible sources of water are the oceans. Their main demerit is their high salinity. Thus, desalination is a major way of making ocean water

Author^a : National Centre for Energy Research and Development, University of Nigeria, Nsukka.

Author^Q : Mechanical Engineering Department, Federal Polytechnic, Bauchi . E - mail : ikejon85@yahoo.co.Phone no.: +2348063285864

(seawater) accessible to mankind. Desalination refers to the removal of salts and minerals, as in soil desalination. Water is desalinated in order to convert salt water to fresh water to make it suitable for human consumption or irrigation. Sometimes the process produces table salt as a by-product.

Large-scale desalination typically uses extremely large amounts of energy as well as specialized, expensive infrastructure, making it very costly compared to the use of fresh water from rivers or groundwater. Generally, the energy requirements of desalination processes are high (Fischetti, 2007) making it difficult in developing countries or isolated areas where electricity is erratic, unreliable, and a high percentage of the population is not on the electricity grid (UNDP, 2002). According to (García-Rodríguez, 2003), since most arid regions have high renewable energy resources, the use of renewable energies in seawater desalination exhibits an interesting chance, or even the only way to offer a secure source of fresh water.

Despite the continual technological progress in desalination methods, the conventional solar still continues to be a choice that can be made, mainly for remote areas, due to the known advantages it has, such as use of free energy without harming the environment, autonomous operation independent of conventional energy sources and need for simple technological and construction solutions that can be implemented locally (Mathioulakis and Belessiotis, 2003). Solar still uses the principle of distillation in its operation.

Solar distillation is a technique to distillate water using solar energy. Distillation is the oldest and most commonly used method of desalination. It is a phase separation method whereby saline water is heated to produce water vapour, which is then condensed to produce freshwater. Distillation units routinely use designs that conserve as much thermal energy as possible by interchanging the heat of condensation and heat of vaporization within the units. The major energy requirement in the distillation process thus becomes providing the heat for vaporization to the feed water.

In this study, Lagos bar beach water (seawater) was distilled using a locally made solar still to obtain a distilled water and the result compared to the WHO standards for drinking water.

II. THEORY OF THE PASSIVE SOLAR STILL

The solar still operation is governed by various heat and mass transfer modes occurring in the system. Within the solar still the convection heat and mass transfer from water surface to the inner glass cover surface can be observed (Fig. 1). The trapped long wave radiation from incident solar radiation heats up the water by way of "green house effect". The hot water evaporates and condenses on the transparent cover. Energy considerations in a passive solar still yield the following equations (Kurmar et al., 2000; Azi and Iyoha, 2007):

Glass cover;

$$\alpha_g I(t) A_g + h_{wg}(T_w - T_g) A_w = h_{ga}(T_g - T_a) A_g \quad (1)$$

Water;

$$\alpha_w(1 - \alpha_g) I(t) A_w + h_w(T_b - T_w) A_b = (m_w C_w) \frac{dT_w}{dt} + h_{wg}(T_w - T_g) A_w \quad (2)$$

Basin;

$$\alpha_w(1 - \alpha_g)(1 - \alpha_w) I(t) A_b = [h_{bw}(T_b - T_w) + h_{ba}(T_b - T_a)] A_b \quad (3)$$

Given T_g and T_w , the hourly production of the still is calculated as

$$\dot{m}_{ew} = \frac{h_{ew}(T_w - T_g) \times 3600}{L_w} \text{ Kg/m}^2 \text{ - h} \quad (4)$$

Where T_o , T_g , T_w and T_a are outer surface cover, inside surface cover, basin saline water and ambient temperatures respectively while h_{ew} and L_w are evaporative heat transfer coefficient from the water surface to the glass cover and latent heat of vapourisation of water respectively. The above equations were derived based on the assumptions that; the unit is in the quasi-steady state, airtight and perfectly insulated. Absorption coefficients and heat capacities of the transparent cover and water are deemed negligible.

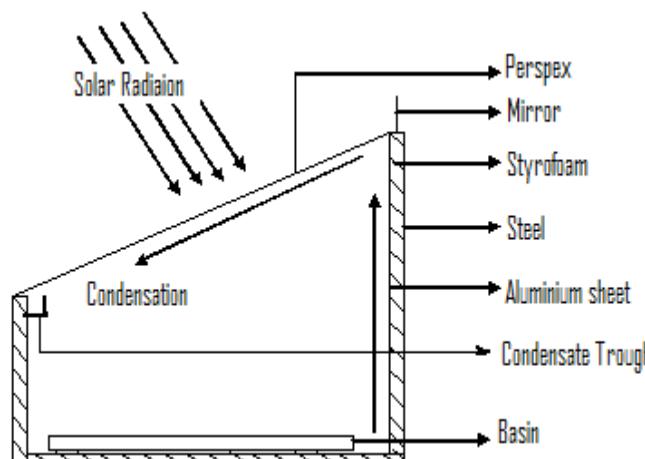


Fig. 1 : Schematic diagram of a solar still

Still Efficiency Determination: the experimental steady state efficiency (η) of the solar still is given as (Hamdan et al., 1999)

$$\eta = \frac{m L_w}{G A_g \Delta t} \quad (5)$$

where m , L_w , G , A_g and Δt are the mass condensate collected in a time interval, water latent heat of evaporation, hourly solar radiation flux, the glass collecting area and the time interval, respectively. Also, the daily efficiency (η_d) of the solar still is given as (Swelam, 2005):

$$\eta_d = \frac{\sum m L_w}{\sum G A t} \quad (6)$$

Equation was used to determine the still daily efficiency, as it is summing up the hourly condensate production (m) multiplied by the latent heat of evaporation (L_w), divided by the summation of the average daily solar radiation (G), the whole still area (A) and time of (t).

III. MATERIALS AND METHODS

The solar still used is shown in Fig. 2 and developed at the National Centre for energy research and development, University of Nigeria Nsukka. It is a rectangular box with a transparent slanted Perspex cover. The perspex cover is inclined at an angle of 22° to the horizontal. The solar still is oriented facing south as recommended by Duffie and Beckman (1991).

Fig. 2: The Solar Still

The effective total absorber area is 0.6m². The body of the box is made of prefabricated fibre reinforce plastic 0.005m thick. The interior of the rectangular basin is painted black. Inside the solar still is a rectangular black steel basin of area 0.5m² and height 0.06m. The basin serves as the container for the seawater. A mirror of 0.18m² was fitted on the still side walls. During the study, four litres of Lagos Bar-beach water was poured into the solar still basin for distillation. The water evaporates only to condense on the underside of the transparent cover, leaving other constituents of the seawater behind. The gentle slope of the glass directs the condensate to a condensate trough from where the water runs out to a storage vessel. Periodically, the

temperatures of the seawater, the base of solar still, transparent cover and the ambient were measured using I-Bk thermocouples. At sunset each day the volume of water distilled in the container is measured. Some samples of the sea water and distilled water were analysed to determine their chemical and biological components. Water pH, Turbidity and Total dissolved solid, Total viable cell count and Total coliform count were determined using the method of Franson (1976), Total hardness, calcium, magnesium, sulphate and chloride were determined by AOAC (1990) method. The

evaluation was done between 24th May and 4th June, 2011.

IV. RESULTS AND DISCUSSION

Results presented in figures 3 to 5 are typical hourly averages as usual in a work of this nature where Amb, Basin, Perspex, and water represent ambient, still interior base, transparent cover and saline water temperature respectively while Solar Rad represents solar radiation.

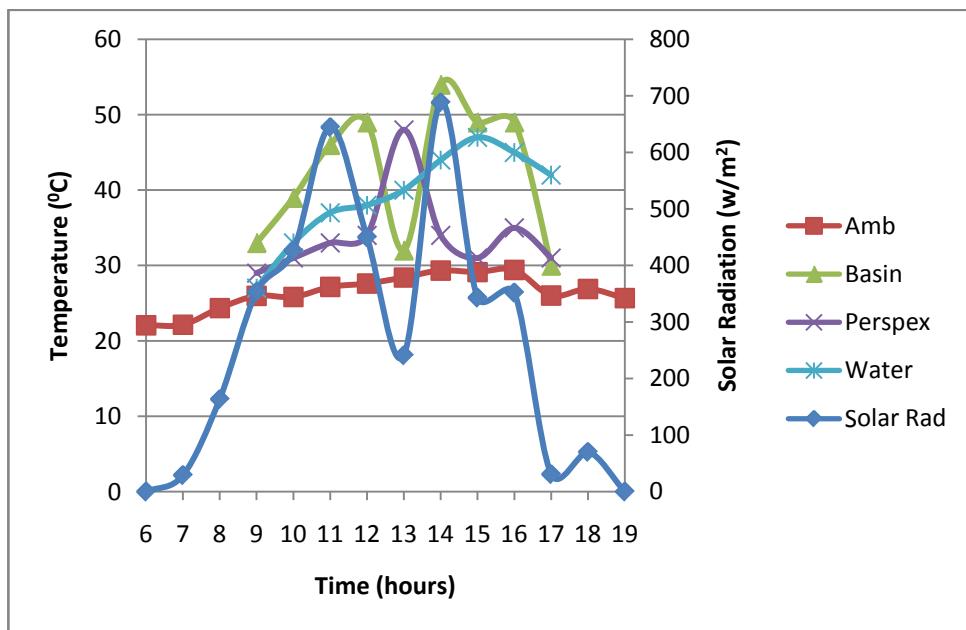


Fig. 3 : Temperature and Solar radiation of 24th May, 2011 Vs Time

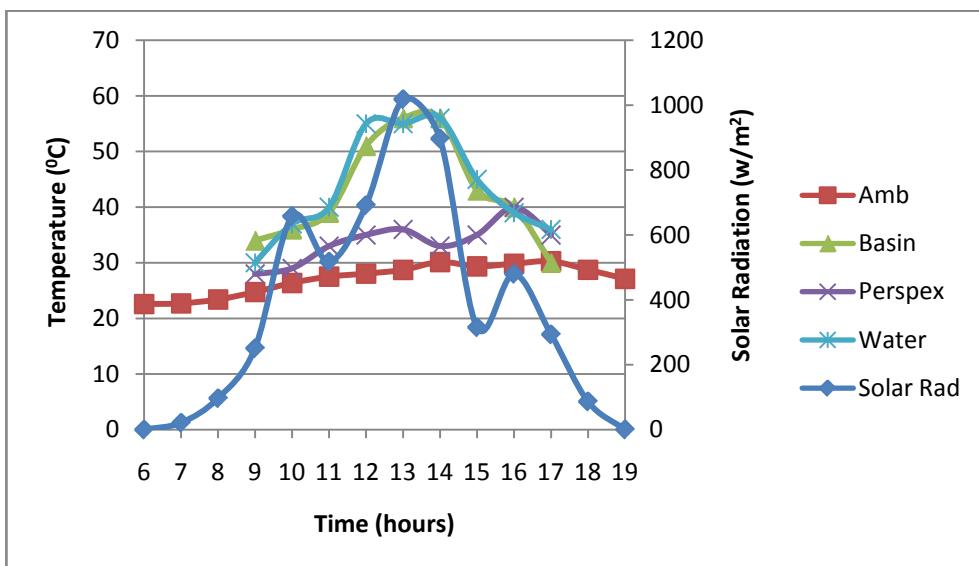


Fig. 4 : Temperature and Solar radiation of 25th May, 2011 Vs Time

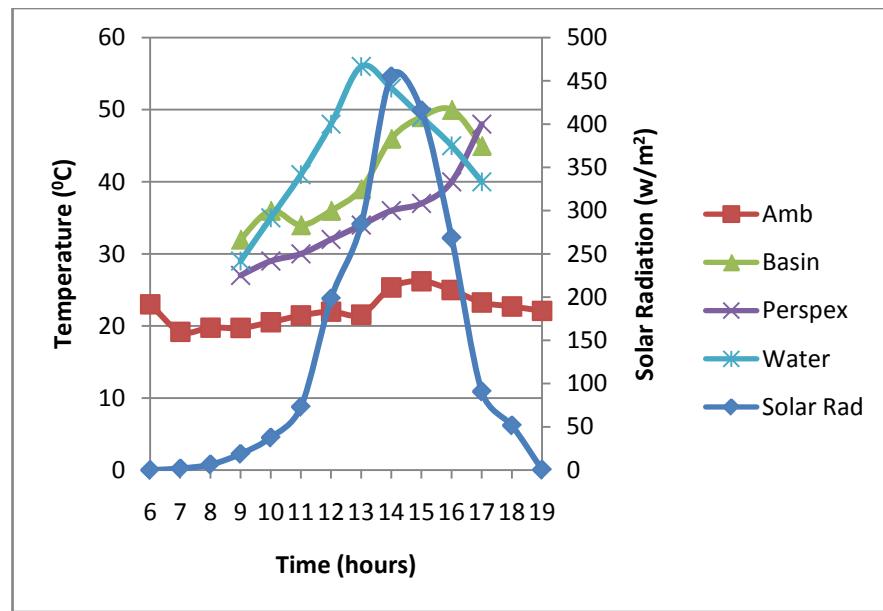


Fig. 5: Temperature and Solar radiation of 26th May, 2011 vs Time

It is observed that as sun begin to rise from 06:00 hours, solar radiation value started increasing till it reached its peak period between the hours of 13:00 and 14:00 when the sun is vertically overhead (Duffie and Beckman, 1991). After this, radiation value started decreasing till sunset at about 18:00 hour. Among the three days selected, May 26th recorded lowest radiation values. This low values were as a result of the cloudiness of the weather on that day. It was also noticed that all the temperatures measure varied in sympathy with the solar radiation. Also, it is observed that, still interior components temperatures were higher than ambient temperature due to existence of the transparent cover which traps the solar energy inside the solar still (greenhouse effect). The transparent cover which is opaque to the infrared rays from the absorber interior (Badran, and Al-Hayek, 2004) resulted in a higher temperatures inside solar still (Radwan et al., 2009).

Table 1 represents the total and average daily still efficiency using equation 6. The average efficiency of 36.8% is in sympathy with the average 35% efficiency for flat plate passive solar systems (Duffie and Beckman, 1991; Okonkwo 1993

Table 1: The total and average daily still efficiency.

Days	Efficiency (%)
24 th May	43.5
25 th May	24.7
26 th May	42.4
Average	36.8

The results of the laboratory analysis of seawater before and after distillation in comparison with acceptable WHO standards for drinking water are shown in tables 2 and 3.

Table 2: Parameters and Maximum Allowable Limits for Drinking Water

Parameter	Maximum Permitted Level	Health Impact
pH	6.5-8.5	None
Chloride (CL)	250 mg/L	None
Calcium	75 mg/L	None
Magnesium	0.20 mg/L	Consumer acceptability
Total hardness	500 mg/L	None
Sulphate	100 mg/L	None
Total dissolved solids	500 mg/L	None
Colour	15 TCU	None
Taste	Unobjectionable	None
Odour	Unobjectionable	None
Turbidity	5 NTU	None
Total Viable cell count	0 cfu/100ml	Urinary tract infections, bacteraemia, meningitis, diarrhea, acute renal failure and haemolytic
Total coliform count	10 cfu/ml	Indication of faecal contamination

Source : NIS, 2007

Table 3 : Lagos Bar beach water Analysis

Parameter	Before Distillation	After Distillation
pH	7.94	6.86
Chloride (CL)	2.84 mg/L	NIL
Calcium	53.2 mg/L	3.04 mg/L
Magnesium	2720.80 mg/L	0.76 mg/L
Total hardness	2774 mg/L	3.80 mg/L
Sulphate	19.2 mg/L	1.46 mg/L
Total dissolved solids	4014 mg/L	0.07 mg/L
Colour	Colourless	Colourless
Taste	Very salty	Tasteless
Odour	Odourless	Odourless
Turbidity	Nil	Nil
Total Viable cell count	1640 cfu/100ml	Nil
Total coliform count	380 cfu/ml	Nil

Comparing tables 2 and 3, it can easily be seen that apart from the pH, chloride and calcium all other components of the bar beach water are beyond the acceptable limit for drinking water. Thus there is the need for distillation of the water especially because of the health implications of the very high values of the total viable cell count and coliform count.

It is observed that the pH of the distilled water decreased but within the acceptable range. As the solar radiation heats up the water, CO_2 reacts with water to form carbonic acid thereby reducing water pH. Equally, all the salt components of the water reduced significantly. This is as a result of the evaporation of water vapour leaving behind these components in the solar still.

Furthermore, the solar still successfully reduced the Total viable cell and coliform counts to zero which is the acceptable level for drinking water. This is as a result of the destruction of these microbes by ultraviolet rays of the solar radiation (Gadgil, 1998).

V. CONCLUSION

Lagos Bar beach water was distilled using a solar still developed at the National Centre for Energy Research and Development, University of Nigeria, Nsukka. Analysis of the water shows that there are very high values of the Total viable cell and coliform counts in the water which make it unsuitable for human consumption. However, after distillation of the seawater using the solar still both the total viable cell and coliform counts were reduced to zero which is the required condition for among other parameters necessary for its consumption. The solar still with an average efficiency of 36.8% performed within the acceptable range for passive solar systems. Hence the system is recommended for use to especially people living in coastal areas.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Association of Official Analytical Chemist (AOAC, 1990). Official methods of analysis. 15th ed. Arlington, VA.
2. Azi, S. O. And Iyoha, A. (2007). Parametric study of passive solar stills. Proc. Of the Int'l. Workshop on Renewable Energy for Sustainable Dev't in Africa, pg.86-91.
3. Badran, O.O. and Al-Hayek, I. (2004). The effect of using different designs of solar stills on water distillation. In Radwan, S. M., Hassanain, A. A. and Abu-Zeid, M. A. (2009). Single Slope Solar Still Sea Water Distillation. World Applied Sciences Journal 7 (4): 485-497
4. Duffie, J. A. and Beckman, W. A. 1991. Solar Engineering of Thermal Processes. New York, John Wiley and Sons.
5. Franson, M. (1976). Standard methods for the examination of water and waste water. An American Public Health Association, Washington DC.
6. Fischetti, M. (2007). Fresh from the Sea. Scientific American 297 (3): 118–119.
7. Gadgil, A. (1998). Drinking water in developing countries. Annual Rev. Energy Environ. 23:253-286
8. García-Rodríguez, L. (2003). Solar Desalination. Solar Energy, 75 (5): 381-393.
9. Hamdan, M. A., Musa, A. M. And Jubran, B. A. (1999). Performance of solar still under Jordanian climate. Energy Conservation and Management, 40: 495-503.
10. Kalogirou, S. A. (2005). Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science 31: 242–281.
11. Kumar, S., Tiwari, G. N. And Singh, H. N. (2000). Annual performance of an active solar distillation system. Desalination, 127:29
12. Nigerian Industrial Standards (NIS, 2007). Nigerian Standard for Drinking Water Quality. Standards Organisation of Nigeria. Abuja.

13. Mathioulakis, E and Belessiotis, V. (2003). Integration of solar still in a multi-source,a multi-use environment. *Solar Energy* 75: 403–411
14. Okonkwo, W. I. 1993. Design and construction of a medium scale passive solar chick brood M.Eng. Project Report, Department of Agricultural Engineering, University of Nigeria, Nsukka, Nigeria.
15. Radwan, S. M., Hassanain, A. A. and Abu-Zeid, M. A. (2009). Single Slope Solar Still Sea Water Distillation. *World Applied Sciences Journal* 7 (4): 485-497
16. Swelam, A. I. (2005). Engineering Study on Water Desalination, Doctor of Philosophy, Department of Agricultural Engineering, Zagazig University, Egypt.
17. UNDP, 2002. Energy for sustainable development. An article accessed online on 15th September, 2010 from <http://www.undp.org/seed/eap/activities/wea> .
18. World Health Organisation (WHO, 2008). Guidelines for Drinking-water Quality. Third ed. Geneva.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 6 Version 1.0 September 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN: 0975-5896

Sumudu Homotopy Perturbation Technique

By Devendra Kumar, Jagdev Singh, Sushila

Jagan Nath Gupta Institute of Engineering and Technology, Jaipur, Rajasthan, India

Abstract - In this paper, a combinatory method of the sumudu transform and the homotopy perturbation method is proposed for solving one dimensional non-homogeneous partial differential equations with a variable coefficient. This method presents an accurate methodology to solve nonhomogeneous partial differential equations with a variable coefficient. The obtained approximate solutions are compared with exact solutions and those obtained by other analytical methods, showing reliability of the present method. The comparison shows a precise agreement between the results, and introduces this new method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in science and engineering.

Keywords and Phrases : *Sumudu transform, Homotopy perturbation method, Non-homogenous partial differential equations.*

Strictly as per the compliance and regulations of:

Sumudu Homotopy Perturbation Technique

Devendra Kumar^a, Jagdev Singh^Ω, Sushila^β

Abstract - In this paper, a combinatory method of the sumudu transform and the homotopy perturbation method is proposed for solving one dimensional non-homogeneous partial differential equations with a variable coefficient. This method presents an accurate methodology to solve non-homogeneous partial differential equations with a variable coefficient. The obtained approximate solutions are compared with exact solutions and those obtained by other analytical methods, showing reliability of the present method. The comparison shows a precise agreement between the results, and introduces this new method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in science and engineering.

Keywords and Phrases : Sumudu transform, Homotopy perturbation method, Non-homogenous partial differential equations.

I. INTRODUCTION

Partial differential equations are obtained in modeling of real-life science and engineering phenomena that are inherently nonlinear with variable coefficients. Most of these types of equations do not have an analytical solution. Therefore, these problems should be solved by using numerical or semi-analytical techniques. In numeric methods, computer codes and more powerful processors are required to achieve accurate results. Acceptable results are

obtained via semi-analytical methods which are more convenient than numerical methods. The main advantage of semi-analytical methods, compared with other methods, is based on the fact that they can be conveniently applied to solve various complicated problems. In the semi-analytical methods such as the homotopy perturbation method, the variational iteration method, and the Adomian method, we can always obtain conveniently acceptable results in analytical forms instead of numerical ones for partial differential equations. These methods have simple solution procedures to solve various complicated problems [1-3]. The non-homogeneous partial differential equations with variable coefficients can be solved by the above said methods, however, with less accurate approximations [4-6] which might not satisfy initial/boundary conditions. To overcome this deficiency, this paper suggests a new method which is a combination of sumudu transform and homotopy perturbation method (SHPM), so that the obtained solutions satisfy the initial/boundary conditions. In early 90's, Watugala [7] introduced a new integral transform, named the sumudu transform and applied it to the solution of ordinary differential equation in control engineering problems. The sumudu transform is defined over the set of functions.

$$A = \{f(t) | \exists M, \tau_1, \tau_2 > 0, |f(t)| < M e^{|t|/\tau_j}, \text{if } t \in (-1)^j \times [0, \infty)\}$$

by the following formula

$$\bar{f}(u) = S[f(t)] = \int_0^{\infty} f(ut) e^{-t} dt, u \in (-\tau_1, \tau_2) \quad (1)$$

For further detail and properties of this transform, see [8-10].

II. SUMUDU HOMOTOPY PERTURBATION METHOD (SHPM)

To illustrate the basic idea of this method, we consider a general nonlinear form of one-dimension non-homogenous partial differential equation with a variable coefficient of the form:

$$\frac{\partial y}{\partial t} = \mu(x) \frac{\partial^2 y}{\partial x^2} + \phi(x, t), \quad (2)$$

with subject to the boundary conditions

$$y(0, t) = g_0(t), \quad y(1, t) = g_1(t). \quad (3)$$

Author^a : Department of Mathematics, Jagan Nath Gupta Institute of Engineering and Technology, Jaipur-302222, Rajasthan, India.
E-mail: dev.ku15@gmail.com

Author^Ω : Department of Mathematics, Jagan Nath University, Village-Rampura, Tehsil-Chaksu, Jaipur-303901, Rajasthan, India.
E-mail: jagdevsinghrathore@gmail.com

Author^β : Department of Physics, Jagan Nath University, Village-Rampura, Tehsil-Chaksu, Jaipur-303901, Rajasthan, India.
E-mail: sushila.jag@gmail.com

And the initial condition

$$y(x,0) = f(x). \quad (4)$$

Taking the sumudu transform on equations (2) and (3), we get

$$\frac{d^2 \bar{y}}{dx^2} - \frac{\bar{y}(x,u)}{u \mu(x)} + \frac{\bar{\phi}(x,u) + f(x)/u}{\mu(x)} = 0, \quad (5)$$

$$\bar{y}(0,u) = \bar{g}_0(u), \quad \bar{y}(1,u) = \bar{g}_1(u), \quad (6)$$

which is second order boundary value problem. According to HPM, we construct a homotopy in the form

$$H(v,p) = (1-p) \left[\frac{d^2 v}{dx^2} - \frac{d^2 \bar{y}_0}{dx^2} \right] + p \left[\frac{d^2 v}{dx^2} - \frac{v}{u \mu(x)} + \frac{\bar{\phi}(x,u) + f(x)/u}{\mu(x)} \right] = 0, \quad (7)$$

where \bar{y}_0 is the arbitrary function that satisfies boundary conditions (6), therefore

$$v(x,u) = \sum_{i=0}^{\infty} p^i v_i(x,u) = v_0(x,u) + p^1 v_1(x,u) + p^2 v_2(x,u) + \dots \quad (8)$$

Taking the inverse sumudu transform from both sides of (10), one obtains

$$v(x,t) = \sum_{i=0}^{\infty} p^i v_i(x,t) = v_0(x,t) + p^1 v_1(x,t) + p^2 v_2(x,t) + \dots \quad (9)$$

Setting $p=1$ results in the approximate solutions of eq. (2)

$$y(x,t) = y_0(x,t) + y_1(x,t) + y_2(x,t) + \dots \quad (10)$$

In this section, we use sumudu homotopy perturbation method (SHPM) in solving the one-dimension non-homogenous partial differential equations.

Example 4.1 : Consider the problem

$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2} + e^{-x} (\cos(t) - \sin(t)), \quad (11)$$

subject to the initial condition

$$y(x,0) = x. \quad (12)$$

And the boundary conditions

$$y(0,t) = \sin(t), \quad y(1,t) = \frac{1 + \sin(t)}{e}. \quad (13)$$

This problem has an exact solution that is

$$y(x,t) = x + e^{-x} \sin(t). \quad (14)$$

Taking the sumudu transform of eq. (11) and its boundary conditions with respect to t, and considering the initial condition, we have

$$\frac{d^2 \bar{y}}{dx^2} - \frac{\bar{y}}{u} + \frac{x}{u} + e^{-x} \left(\frac{1-u}{1+u^2} \right) = 0, \quad (15)$$

$$\bar{y}(0,u) = \frac{u}{1+u^2}, \quad \bar{y}(1,u) = 1 + \frac{u}{e(1+u^2)}. \quad (16)$$

To solve eq. (15) by means of HPM, a homotopy equation can be readily constructed as follows

$$H(v, p) = (1-p) \left[\frac{d^2 v}{dx^2} - \frac{d^2 \bar{y}_0}{dx^2} \right] + p \left[\frac{d^2 v}{dx^2} - \frac{v}{u} + \frac{x}{u} + \frac{e^{-x}(1-u)}{1+u^2} \right] = 0, \quad p \in [0,1] \quad (17)$$

Now, we obtain a solution of eq. (17) in the form $v(x, u) = \sum_{i=0}^{\infty} p^i v_i(x, u)$. After substituting it into eq. (17)

and rearranging the resultant equation based on powers of p-terms, following sets of linear differential equations can be obtained:

$$p^0 : \frac{d^2 v_0}{dx^2} - \frac{d^2 \bar{y}_0}{dx^2} = 0, \quad v_0(0, u) = 0, \quad v_0(1, u) = 0 \quad (18.a)$$

$$p^1 : \frac{d^2 v_1}{dx^2} - \frac{v_0}{u} + \frac{x}{u} - e^{-x} \left(\frac{1-u}{1+u^2} \right) = 0, \quad v_1(0, u) = 0, \quad v_{1x}(1, u) = 0 \quad (18.b)$$

$$\vdots \quad p^i : \frac{d^2 v_i}{dx^2} - \frac{v_{i-1}}{u} = 0, \quad v_i(0, u) = 0, \quad v_i(1, u) = 0, \quad i = 2, 3, 4, \dots \quad (18.c)$$

The initial approximation $v_0(x, u)$ can be freely chosen. Here we set

$$v_0(x, u) = \frac{u(1-x)}{1+u^2} + x + \frac{ux}{e(1+u^2)},$$

which satisfies boundary conditions (16).

Using some mathematical software to solve eq. (18b-18c), and taking inverse sumudu transform, we get the following result

$$y_1(x, t) = x + e^{-x} \sin(t) + \frac{1}{6} (6 + 3x^2 - 6e^{-x} + x^3(e^{-1} - 1) + x(4e^{-1} - 8) \cos(t)). \quad (19)$$

Comparison of the obtained result with those obtained by other methods is shown in Table 1. As can be seen from Table 1, SHPM leads to more accurate solution.

Table 1 : Comparison between the results and those in open literature

X=0.1 t	u(x,t) exact	u(x,t) SHPM (one iteration)	u(x,t)LHPM[11] (one iteration)	u(x,t) HPM [5] (five iteration)	u(x,t)VIM[6] (five iteration)
0.1	0.190333011	0.187726613	0.187726613	0.19033301	0.19033301
0.3	0.367397741	0.364895251	0.364895251	0.367396826	0.367396826
0.5	0.533802166	0.531503352	0.531503352	0.533782618	0.533782618
0.9	0.808783498	0.807155201	0.807155201	0.8081252	0.8081252
1.5	1.002570788	1.002385493	1.002385493	0.988816989	0.988816989
3	0.227690664	0.230283934	0.230283934	-0.554986914	-0.554986914
4.5	-0.784505828	-0.783953651	-0.783953651	-8.178595887	-8.178595887
7	0.694466058	0.692491222	0.692491222	-67.88113901	-67.88113901
X=0.9					
0.1	0.940589238	0.938138815	0.938138815	0.940589238	0.940589238
0.3	1.02014955	1.017796817	1.017796817	1.020149139	1.020149139
0.5	1.094919878	1.092758632	1.092758632	1.094911094	1.094911094
0.9	1.218476955	1.2169461	1.2169461	1.218181163	1.218181163
1.5	1.305551197	1.305376991	1.305376991	1.299371217	1.299371217
3	0.957375114	0.959813195	0.959813195	0.605695409	0.605695409
4.5	0.502565913	0.503085045	-0.503085045	-2.819812914	2.819812914
7	1.167110818	1.165254163	1.165254163	-29.64589477	-29.64589477

Example 4.2 : Now, consider the problem

$$\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2} + e^x (\cosh(t) - \sinh(t)), \quad (20)$$

subject to the initial condition

$$y(x,0) = \frac{x^3}{6}. \quad (21)$$

And the boundary conditions

$$y(0,t) = \sinh(t), \quad y(1,t) = \sinh(t) + t + \frac{1}{6}. \quad (22)$$

This problem has an exact solution that is

$$y(x,t) = e^x \sinh(t) + \frac{x^3}{6} + xt. \quad (23)$$

Taking the sumudu transform of eq. (20) and its boundary conditions with respect to t , and considering the initial condition, we have

$$\frac{d^2 \bar{y}}{dx^2} - \frac{\bar{y}}{u} + \frac{x^3}{6u} + e^x \left(\frac{1}{1+u} \right) = 0, \quad (24)$$

$$\bar{y}(0,u) = \frac{u}{1-u^2}, \quad \bar{y}(1,u) = \frac{u}{1-u^2} + u + \frac{1}{6}. \quad (25)$$

To solve eq. (24) by means of HPM, a homotopy equation can be readily constructed as follow

$$H(v,p) = (1-p) \left[\frac{d^2 v}{dx^2} - \frac{d^2 \bar{y}_0}{dx^2} \right] + p \left[\frac{d^2 v}{dx^2} - \frac{\bar{y}}{u} + \frac{x^3}{6u} + e^x \left(\frac{1}{1+u} \right) \right] = 0, \quad p \in [0,1] \quad (26)$$

Now, following the same procedure as example 4.1, we assume the solution of equation (26) has a form

$$v(x,u) = \sum_{i=0}^{\infty} p^i v_i(x,u), \text{ and choose an initial solution in the form}$$

$$v_0(x,u) = \frac{u(1-x)}{1-u^2} + x \left(\frac{1}{6} + u + \frac{eu}{1-u^2} \right),$$

which satisfies boundary conditions (26). Finally solving sets of linear differential equations that obtained from substituting $v(x,u)$ in eq. (26) and taking inverse sumudu transform, we get the following result

$$y_1(x,t) = e^x \sin(t) + xt + \frac{1}{6}(6 + 3x^2 + x^3 - 6e^{-x} + x^3(e-1) + x(5e-8) \cosh(t)). \quad (27)$$

Comparison of the obtained result with those obtained by other methods is shown in Table 2. As it can seen it is so close to the exact solution.

Table 2 : Comparison between the results and those in open literature

X=0.1 t	u(x,t) exact	u(x,t) SHPM (one iteration)	u(x,t)LHPM[11] (one iteration)	u(x,t) HPM[5] (five iteration)	u(x,t)VIM[6] (five iteration)
0.1	0.120868046	0.114140161	0.114140161	0.131708767	0.120868044
0.3	0.366713639	0.35971574	0.35971574	0.458331767	0.366712518
0.5	0.626066044	0.618517281	0.618517281	0.870229167	0.626041953
0.9	1.224643099	1.215049466	1.215049466	1.951824767	1.223815452
1.5	2.503384397	2.48763646	2.48763646	4.222104167	2.485179894
3	11.3716307	11.30423389	11.30423389	13.25116667	10.05353534
4.5	50.18618582	49.88484395	49.88484395	26.71272917	31.61579702
7	606.6832	603.0125545	603.0125545	56.44116667	139.4441579

X=0.9					
0.1	0.45787045	0.329380987	0.329380987	0.4992421	0.457870447
0.3	1.140499061	1.011722397	1.011722397	1.3590651	1.140496567
0.5	1.853187635	1.723825043	1.723825043	2.3665625	1.853134019
0.9	3.456323732	3.324786111	3.324786111	4.8649581	3.454481771
1.5	6.708682372	6.570598712	6.570598712	9.9684375	6.668167506
3	27.46149634	27.26847624	27.26847624	31.372500	24.52802118
4.5	114.8610462	114.41919	114.41919	68.0090625	73.53188592
7	1355.061543	1351.035919	1351.035919	171.36250	315.201931

IV. CONCLUSIONS

In this paper, a new modified HPM, namely the sumudu homotopy perturbation method (SHPM) is introduced and the obtained results are compared with those obtained by LHPM, HPM, VIM and exact solutions for non-homogeneous partial differential equations with a variable coefficient. The results reveal that SHPM is an efficient and has good agreement with the exact solutions. In conclusion, the SHPM may be considered as a nice refinement in existing numerical techniques and might find the wide applications.

REFERENCES RÉFÉRENCES REFERENCIAS

1. M. Fathizadeh, F. Rashidi, Boundary layer convective heat transfer with pressure gradient using Homotopy Perturbation Method (HPM) over a flat plate, *Chaos Solitons and Fractals* 42 (2009) 2413–2419.
2. J-Huan He, Homotopy perturbation technique, *Computer methods in applied mechanics and engineering*. 178 (1999) 257–262.
3. J-Huan He, A coupling method of homotopy technique and a perturbation technique for nonlinear problems, *Int. J. Non linear Mech.* 35 (2000) 37–43.
4. Bongsu Jang, Exact solutions to one dimensional non-homogeneous parabolic problem by the homogeneous Adomian decomposition method, *Applied Mathematics and Computation* 186 (2007) 969–979.
5. A. Barari, Abdoul R. Ghotbi, T. Barari and D.D. Ganji, Application of He's Homotopy Perturbation Method to Non-Homogeneous Parabolic Problems, *International Journal of Applied Mathematics and Computation* 1 (2009) 59–66.
6. Abdoul R. Ghotbi, A. Barari, M. Omidvar, D.D. Ganji, Application of Variational Iteration Method to Parabolic Problems, *Applied Mathematical Sciences* 3 (2009) 927–934.
7. G.K. Watugala, Sumudu transform- a new integral transform to solve differential equations and control engineering problems, *Math. Engg. Indust.* 6 (4) (1998) 319-329.
8. M.A. Asiru, Sumudu transform and the solution of integral equation of convolution type, *International Journal of Mathematical Education in Science and Technology* 32 (2001) 906-910.
9. F.B.M. Belgacem, A.A. Karaballi and S.L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, *Mathematical problems in Engineering* 3 (2003) 103-118.
10. F.B.M. Belgacem and A.A. Karaballi, Sumudu transform fundamental properties investigations and applications, *International J. Appl. Math. Stoch. Anal.* (2005) 1-23.
11. M. Madani and M. Fathizadeh, Homotopy perturbation algorithm using Laplace transformation, *Nonl. Sci. Lett. A* 1(3) (2010) 263-267.

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 6 Version 1.0 September 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN : 2249-4626 & Print ISSN: 0975-5896

On The Solutions of Generalized Fractional Kinetic Equations Involving the Functions for the Fractional Calculus

By Kishan Sharma

NRI Institute of Technology and Management, Baraghata, Gwalior, INDIA

Abstract - The paper is devoted to the study of the solution of generalized fractional kinetic equations. Results are obtained in a compact form in terms of $K4$ - Function introduced by sharma [9]. The results obtained in this paper are the extensions of the results given earlier by Chaurasia and Pandey[19-20] believed to be new.

Keywords and Phrases : Fractional kinetic equations, Fractional calculus, Special functions, Mittag-Leffler function, $K4$ - Function, Lalace transform.

GJSFR Classification: FOR Code: 010203

Strictly as per the compliance and regulations of:

On the Solutions of Generalized Fractional Kinetic Equations Involving the Functions for the Fractional Calculus

Kishan Sharma

Abstract - The paper is devoted to the study of the solution of generalized fractional kinetic equations. Results are obtained in a compact form in terms of K_4 - Function introduced by sharma [9]. The results obtained in this paper are the extensions of the results given earlier by Chaurasia and Pandey[19-20] believed to be new.

Keywords : Fractional kinetic equations, Fractional calculus, Special functions, Mittag-Leffler function, K_4 - Function, Lalace transform.

I. INTRODUCTION

Fractional Calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomers and physicists to pay more attention to available mathematical tools that can be widely used in solving several problems of astrophysics/physics. The fractional kinetic equations discussed here can be used to investigate a wide class of known fractional kinetic equations. Fractional kinetic equations have gained importance during the last decade due to their occurrence in certain problems in science and engineering. A spherically symmetric non-rotating, self-gravitating model of star like the sun is assumed to be in thermal equilibrium and hydrostatic equilibrium. The star is characterized by its mass, luminosity effective surface temperature, radius central density and central temperature. The stellar structures and their mathematical models are investigated on the basis of above characters and some additional information related to the equation of nuclear energy generation rate and the opacity.

Consider an arbitrary reaction characterized by a time dependent quantity $N = N(t)$.

It is possible to calculate rate of change $dN/dt = -d + p$.

In general, through feedback or other interaction mechanism, destruction and production depend on the quantity N itself: $d = d(N)$ or $p = p(N)$. This dependence is complicated since the destruction or production at time t depends not only on $N(t)$ but also on the past history $N(\tau), \tau < t$, of the variable N . This may be represented by Haubold and Mathai[7]

$$dN/dt = -d(N_t) + p(N_t), \quad (1.1)$$

where N_t denotes the function defined by $N_t(t^*) = N(t - t^*), t^* > 0$.

Haubold and Mathai[7] studied a special case of this equation, when spatial fluctuation or inhomogeneities in quantities $N(t)$ are neglected, is given by the equation

$$dN_i/dt = -c_i N_i(t) \quad (1.2)$$

with the initial condition that $N_i(t = 0) = N_0$ is the number density of species i at time $t = 0$; constant $c_i > 0$, known as standard kinetic equation. A detailed discussion of the above equation is given in Kourganoff[21]. The solution of (1.2) is given by

$$N_i(t) = N_0 e^{-c_i t} \quad (1.3)$$

An alternative form of this equation can be obtained on integration:

$$N(t) - N_0 = c_0 D_t^{-1} N(t), \quad (1.4)$$

Author : Department of Mathematics, NRI Institute of Technology and Management, Baraghata, Next to S.G. Motors, Jhansi Road, Gwalior-474001, INDIA . E-mails : drkishan010770@yahoo.com , drkishansharma2006@rediffmail.com

where ${}_0D_t^{-1}$ is the standard integral operator. Haubold and Mathai[7] have given the fractional generalization of the standard kinetic equation(1.2) as

$$N(t) - N_0 = c^\nu {}_0D_t^{-1} N(t), \quad (1.5)$$

where ${}_0D_t^{-1}$ is well known Riemann-Liouville fractional integral operator (Oldham and Spanier[8]; Samko, Kilbas and Marichev[16]; Miller and Ross[10]) defined by

$${}_0D_t^{-\nu} N(t) = \frac{1}{\Gamma(\nu)} \int_0^t (t-u)^{\nu-1} f(u) du, \operatorname{Re}(\nu) > 0. \quad (1.6)$$

The solution of the fractional kinetic equation(1.5) is given by (see Haubold and Mathai[7])

$$N(t) = N_0 \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(\nu k + 1)} (ct)^{\nu k}. \quad (1.7)$$

Fractional kinetic equations are studied by many authors notably Hille and Tamarkin[5], Glockle and Nonnenmacher[22], Saichev and Zaslavsky[1], Saxena et al.[11-13], Zaslavsky[6], Saxena and Kalla[15], Chaurasia and Pandey[18-19], Chaurasia and Kumar[17] etc. for their importance in the solution of certain physical problems. Recently, Saxena et al. [14] investigated the solutions of the fractional reaction equation and the fractional diffusion equation. Laplace transform technique is used.

The K_4 -function[9] is defined as

$$\begin{aligned} K_4^{(\alpha, \beta, \gamma), (a, c)(p; q)} (a_1, \dots, a_p; b_1, \dots, b_q; x) &= K_4^{(\alpha, \beta, \gamma), (a, c)(p; q)} (x) \\ &= \sum_{n=0}^{\infty} \frac{(a_1)_n \dots (a_p)_n}{(b_1)_n \dots (b_q)_n} \frac{(\gamma)_n}{n!} \frac{a^n (x-c)^{(n+\gamma)\alpha-\beta-1}}{\Gamma((n+\gamma)\alpha-\beta)} \end{aligned} \quad (1.8)$$

where $R(\alpha\gamma - \beta) > 0$ and $(a_i)_n (i=1,2,\dots, p)$ and $(b_j)_n (j=1,2,\dots, q)$ are the Pochhammer symbols and none of the parameters b_j s is a negative integer or zero.

We now proceed to solve the generalized fractional kinetic equation in the next section.

II. GENERALIZED FRACTIONAL KINETIC EQUATION

"In this section we investigate the solution of generalized fractional kinetic equations'.. The results are obtained in a compact form in terms of K_4 - Function and are suitable for computation. The result is presented in the form of a theorem as follows:

Theorem 2.1 If $c > 0, b \geq 0, \delta > 0, \nu > 0, \mu > 0$ and $(\delta\nu - \mu) > 0$ then there exists the solution of the integral equation

$$N(t) - N_0 K_4^{(\nu, \mu, \delta), (-c^\nu, b)(p; q)} (t) = - \sum_{r=0}^n \binom{n}{r} c^{rv} {}_0D_t^{-rv} N(t), \quad (2.1)$$

given by

$$N(t) = N_0 K_4^{(\nu, \mu+\nu\delta, \delta+n), (-c^\nu, b)(p; q)} (t). \quad (2.2)$$

Proof: Taking the Laplace transform of both sides of (2.1), we have

$$L\{N(t)\} - L\{N_0 K_4^{(\nu, \mu, \delta), (-c^\nu, b)(p; q)} (t)\} = L\{- \sum_{r=0}^n \binom{n}{r} c^{rv} {}_0D_t^{-rv} N(t)\} \quad (2.2)$$

or

$$\frac{N_0}{N(p)} = \frac{p^{\mu-\delta\nu} c^{-bp}}{(1+c^\nu p^{-\nu})^{\mu+\delta}} \sum_{k=0}^{\infty} \frac{(a_1)_k \dots (a_p)_k}{(b_1)_k \dots (b_q)_k} \quad (2.4)$$

Finally, taking the inverse Laplace transform, we have

$$L^{-1}\{\overline{N(p)}\} = N\{t\} = L^{-1}\left\{\frac{N_0 p^{\mu-(\delta+n)\nu+pn} c^{-bp}}{(1+c^\nu p^{-\nu})^{\mu+\delta}} \sum_{k=0}^{\infty} \frac{(a_1)_k \dots (a_p)_k}{(b_1)_k \dots (b_q)_k}\right\}$$

Or

$$N(t) = N_0 \frac{(\nu, \mu+n, \delta+n, -c^\nu, b)(p; q)}{K_4} (t) \quad (2.5)$$

This completes the proof of the theorem(2.1).

If we put $r = s = 0$ in theorem 2.1, we get[18]

Cor.1.1 If $c > 0, b \geq 0, \delta > 0, \nu > 0, \mu > 0$ and $(\delta\nu - \mu) > 0$ then there exists the solution of the integral equation

$$N(t) - N_0 G_{\nu, \mu, \delta}(c^{-\nu}, b, t) = - \sum_{r=0}^n \binom{n}{r} c^{r\nu} {}_0 D_t^{-r\nu} N(t), \quad (2.6)$$

is given by

$$N(t) = N_0 G_{\nu, \mu+n, \delta+n}(c^{-\nu}, b, t). \quad (2.7)$$

If we take $b = 0$ in Corollary.(1.1), we get[19]

Cor.1.2 If $c > 0, \delta > 0, \nu > 0, \mu > 0$ and $(\delta\nu - \mu) > 0$ then there exists the solution of the integral equation

$$N(t) - N_0 G_{\nu, \mu, \delta}(c^{-\nu}, 0, t) = - \sum_{r=0}^n \binom{n}{r} c^{r\nu} {}_0 D_t^{-r\nu} N(t), \quad (2.8)$$

is given by

$$N(t) = N_0 G_{\nu, \mu+n, \delta+n}(c^{-\nu}, 0, t). \quad (2.9)$$

If we take $b = 0$ in Corollary.(1.1), we get[20]

Cor.1.3 Let $c > 0, b \geq 0, \delta > 0, \nu > 0, \mu > 0$ and $(\delta\nu - \mu) > 0$ then the equation

$$N(t) - N_0 G_{\nu, \mu, \delta}(c^{-\nu}, b, t) = -c^\nu {}_0 D_t^{-\nu} N(t),$$

is solvable and its solution is given by

$$(2.10)$$

$$N(t) = N_0 G_{\nu, \mu+\nu, \delta+1}(c^{-\nu}, b, t). \quad (2.11)$$

where $G_{\nu, \mu, \delta}(a, c, t)$ is the G-function(but not the Meijer's G-function) given by [2].

III. ACKNOWLEDGEMENT

The author is very thankful to the referees for giving several valuable suggestions in the improvement of the paper.

IV. CONCLUSION

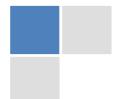
In the present paper, we have derived a solution of generalized fractional kinetic equation in terms of the K_4 - Function in a compact and elegant form with the help of Laplace transform. Most of the results obtained are suitable for numerical computation. Fractional kinetic equation can be used to calculate the particle reaction rate and describes the statistical mechanics associated with the particle distribution function.

REFERENCES

1. A.J.Saichev and G.M. Zaslavsky, Fractional kinetic wquations: solutions and applications, Chaos, 7(1997)753-784.
2. Carl F. Lorenzo and Tom T. Hartley, Generalized Functions for the Fractional Calculus, NASA/TP-1999-209424/REV1, (1999), 17 p.; Available electronically at <http://gltrs.grc.nasa.gov/reports/1999/TP-1999-209424-REV1.pdf>.
3. Carl F. Lorenzo and Tom T. Hartley, R-Function Relationships for Application in the Fractional Calculus, NASA/TM 2000 210361, (2000),22p.; Available electronically at <http://gltrs.grc.nasa.gov/reports/2000/TM-2000-210361.pdf>
4. Tom T. Hartley and Carl F. Lorenzo, A solution to the Fundamental Linear Fractional Order Differential Equations, NASA/TP-1998-208693 (1998),16 p.; Available electronically at <http://gltrs.grc.nasa.gov/reports/1998/TP-1998-208693.pdf>
5. E. Hille and J.D. Tamarkin, On the theory of linear integral equations, Annals of Mathematics, 31(1930), 479-528.
6. G.M.Zaslavsky, Fractional kinetic equation for Hamiltonian Chaos, *Physica D*, 76(1994), 110-122.
7. H.J. Haubold and A.M.Mathai, The fractional reaction equation and thermonuclear functions, *Astrophysics and Space Science*, 273(2000), 53-63.
8. Keith B. Oldham and Jerome Spanier, *The Fractional Calculus; Theory and Applications of Differentiation and Integration to Arbitrary Order*, Academic Press, New York and London(1974). ISBN 0-12-525550-0.
9. K. Sharma, On Application of Fractional Differintegral Operator to the K_4 -Function, *Bol. Soc. Paran. Math.* Vol.30 1, 2012, 91-97.
10. K. S. Miller and B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley and Sons, New York etc (1993).
11. R.K.Saxena, A.M.Mathai and H.J.Haubold, On fractional kinetic equations, *Astrophysics and Space Science*, 282(2002), 281-287.
12. R.K.Saxena, A.M.Mathai and H.J.Haubold, On generalized fractional kinetic equations, *Physica A*, 344(2004), 657-664.
13. R.K.Saxena, A.M.Mathai and H.J.Haubold, Unified fractional kinetic equation and a fractional diffusion equation, *Astrophysics and Space Science*, 290(2002), 299-310.
14. R.K.Saxena, A.M.Mathai and H.J.Haubold, solutions of the fractional reaction equation and the fractional diffusion equation, *ArXiv:1001.2293v1*,(2010).
15. R. K.Saxena and S.L.Kalla, On the solutions of certain fractional kinetic equations, *Appl. Math. Comput.*, 199(2008), 504-511.
16. S.G. Samko, A. Kilbas and O. Marichev, *Fractional Integrals and Derivatives. Theory and Applications*. Gordon and Breach Sci. Publ., New York et alibi (1990).
17. V.B.L.Chaurasia and D. Kumar, On the solutions of Generalized Fractional Kinetic Equations, *Adv. Studies Theor. Phys.*, (2010), 773-780.
18. V.B.L.Chaurasia and S.C. Pandey, On the new computable solutions of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions, *Astrophysics and Space Science*, 317(2008), 213-219.
19. V.B.L.Chaurasia and S.C. Pandey, Computable extensions of generalized fractional kinetic equations in astrophysics, *Research in Astron. Astrophys.* 2010, Vol. 10, No. 1, 22-32.
20. V.B.L.Chaurasia and S.C. Pandey, 2008, *Ap & SS*, 317, 213.
21. V.Kourganoff, *Introduction to the physics of Stellar interiors*, D. Reidel Publishing Company, Dordrecht,(1973).
22. W.G. Glockle and T.F.Nonnenmacher, Fractional integral operators and Fox function in the theory of viscoelasticity, *Macromolecules*, 24(1991), 6426-6434.

GLOBAL JOURNALS INC. (US) GUIDELINES HANDBOOK 2011

WWW.GLOBALJOURNALS.ORG


FELLOWS

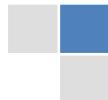
FELLOW OF INTERNATIONAL CONGRESS OF SCIENCE FRONTIER RESEARCH (FICSFR)

- 'FICSFR' title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'FICSFR' can be added to name in the following manner:
e.g. Dr. Andrew Knoll, Ph.D.,FICSFR
- FICSFR can submit two papers every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free unlimited Web-space will be allotted to 'FICSFR 'along with subDomain to contribute and partake in our activities.
- A professional email address will be allotted free with unlimited email space.
- FICSFR will be authorized to receive e-Journals-GJFS for the Lifetime.
- FICSFR will be exempted from the registration fees of Seminar/Symposium/Conference/Workshop conducted internationally of GJFS (FREE of Charge).
- FICSFR will be an Honorable Guest of any gathering held.

ASSOCIATE OF INTERNATIONAL CONGRESS OF SCIENCE FRONTIER RESEARCH (AICSFR)

- AICSFR title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'AICSFR' can be added to name in the following manner:
eg. Dr. Thomas Knoll, Ph.D., AICSFR
- AICSFR can submit one paper every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free 2GB Web-space will be allotted to 'AICSFR' along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted with free 1GB email space.
- AICSFR will be authorized to receive e-Journal GJFS for lifetime.

AUXILIARY MEMBERSHIPS



ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJSFR for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.

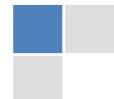
PROCESS OF SUBMISSION OF RESEARCH PAPER

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC, *.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:

(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.


(II) Choose corresponding Journal.

(III) Click 'Submit Manuscript'. Fill required information and Upload the paper.

(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.

(C) If these two are not convenient, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.

PREFERRED AUTHOR GUIDELINES

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: 8.27" X 11"

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of .2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt.
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R&D authorship, criteria must be based on:

- 1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
- 2) Drafting the paper and revising it critically regarding important academic content.
- 3) Final approval of the version of the paper to be published.

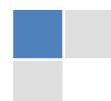
All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.


If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:

Original research paper: Such papers are reports of high-level significant original research work.

Review papers: These are concise, significant but helpful and decisive topics for young researchers.

Research articles: These are handled with small investigation and applications

Research letters: The letters are small and concise comments on previously published matters.

5. STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:

- (a) Title should be relevant and commensurate with the theme of the paper.
- (b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
- (c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
- (d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
- (e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
- (f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
- (g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
- (h) Brief Acknowledgements.
- (i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve brevity.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min, except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 l rather than 1.4×10^{-3} m³, or 4 mm somewhat than 4×10^{-3} m. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

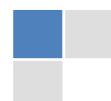
All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the e-mail address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.


Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art. A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: *Please make these as concise as possible.*

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: *Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.*

Figures: *Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.*

Preparation of Electronic Figures for Publication

Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: >650 dpi.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: *Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.*

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded

(Free of charge) from the following website:

www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

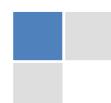
Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.

As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services


Online production tracking is available for your article through Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy & electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.

2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.

3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.

4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.

6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.

7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.

8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.

9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.

10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.

11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.

12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.

13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.

14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.

15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.

16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.

17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.

18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.

19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.

20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.

21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.

22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.

23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.

24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.

25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.

26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.

28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.

29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.

30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.

31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be

sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grown readers. Amplification is a billion times of inferior quality than sarcasm.

32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.

33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.

34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

· Adhere to recommended page limits

Mistakes to evade

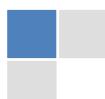
- Insertion a title at the foot of a page with the subsequent text on the next page

- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:


Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to

shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The **Introduction** should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic

principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently. You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

Content

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form.

What to stay away from

- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.

- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

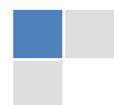
Discussion:

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.


ADMINISTRATION RULES LISTED BEFORE SUBMITTING YOUR RESEARCH PAPER TO GLOBAL JOURNALS INC. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The **major constraint** is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- **Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)**
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

CRITERION FOR GRADING A RESEARCH PAPER (COMPILED)
BY GLOBAL JOURNALS INC. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
	A-B	C-D	E-F
<i>Abstract</i>	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form Above 200 words	No specific data with ambiguous information Above 250 words
	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
<i>Introduction</i>	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
<i>Methods and Procedures</i>	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
<i>Result</i>	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
<i>Discussion</i>	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring
<i>References</i>			

INDEX

A

arbitrariness · 3

B

bootstrap · 1, 2, 3, 4, 5

C

coefficient · 1, 50, 52, 55, 56, 56

comparison · 5, 6, 57, 58

components · 7, 59, 64, 66, 67

considerations · 55

consisting · 3, 8

consumption · 59, 60, 61, 62

Contiguous · 27

contraction · 9

correlation · 2

D

Data · 1, 2, 3, 4, 5, 6, 63,

density · 48

determination · 1

Dilation · 7, 8, 9, 10, 11

Distillation · 44, 45, 46, 47, 48, 49

duplication · 27

E

effective · 55, 58

elasticities · 59, 60, 62

empirically · 2, 5

equations · 25, 60, 65, 66, 67,

Erosion · 7, 8

expenditure · 59, 60, 61, 62, 63

F

formula · 16, 27, 60

Fractal · 7, 8, 9, 10, 11, 12

function · 1, 3, 9, 10, 11, 13, 15, 16, 17, 25, 27, 57, 60, 61, 65,

G

Gaussian · 27

H

homogenous · 40, 43

Homotopy · 30, 34, 36, 37

hypergeometric · 25, 27, 65, 68,

Hypergeometric · 27, 57, 65

I

implies · 9, 60, 61, 62

K

kinetic · 58, 59, 60, 61

M

Maclaurin · 65

mathematical · 54, 58

Morphological · 7, 8, 9, 10, 11, 12

Multivariable · 13

P

parameters · 1, 3, 5, 27, 60

partitions · 11

perturbation · 60, 63, 66

polynomials · 13, 15, 17, 25, 68

propagation · 59

R

reaction · 38, 39, 40, 41

refinement · 66

regression · 1, 2, 3, 4, 5, 6

representation · 7, 11, 13, 15, 25

S

Solar · 54, 55, 56, 57, 58, 59
Space · 7, 61
splitting · 1, 2, 3, 4, 5, 6
stepwise · 1, 2, 3, 5
suggestions · 53, 60
symbolized · 8

T

technique · 2, 59, 60
techniques · 1, 2, 3, 4, 5, 6, 7
telecommunication · 2, 4
theorem · 27, 37, 57, 65, 66
transcendental · 57, 65
transform · 50, 52, 53, 54, 55, 56, 58, 59, 60
transformed · 10
tremendously · 60

V

Validation · 1, 3, 5, 6

save our planet

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org
or email us at helpdesk@globaljournals.org

ISSN 9755896

© 2011 by Global Journals