

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

DISCOVERING THOUGHTS AND INVENTING FUTURE

Revolutions
IN
Science Domian

Zeniths

Certain Special Functions

Antimicrobial Agents

Metallic Minerals Products

Heart-Oriented Rhotrix

Issue 2

Volume 11

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

VOLUME 11 ISSUE 2 (VER. 1.0)

GLOBAL ASSOCIATION OF RESEARCH

© Global Journal of Science
Frontier Research. 2011.

All rights reserved.

This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website <http://www.globaljournals.org/global-journals-research-portal/guideline/terms-and-conditions/menu-id-260/>.

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374
Import-Export Code: 1109007027
Employer Identification Number (EIN):
USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)

Sponsors: *Global Association of Research
Open Scientific Standards*

Publisher's Headquarters office

Global Journals Inc., Headquarters Corporate Office, Cambridge Office Center, II Canal Park, Floor No. 5th, **Cambridge (Massachusetts)**, Pin: MA 02141 United States

USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Global Journals Inc., City Center Office, 25200 Carlos Bee Blvd. #495, Hayward Pin: CA 94542 United States

Packaging & Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please email us at local@globaljournals.org

eContacts

Press Inquiries: press@globaljournals.org

Investor Inquiries: investers@globaljournals.org

Technical Support: technology@globaljournals.org

Media & Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):

For Authors:

22 USD (B/W) & 50 USD (Color)

Yearly Subscription (Personal & Institutional):
200 USD (B/W) & 500 USD (Color)

EDITORIAL BOARD MEMBERS (HON.)

John A. Hamilton,"Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software
Engineering
Director, Information Assurance
Laboratory
Auburn University

Dr. Henry Hexmoor
IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor
Department of Computer Science
Virginia Tech, Virginia University
Ph.D. and M.S. Syracuse University,
Syracuse, New York
M.S. and B.S. Bogazici University,
Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes
Associate Professor and Range
Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal
Nutrition
B.A. University of Dublin- Zoology

Dr. Wenyi Feng
Professor, Department of Computing &
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll
Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz
Computer Science & Information Systems
Department
Youngstown State University
Ph.D., Texas A&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He
Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS,
PhD., (University of Texas-Dallas)

Burcin Becerik-Gerber
University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley
& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and Finance
Professor of Finance
Lancaster University Management School
BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of Navarra
Doctor of Philosophy (Management), Massachusetts Institute of Technology (MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of Regina
Ph.D., M.Sc. in Mathematics
B.A. (Honors) in Mathematics
University of Windsor

Dr. Lynn Lim

Reader in Business and Marketing
Roehampton University, London
BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical Biology, Mount Sinai School of Medical Center
Ph.D., Eötvös Loránd University
Postdoctoral Training, New York University

Dr. Söhnke M. Bartram

Department of Accounting and Finance
Lancaster University Management School
Ph.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management
IESE Business School, University of Navarra
Ph.D in Industrial Engineering and Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.

Director, EP Laboratories, Philadelphia VA Medical Center
Cardiovascular Medicine - Cardiac Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D
Associate Professor and Research
Department Division of Neuromuscular Medicine
Davee Department of Neurology and Clinical Neuroscience
Northwestern University Feinberg School of Medicine

Dr. Pina C. Sanelli

Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic
Radiology
M.D., State University of New York at
Buffalo, School of Medicine and
Biomedical Sciences

Dr. Michael R. Rudnick

M.D., FACP
Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center,
Philadelphia
Nephrology and Internal Medicine
Certified by the American Board of
Internal Medicine

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical
Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D
Marketing
Lecturer, Department of Marketing,
University of Calabar
Tourism Consultant, Cross River State
Tourism Development Department
Co-ordinator , Sustainable Tourism
Initiative, Calabar, Nigeria

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences,
National Central University, Chung-Li,
TaiwanUniversity Chair Professor
Institute of Environmental Engineering,
National Chiao Tung University, Hsin-
chu, Taiwan.Ph.D., MS The University of
Chicago, Geophysical Sciences
BS National Taiwan University,
Atmospheric Sciences
Associate Professor of Radiology

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer
Science
AUST - American University of Science &
Technology
Alfred Naccash Avenue – Ashrafieh

PRESIDENT EDITOR (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences

Denham Harman Research Award (American Aging Association)

ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization

AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences

University of Texas at San Antonio

Postdoctoral Fellow (Department of Cell Biology)

Baylor College of Medicine

Houston, Texas, United States

CHIEF AUTHOR (HON.)

Dr. R.K. Dixit

M.Sc., Ph.D., FICCT

Chief Author, India

Email: authorind@computerresearch.org

DEAN & EDITOR-IN-CHIEF (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),

MS (Mechanical Engineering)

University of Wisconsin, FICCT

Editor-in-Chief, USA

editorusa@computerresearch.org

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant

CEO at IOSRD, GAOR & OSS

Technical Dean, Global Journals Inc. (US)

Website: www.suyogdixit.com

Email:suyog@suyogdixit.com

Sangita Dixit

M.Sc., FICCT

Dean & Chancellor (Asia Pacific)

deanind@computerresearch.org

Pritesh Rajvaidya

(MS) Computer Science Department

California State University

BE (Computer Science), FICCT

Technical Dean, USA

Email: pritesh@computerresearch.org

Luis Galárraga

J!Research Project Leader

Saarbrücken, Germany

CONTENTS OF THE VOLUME

- i. Copyright Notice
- ii. Editorial Board Members
- iii. Chief Author and Dean
- iv. Table of Contents
- v. From the Chief Editor's Desk
- vi. Research and Review Papers

- 1. Uniformly Starlike And Uniformly Convexity Properties For Certain Special Functions **1-8**
- 2. On Ramanujan's Generating Relation For Tau Function **9-14**
- 3. Screening of Indian Medicinal Plants and their potentials as Antimicrobial Agents **15-19**
- 4. Growth and Productivity Analysis of non Metallic Minerals Products Industry of Punjab **21-28**
- 5. On Topological Sets and Spaces **29- 33**
- 6. The Concept of Heart-Oriented Rhotrix Multiplication **35- 46**

- vii. Auxiliary Memberships
- viii. Process of Submission of Research Paper
- ix. Preferred Author Guidelines
- x. Index

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 2 Version 1.0 March 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975- 5896

Uniformly Starlike And Uniformly Convexity Properties For Certain Special Functions

By V. B. L. Chaurasia, Yaghvendra Kumawat

University of Rajasthan, Jaipur

Abstracts -The aim of the present paper is to establish the sufficient condition for the function $yz \left\{ {}_p \bar{\psi}_q (z) \right\}$ to be in the classes of uniformly starlike and uniformly convex functions. Similar types of result using integral operators also obtained. +

Keywords and Phrases : *Generalized Fox-Wright function, uniformly starlike function, uniformly convex function, univalent.*

Classification: *GJSFR-F Classification: 2000 Mathematics Subject Classification: 33C45.*

Strictly as per the compliance and regulations of:

Uniformly Starlike And Uniformly Convexity Properties For Certain Special Functions

V. B. L. Chaurasia¹, Yaghvendra Kumawat²

Abstract: The aim of the present paper is to establish the sufficient condition for the function $yz \left\{ {}_p \bar{\psi}_q(z) \right\}$ to be in the classes of uniformly starlike and uniformly convex functions. Similar types of result using integral operators also obtained. +

Keywords and Phrases : Generalized Fox-Wright function, uniformly starlike function, uniformly convex function, univalent.

March 2011

1

Volume XI Issue II Version I

Global Journal of Science Frontier Research

I. INTRODUCTION AND DEFINITIONS

Let C denote the class of functions of the form

(1)

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

where $a_n \geq 0$ and $n \in N$, that are analytic in the open unit disk $U = \{z : |z| < 1\}$.

A function $f \in C$ is said to be starlike univalent of order α , $0 \leq \alpha < 1$, if and only if $\operatorname{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha$,

$z \in U$. Also $f(z)$ of the form (1) is uniformly starlike, whenever $\operatorname{Re} \left(\frac{f(z) - f(\xi)}{(z - \xi)f'(z)} \right) \geq 0$, $(z, \xi) \in U \times U$.

This class of all uniformly starlike functions is denoted by UST ([3]) (see also [11], [14] and [7]).

The function $f \in C$ of the form (1) is uniformly convex in U whenever $\operatorname{Re} \left(1 + (z - \xi) \frac{f''(z)}{f'(z)} \right) \geq 0$,

where $(z, \xi) \in U \times U$. This class of all uniformly convex functions is denoted by UCV ([2]) (also refer

[1], [12], [4] and [6]). Further it is said to be in the class $UCV(\alpha)$, $\alpha \geq 0$, if $\operatorname{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) \geq \left| \frac{zf''(z)}{f'(z)} \right| + \alpha$.

H. Silverman [8] introduced a subclass B of C consisting of functions of the form

$f(z) = z - \sum_{n=2}^{\infty} a_n z^n$, $a_n \geq 0$. (2)

A function f of the form (2) is said to be in the class $USTN(\alpha)$, $0 \leq \alpha < 1$, if

$\operatorname{Re} \left(\frac{f(z) - f(\xi)}{(z - \xi)f'(z)} \right) \geq \alpha$, where $(z, \xi) \in U \times U$.

In the present paper, we shall use analogues of the lemmas in [8] and [9]. Respectively in the following form:

About¹ -Department of Mathematics, University of Rajasthan, Jaipur-302055, Rajasthan, India

Email: vblchaurasia@gmail.com

About² -Department of Mathematics, Stani Memorial College of Eng. and Tec., Phagi, Jaipur-303005, Rajasthan, India

Email: yagyavendra@gmail.com

Lemma 1. A function f of the form (1) is in the class $UST(\alpha)$, if $\sum_{n=2}^{\infty} [(3-\alpha)n-2] |a_n| \leq (1-\alpha)N$,

where $N > 0$ is a suitable constant. In particular, $f \in UST$ whenever $\sum_{n=2}^{\infty} (3n-2) |a_n| \leq N$.

Lemma 2. A sufficient condition for a function f of the form (1) to be in the class $UCV(\alpha)$ is that

$\sum_{n=2}^{\infty} n [(\alpha+1)n-\alpha] a_n \leq N$, where $N > 0$ is a suitable constant. In particular, $f \in UCV$ whenever

$$\sum_{n=2}^{\infty} n^2 a_n \leq N.$$

Lemma 3. A necessary and sufficient condition for a function f of the form (2) to be in the class

$UCV(\alpha)$ is that $\sum_{n=2}^{\infty} n [(\alpha+1)n-\alpha] a_n \leq N$.

The generalized Fox-Wright function is defined by ([5], p.271, eqn.(7))

$${}_p\bar{\Psi}_q(z) = {}_p\bar{\Psi}_q \left[\begin{matrix} (a_1, \alpha_1; A_1)_{1,p} \\ (b_1, \beta_1; B_1)_{1,q} \end{matrix}; z \right] = \sum_{n=0}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j n)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j n)\}^{B_j}} \frac{z^n}{n!} \quad (3)$$

Where $1 + \sum_{j=1}^q \beta_j > \sum_{j=1}^p \alpha_j$, α_j ($j = 1, \dots, p$) and β_j ($j = 1, \dots, q$) are real and positive and A_j ($j = 1, \dots, p$) and B_j ($j = 1, \dots, q$) can take non-integer values.

It is interesting to note that ${}_p\bar{F}_q$ ([5], p.271, eqn.(9)) is obtained by taking $\alpha_i = \beta_j = 1$ ($i = 1, \dots, p$; $j = 1, \dots, q$) in eqn. (3) and ${}_pF_q$ can also be obtained by taking $A_i = B_j = \alpha_j = \beta_j = 1$ ($i = 1, \dots, p$; $j = 1, \dots, q$)s in eqn (1.3).

For the sake of brevity, we use here the following notation:

$$y = \frac{\prod_{j=1}^q \{\Gamma(b_j)\}^{B_j}}{\prod_{j=1}^p \{\Gamma(a_j)\}^{A_j}}.$$

II. MAIN RESULT

Theorem 2.1 If $a_i > 0$ ($i = 1, \dots, p$), $b_j > 0$ ($j = 1, \dots, q$), $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j + 1$ and $1 + \sum_{j=1}^q B_j \beta_j > \sum_{j=1}^p A_j \alpha_j$, then a sufficient condition for the function $yz \{{}_p\bar{\Psi}_q(z)\}$ to be in the class $UST(\alpha)$, $0 \leq \alpha < 1$, is that

$$\left(\frac{3-\alpha}{1-\alpha} \right) {}_p\bar{\Psi}_q \left[\begin{matrix} (a_1 + \alpha_1, \alpha_1; A_1)_{1,p} \\ (b_1 + \beta_1, \beta_1; B_1)_{1,q} \end{matrix}; 1 \right] + {}_p\bar{\Psi}_q \left[\begin{matrix} (a_1, \alpha_1; A_1)_{1,p} \\ (b_1, \beta_1; B_1)_{1,q} \end{matrix}; 1 \right] \leq y^{-1} (1+N). \quad (4)$$

Proof. Since

$$yz\left\{{}_p\bar{\psi}_q(z)\right\} = z + \sum_{n=2}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j} yz^n}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} (n-1)!},$$

according to Lemma 1, we need only to show that,

$$\sum_{n=2}^{\infty} [(3-\alpha)n-2] \left| \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j} y}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} (n-1)!} \right| \leq (1-\alpha)N.$$

$$\begin{aligned} \text{Now } \sum_{n=2}^{\infty} [(3-\alpha)n-2] & \left| \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j} y}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} (n-1)!} \right| \\ &= y(3-\alpha) \sum_{n=0}^{\infty} \left| \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n+1))\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n+1))\}^{B_j} n!} \right| + y(1-\alpha) \sum_{n=1}^{\infty} \left| \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j n)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j n)\}^{B_j} n!} \right| \\ &= y(3-\alpha) {}_p\bar{\psi}_q \left[\begin{matrix} (a_j + \alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j + \beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] + y(1-\alpha) {}_p\bar{\psi}_q \left[\begin{matrix} (a_j, \alpha_j; A_j)_{1,p} \\ (b_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] - (1-\alpha) \\ &\leq (1-\alpha)N, \end{aligned}$$

this gives the desired result from the Lemma 1.

Theorem 2.2 If $a_i > 0 (i=1, \dots, p)$, $b_j > 0 (j=1, \dots, q)$, $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j + 1$ and $1 + \sum_{j=1}^q B_j \beta_j > \sum_{j=1}^p A_j \alpha_j$,

then a sufficient condition for the function $yz\left\{{}_p\bar{\psi}_q(z)\right\}$ to be in the class $USTN(\alpha)$, $0 \leq \alpha < 1$, is that

$$\left(\frac{3-\alpha}{1-\alpha} \right) {}_p\bar{\psi}_q \left[\begin{matrix} (a_j + \alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j + \beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] + {}_p\bar{\psi}_q \left[\begin{matrix} (a_j, \alpha_j; A_j)_{1,p} \\ (b_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] \leq y^{-1}(1+N). \quad (5)$$

Proof. The proof directly follows from the Theorem 1.

Theorem 2.3 If $a_i > 0 (i=1, \dots, p)$, $b_j > 0 (j=1, \dots, q)$, $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j + 2$ and $1 + \sum_{j=1}^q B_j \beta_j > \sum_{j=1}^p A_j \alpha_j$,

then a sufficient condition for the function $yz\left\{{}_p\bar{\psi}_q(z)\right\}$ to be in the class $UCV(\alpha)$, $0 \leq \alpha < 1$, is that

$$(1+\alpha) {}_p\bar{\psi}_q \left[\begin{matrix} (a_j + 2\alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j + 2\beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] + (3+2\alpha) {}_p\bar{\psi}_q \left[\begin{matrix} (a_j + \alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j + \beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right]$$

$$+ {}_p\bar{\psi}_q \left[\begin{matrix} (a_j, \alpha_j; A_j)_{1,p} \\ (b_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] \leq y^{-1}(1+N) \quad (6)$$

Proof. By Lemma 2, it suffices to show that

$$\sum_{n=2}^{\infty} n[(\alpha+1)n-\alpha] \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j} y}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} (n-1)!} \leq N.$$

$$\begin{aligned} 4 \quad & \text{Now, } \sum_{n=2}^{\infty} n[(\alpha+1)n-\alpha] \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j} y}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} (n-1)!} \\ &= y(1+\alpha) \sum_{n=2}^{\infty} (n-1)^2 \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} (n-1)!} \\ &+ y(2+\alpha) \sum_{n=2}^{\infty} (n-1) \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} (n-1)!} + y \sum_{n=2}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} (n-1)!} \\ &= y(1+\alpha) \sum_{n=0}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + 2\alpha_j + \alpha_j n)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + 2\beta_j + \beta_j n)\}^{B_j} n!} + y(3+2\alpha) \sum_{n=0}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j + \alpha_j n)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j + \beta_j n)\}^{B_j} n!} \\ &+ y \sum_{n=0}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j n)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j n)\}^{B_j} n!} - 1 \\ &= y(1+\alpha) {}_p\bar{\psi}_q \left[\begin{matrix} (a_j + 2\alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j + 2\beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] + y(3+2\alpha) {}_p\bar{\psi}_q \left[\begin{matrix} (a_j + \alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j + \beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] \\ &+ y {}_p\bar{\psi}_q \left[\begin{matrix} (a_j, \alpha_j; A_j)_{1,p} \\ (b_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] - 1, \end{aligned}$$

this last expression is bounded above by N if and only if (6) holds. Hence the Theorem 3 is proved.

III. AN INTEGRAL OPERATORS

In this section we obtain sufficient conditions for the function $y_p \bar{\psi}_q \left[\begin{matrix} (a_j, \alpha_j; A_j)_{1,p} \\ (b_j, \beta_j; B_j)_{1,q} \end{matrix}; z \right] = y \int_0^z \bar{\psi}_q(x) dx$

to be in the classes UST and UCV.

Theorem 3.1 If $a_i > 0 (i = 1, \dots, p)$, $b_j > 0 (j = 1, \dots, q)$, $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j$ and $1 + \sum_{j=1}^q B_j \beta_j > \sum_{j=1}^p A_j \alpha_j$, then a

sufficient condition for the function $y \left\{ {}_p \bar{\phi}_q(z) \right\} = y \int_0^z \bar{\psi}_q(x) dx$ to be in the class UST, is that

$$3 {}_p \bar{\psi}_q \left[\begin{matrix} (a_j, \alpha_j; A_j)_{1,p} \\ (b_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] - 2 {}_p \bar{\psi}_q \left[\begin{matrix} (a_j - \alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j - \beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] \\ + 2 \frac{\prod_{j=1}^p \{\Gamma(a_j - \alpha_j)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j - \beta_j)\}^{B_j}} \leq y^{-1} (1 + N). \quad (7)$$

Proof. we have,

$$y \left\{ {}_p \bar{\phi}_q(z) \right\} = y \int_0^z \bar{\psi}_q(x) dx = z + \sum_{n=2}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j} y z^n}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} n!}. \quad (8)$$

Now,

$$\sum_{n=2}^{\infty} (3n-2) \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j} y}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} n!} \\ = 3y \sum_{n=0}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j n)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j n)\}^{B_j} n!} - 2y \sum_{n=0}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j - \alpha_j + \alpha_j n)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j - \beta_j + \beta_j n)\}^{B_j} n!} + 2y \frac{\prod_{j=1}^p \{\Gamma(a_j - \alpha_j)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j - \beta_j)\}^{B_j}} - 1 \\ = 3y {}_p \bar{\psi}_q \left[\begin{matrix} (a_j, \alpha_j; A_j)_{1,p} \\ (b_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] - 2y {}_p \bar{\psi}_q \left[\begin{matrix} (a_j - \alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j - \beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] \\ + 2y \frac{\prod_{j=1}^p \{\Gamma(a_j - \alpha_j)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j - \beta_j)\}^{B_j}} - 1, \quad (9)$$

which in view of Lemma 1, (9) gives the result (7).

Theorem 3.2 If $a_i > 0 (i=1, \dots, p)$, $b_j > 0 (j=1, \dots, q)$, $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j$ and $1 + \sum_{j=1}^q B_j \beta_j > \sum_{j=1}^p A_j \alpha_j$, then a

sufficient condition for the function $y \left\{ {}_p \bar{\phi}_q (z) \right\} = y \int_0^z {}_p \bar{\psi}_q (x) dx$ to be in the class UCV , is that

$${}_p \bar{\psi}_q \left[\begin{matrix} (a_j + \alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j + \beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] + {}_p \bar{\psi}_q \left[\begin{matrix} (a_j, \alpha_j; A_j)_{1,p} \\ (b_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] \leq y^{-1} (1 + N). \quad (10)$$

Proof. we have,

$$\begin{aligned} & \sum_{n=2}^{\infty} n^2 \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j} y}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} n!} \\ &= y \sum_{n=2}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n-1))\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n-1))\}^{B_j} (n-2)!} + y \sum_{n=1}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j n)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j n)\}^{B_j} n!} \\ &= y \sum_{n=0}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j(n+1))\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j(n+1))\}^{B_j} n!} + y \sum_{n=0}^{\infty} \frac{\prod_{j=1}^p \{\Gamma(a_j + \alpha_j n)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j + \beta_j n)\}^{B_j} n!} - 1 \\ &= y {}_p \bar{\psi}_q \left[\begin{matrix} (a_j + \alpha_j, \alpha_j; A_j)_{1,p} \\ (b_j + \beta_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] + y {}_p \bar{\psi}_q \left[\begin{matrix} (a_j, \alpha_j; A_j)_{1,p} \\ (b_j, \beta_j; B_j)_{1,q} \end{matrix}; 1 \right] - 1, \end{aligned} \quad (11)$$

Theorem 3.2 follows from (10), (11) and Lemma 2.

IV. SPECIAL CASES

If we take $\alpha_j = \beta_k = 1 (j=1, \dots, p; k=1, \dots, q)$ in Theorems (2.1), (2.2), (2.3), (3.1) and (3.2) respectively, the ${}_p \bar{\psi}_q$ function will reduce to the ${}_p \bar{F}_q$ function; we get the following Theorems:

Theorem 4.1 If $a_i > 0 (i=1, \dots, p)$, $b_j > 0 (j=1, \dots, q)$, $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j + 1$, then a sufficient condition for the function $y z \left\{ {}_p \bar{F}_q (z) \right\}$ to be in the class $UST(\alpha)$, $0 \leq \alpha < 1$, is that

$$\left(\frac{3-\alpha}{1-\alpha} \right) {}_p \bar{F}_q \left[\begin{matrix} (a_j + 1, 1; A_j)_{1,p} \\ (b_j + 1, 1; B_j)_{1,q} \end{matrix}; 1 \right] + {}_p \bar{F}_q \left[\begin{matrix} (a_j, 1; A_j)_{1,p} \\ (b_j, 1; B_j)_{1,q} \end{matrix}; 1 \right] \leq y^{-1} (1 + N). \quad (12)$$

Theorem 4.2 If $a_i > 0 (i=1, \dots, p)$, $b_j > 0 (j=1, \dots, q)$, $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j + 1$, then a sufficient condition for

the function $y z \left\{ {}_p \bar{F}_q (z) \right\}$ to be in the class $USTN(\alpha)$, $0 \leq \alpha < 1$, is that

$$\left(\frac{3-\alpha}{1-\alpha} \right) {}_p \bar{F}_q \left[\begin{matrix} (a_j + 1, 1; A_j)_{1,p} \\ (b_j + 1, 1; B_j)_{1,q} \end{matrix}; 1 \right] + {}_p \bar{F}_q \left[\begin{matrix} (a_j, 1; A_j)_{1,p} \\ (b_j, 1; B_j)_{1,q} \end{matrix}; 1 \right] \leq y^{-1} (1 + N). \quad (13)$$

Theorem 4.3 If $a_i > 0 (i=1, \dots, p)$, $b_j > 0 (j=1, \dots, q)$, $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j + 2$, then a sufficient condition for the function $yz \left\{ {}_p \bar{F}_q (z) \right\}$ to be in the class $UCV(\alpha)$, $0 \leq \alpha < 1$, is that

$$\begin{aligned} & (1+\alpha) {}_p \bar{F}_q \left[\begin{matrix} (a_j + 2, 1; A_j)_{1,p} \\ (b_j + 2, 1; B_j)_{1,q} \end{matrix}; 1 \right] + (3 + 2\alpha) {}_p \bar{F}_q \left[\begin{matrix} (a_j + 1, 1; A_j)_{1,p} \\ (b_j + 1, 1; B_j)_{1,q} \end{matrix}; 1 \right] \\ & + {}_p \bar{F}_q \left[\begin{matrix} (a_j, 1; A_j)_{1,p} \\ (b_j, 1; B_j)_{1,q} \end{matrix}; 1 \right] \leq y^{-1} (1 + N) \end{aligned} \quad (14)$$

Theorem 4.4 If $a_i > 0 (i=1, \dots, p)$, $b_j > 0 (j=1, \dots, q)$, $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j$, then a sufficient condition for the

function $y \left\{ {}_p \bar{G}_q (z) \right\} = y \int_0^z {}_p \bar{F}_q (x) dx$ to be in the class UST , is that

$$\begin{aligned} & 3 {}_p \bar{F}_q \left[\begin{matrix} (a_j, 1; A_j)_{1,p} \\ (b_j, 1; B_j)_{1,q} \end{matrix}; 1 \right] - 2 {}_p \bar{F}_q \left[\begin{matrix} (a_j - 1, 1; A_j)_{1,p} \\ (b_j - 1, 1; B_j)_{1,q} \end{matrix}; 1 \right] \\ & + 2 \frac{\prod_{j=1}^p \{\Gamma(a_j - 1)\}^{A_j}}{\prod_{j=1}^q \{\Gamma(b_j - 1)\}^{B_j}} \leq y^{-1} (1 + N). \end{aligned} \quad (15)$$

Theorem 4.4 If $a_i > 0 (i=1, \dots, p)$, $b_j > 0 (j=1, \dots, q)$, $\sum_{j=1}^q b_j > \sum_{j=1}^p a_j$, then a sufficient condition for the

function $y \left\{ {}_p \bar{G}_q (z) \right\} = y \int_0^z {}_p \bar{F}_q (x) dx$ to be in the class UCV , is that

$${}_p \bar{F}_q \left[\begin{matrix} (a_j + 1, 1; A_j)_{1,p} \\ (b_j + 1, 1; B_j)_{1,q} \end{matrix}; 1 \right] + {}_p \bar{F}_q \left[\begin{matrix} (a_j, 1; A_j)_{1,p} \\ (b_j, 1; B_j)_{1,q} \end{matrix}; 1 \right] \leq y^{-1} (1 + N).$$

If we set $A_i = B_j = 1 (i=1, \dots, p; j=1, \dots, q)$, $N \rightarrow My$, Theorems (2.1), (2.2), (2.3), (3.1) and (3.2) reduce to the results recently obtained by Chaurasia and Srivastava ([16]).

Further on taking $\alpha_k = \beta_l = 1 (k=1, \dots, p; l=1, \dots, q)$ and $N = \frac{\prod_{j=1}^p \Gamma(a_j)}{\prod_{j=1}^q \Gamma(b_j)}$, we arrive at the results of

Shanmugam, Ramachandran, Sivasubramanian and Gangadharan ([12]).

By specifying the parameters suitably, the results of this paper readily yield the results due to Dixit and Verma ([1]).

V. ACKNOWLEDGEMENT

The authors are highly thankful to Professor H.M. Srivastava of the University of Victoria, Victoria, Canada, for his kind help and many valuable suggestions in the preparation and improvement of this paper in the present form.

REFERENCES RÉFÉRENCES REFERENCIAS

- 1) Dixit, K.K. and Verma, V., Uniformly starlike and uniformly convexity properties for hypergeometric functions, *Bull. Cal. Math. Soc.*, **93** (6) (2001), 477-482.
- 2) Gangadharan, A., Shanmugam, T.N. and Srivastava, H.M., Generalized hypergeometric functions associated with $\$k\$$ -uniformly convex functions, *Comput. Math. Appl.*, **44** (2002), 1515-1526.
- 3) Goodman, A.W., On uniformly convex functions, *Ann. Polon. Math.*, **56** (1991), 87-92.
- 4) Goodman, A.W., On uniformly starlike functions, *J. Math. Anal. and Appl.*, **155**(1991), 364-370.
- 5) Gupta, K.C., Jain, R. and Sharma, A., A study of unified finite integral transforms with applications, *J. Raj. Acad. Phy. Sci.*, **2** (4) (2003), 269-282.
- 6) Kanas, S. and Ronning, F., Uniformly starlike and convex functions and other related classes of univalent functions, *Ann. Univ. Mariae Curie-Sklodowska Section A*, **53** (1999), 95-105.
- 7) Kanas, S. and Srivastava, H.M., Linear operators associated with $\$k\$$ -uniformly convex functions, *Integral Transform Spec. Funct.*, **9** (2000), 121-132.
- 8) Murugasunderamoorthy, G., Study on classes of analytic function with negative coefficients, *Thesis, Madras University* (1994).
- 9) Owa, S., Kim, J.A. and Cho, N.E., Some properties for convolutions of generalized hypergeometric functions, *Surikaisekikenkyusho Kokyuroku*, **1012** (1997), 92-109.
- 10) Ramachandran, C., Shanmugam, T.N., Srivastava, H.M. and Swaminathan, A., A unified class of k -uniformly convex functions defined by the Dziok-Srivastava linear operator, *Appl. Math. Comput.*, **190** (2007), 1627-1636.
- 11) Shams, S., Kulkarni, S.R. and Jahangiri, J.M., Classes of uniformly starlike and convex functions, *Internat. J. Math. Sci.*, **55** (2004), 2959-2961.
- 12) Shanmugam, T.N., Ramachandran, C., Sivasubramanian, S. and Gangadharan, A., Generalized hypergeometric functions associated with uniformly starlike and uniformly convex functions, *Acta Ciencia Indica*, **XXXIM(2)** (2005), 469-476.
- 13) Silverman, H., Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.*, **51**(1975), 109-116.
- 14) Srivastava, H.M. and Mishra, A.K., Applications of fractional calculus to parabolic starlike and uniformly convex functions, *Computer Math. Appl.*, **39** (2000), 57-69.
- 15) Chaurasia, V.B.L. and Srivastava, Amber, Uniformly starlike and uniformly convex functions pertaining to special functions, *J. Inequal. Pure and Appl. Math.*, **9**(1) (2008), Art. 30, 6pp.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 2 Version 1.0 March 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975- 5896

On Ramanujan's Generating Relation For Tau Function

By Chaudhary Wali Mohd., M. I. Qureshi, Kaleem A. Quraishi, Ram Pal

Jamia Millia Islamia (A Central University), New Delhi

Abstracts - Present paper concerns mainly with verification and extension of the table for $\tau(1), \tau(2), \tau(3), \dots, \tau(30)$ of Ramanujan. Our extended table for $\tau(31), \tau(32), \tau(33), \dots, \tau(211)$ is obtained without using certain arithmetical functions defined by Ramanujan and also the theory of elliptic functions.

Keywords : Ramanujan's tau function; Generating relation and function; Ordinary finite difference table.

Classification: GJSFR-F Classification: 2010 AMS Subject Classifications: 33A30.

Strictly as per the compliance and regulations of:

On Ramanujan's Generating Relation For Tau Function

Chaudhary Wali Mohd¹, M. I. Qureshi¹, Kaleem A. Quraishi², Ram Pal¹

Abstracts - Present paper concerns mainly with verification and extension of the table for $\tau(1), \tau(2), \tau(3), \dots, \tau(30)$ of Ramanujan. Our extended table for $\tau(31), \tau(32), \tau(33), \dots, \tau(211)$ is obtained without using certain arithmetical functions defined by Ramanujan and also the theory of elliptic functions.

Keywords : Ramanujan's tau function; Generating relation and function; Ordinary finite difference table.

March

9

Volume XI Issue II Version I

Global Journal of Science Frontier Research

I. INTRODUCTION

In this paper, we obtain the values of $\tau(1), \tau(2), \dots, \tau(211)$, where $\tau(n)$ is Tau function of Ramanujan, defined as follows:

$$\sum_{n=1}^{\infty} \tau(n) x^n = x \left\{ \prod_{n=1}^{\infty} (1 - x^n) \right\}^{24} \quad (1.1)$$

The right hand side of (1.1) is called generating function for $\tau(n)$. Ramanujan[3,p.196, Table(V); see also 1;2] calculated the values of $\tau(1), \tau(2), \dots, \tau(30)$, by means of the theory of elliptic functions and certain arithmetical functions such as $F_{r,s}(x), \Phi_{r,s}(x), E_{r,s}(n), \sigma_s(n)$, Riemann's Zeta function $\zeta(n)$, greatest integer function $[x]$, theory of symbols o, O , continued fraction, asymptotic expansion, some trigonometrical identities, inequalities, Gamma function, theory of order of error terms, number theory, convergence and divergence of infinite series.

II. VERIFICATION AND EXTENSION

Consider the expanded form of (1.1), we have

$$\sum_{n=1}^{\infty} \tau(n) x^n = x \{ (1-x)(1-x^2)(1-x^3)(1-x^4) \cdots (1-x^{210}) \cdots \}^{24} \quad (2.1)$$

$$= x \{ (1-x)^3 (1-x^2)^3 (1-x^3)^3 (1-x^4)^3 \cdots (1-x^{210})^3 \cdots \}^8 = x T^8 = x \{ (T^2)^2 \}^2 \quad (2.2)$$

where

$$T = (1-x)^3 (1-x^2)^3 (1-x^3)^3 (1-x^4)^3 \cdots (1-x^{210})^3 \cdots \quad (2.3)$$

Now consider the product of first two hundred ten polynomials in (2.3) and collecting the terms upto x^{210} , we get

About¹: Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi-110025 (India)

About²: Mathematics Section, Mewat Engineering College(Wakf), Palla, Nuh, Mewat-122107, Haryana (India)

E-mails:miquireshi_delhi@yahoo.co.in;kaleemspn@yahoo.co.in; rampal1966@rediffmail.com

$$T = +1 - 3x + 5x^3 - 7x^6 + 9x^{10} - 11x^{15} + 13x^{21} - 15x^{28} + 17x^{36} - 19x^{45} + 21x^{55} - 23x^{66} + 25x^{78} - 27x^{91} + 29x^{105} - 31x^{120} + 33x^{136} - 35x^{153} + 37x^{171} - 39x^{190} + 41x^{210} + \dots \quad (2.4)$$

It is to be noted that the coefficients in (2.4) are alternatively positive and negative such that the sequence 1, 3, 5, 7, 9, ... form arithmetic progression. Suppose the powers of x (i.e. the sequence 0, 1, 3, 6, 10, 15, ...) are generated by the function $F(k)$, therefore

$$T = \sum_{k=1}^{\infty} (-1)^{k-1} (2k-1) x^{F(k)} \quad (2.5)$$

Now we shall find the function $F(k)$ using the following ordinary finite difference table:

k	$F(k)$	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	...
1	0															
		1														
2	1		1													
			2	0												
3	3		1	0												
			3	0	0											
4	6		1	0	0	0										
			4	0	0	0	0									
5	10		1	0	0	0	0	0								
			5	0	0	0	0	0	0							
6	15		1	0	0	0	0	0	0	0						
			6	0	0	0	0	0	0	0	0					
7	21		1	0	0	0	0	0	0	0	0					
			7	0	0	0	0	0	0	0	0	0				
8	28		1	0	0	0	0	0	0	0	0	0			0	
			8	0	0	0	0	0	0	0	0	0				
9	36		1	0	0	0	0	0	0	0	0	0				
			9	0	0	0	0	0	0	0	0	0				
10	45		1	0	0	0	0	0	0	0	0					
			10	0	0	0	0	0	0	0						
11	55		1	0	0	0	0	0	0							
			11	0	0	0	0	0	0							
12	66		1	0	0	0	0									
			12	0	0	0										
13	78		1	0	0											
			13	0												
14	91		1													
			14													
15	105															
:																

ORDINARY FINITE DIFFERENCE TABLE

Since second order ordinary differences are equal, therefore third and higher order differences will be zero and so $F(k)$ will be a polynomial of second degree (by means of fundamental theorem of finite difference calculus). Thus:

$$F(k) = A + Bk + Ck^2 \quad (2.6)$$

where the unknowns A, B and C are to be calculated.

Now selecting any three values of k and also their corresponding values of $F(k)$ from above table and putting them in (2.6), we get a system of three linear equations which on simplification gives $A = 0$, $B = -\frac{1}{2}$ and $C = \frac{1}{2}$.

Therefore suitable $F(k)$ is given by

$$F(k) = -\frac{1}{2}k + \frac{1}{2}k^2 = \frac{k(k-1)}{2}$$

Consequently (2.5) reduces to:

$$T = \sum_{k=1}^{\infty} (-1)^{k-1} (2k-1) x^{\frac{k(k-1)}{2}} \quad (2.7)$$

Now squaring the expansion in (2.4) and collecting the terms upto x^{210} , we have

$$\begin{aligned} T^2 = & +1 - 6x + 9x^2 + 10x^3 - 30x^4 + 11x^6 + 42x^7 - 70x^9 + 18x^{10} - 54x^{11} + 49x^{12} + 90x^{13} - 22x^{15} - \\ & - 60x^{16} - 110x^{18} + 81x^{20} + 180x^{21} - 78x^{22} + 130x^{24} - 198x^{25} - 182x^{27} - 30x^{28} + 90x^{29} + 121x^{30} + \\ & + 84x^{31} + 210x^{34} - 252x^{36} - 102x^{37} - 270x^{38} + 170x^{39} - 69x^{42} + 330x^{43} - 38x^{45} + 420x^{46} - 190x^{48} - \\ & - 390x^{49} - 108x^{51} - 300x^{55} + 99x^{56} + 442x^{57} + 210x^{58} + 418x^{60} - 294x^{61} - 510x^{64} + 378x^{65} - \\ & - 540x^{66} + 138x^{67} - 230x^{69} - 462x^{70} + 611x^{72} + 570x^{73} + 132x^{76} + 50x^{78} - 150x^{79} + 110x^{81} - \\ & - 630x^{83} - 350x^{84} - 598x^{87} + 450x^{88} + 361x^{90} + 660x^{91} + 162x^{92} - 550x^{93} + 420x^{94} + 378x^{97} + \\ & + 650x^{99} - 798x^{100} - 486x^{101} - 782x^{102} + 58x^{105} - 330x^{106} + 290x^{108} + 441x^{110} + 468x^{111} - 702x^{112} + \\ & + 850x^{114} + 522x^{115} + 810x^{119} - 700x^{120} - 780x^{121} - 1260x^{123} + 1188x^{126} - 918x^{127} - 558x^{130} + \\ & + 529x^{132} + 180x^{133} + 682x^{135} + 1092x^{136} - 198x^{137} + 330x^{139} + 180x^{141} - 462x^{142} - 1150x^{144} - \\ & - 540x^{146} + 930x^{148} - 1102x^{150} - 726x^{151} - 70x^{153} + 210x^{154} - 779x^{156} + 2100x^{157} + 490x^{159} + \\ & + 1218x^{160} - 630x^{163} - 990x^{164} + 1178x^{165} + 770x^{168} - 1350x^{169} - 1260x^{171} + 900x^{172} - 540x^{174} - \\ & - 1302x^{175} - 518x^{177} + 462x^{181} + 729x^{182} + 1450x^{183} + 612x^{186} - 1190x^{189} - 78x^{190} + 1620x^{191} + \\ & + 962x^{192} - 390x^{193} - 1020x^{196} - 220x^{198} - 1110x^{199} - 702x^{200} - 1518x^{202} + 858x^{205} + 1258x^{207} - \\ & - 1470x^{208} + 923x^{210} + \dots \end{aligned} \quad (2.8)$$

Further repeating the same process for $(T^2)^2$, we get

$$T^4 = +1 - 12x + 54x^2 - 88x^3 - 99x^4 + 540x^5 - 418x^6 - 648x^7 + 594x^8 + 836x^9 + 1056x^{10} - 4104x^{11} -$$

$$\begin{aligned}
& -209x^{12} + 4104x^{13} - 594x^{14} + 4256x^{15} - 6480x^{16} - 4752x^{17} - 298x^{18} + 5016x^{19} + 17226x^{20} - \\
& - 12100x^{21} - 5346x^{22} - 1296x^{23} - 9063x^{24} - 7128x^{25} + 19494x^{26} + 29160x^{27} - 10032x^{28} - \\
& - 7668x^{29} - 34738x^{30} + 8712x^{31} - 22572x^{32} + 21812x^{33} + 49248x^{34} - 46872x^{35} + 67562x^{36} + 2508x^{37} - \\
& - 47520x^{38} - 76912x^{39} - 25191x^{40} + 67716x^{41} + 32076x^{42} + 7128x^{43} + 29754x^{44} + 36784x^{45} - \\
& - 51072x^{46} + 45144x^{47} - 122398x^{48} - 53460x^{49} + 11286x^{50} - 27256x^{51} + 57024x^{52} + 122364x^{53} + \\
& + 99902x^{54} + 3576x^{55} - 29646x^{56} - 221616x^{57} + 41382x^{58} - 52272x^{59} + 130549x^{60} - 206712x^{61} - \\
& - 180036x^{62} + 336512x^{63} + 145200x^{64} + 100980x^{65} - 73568x^{66} + 221616x^{67} - 317142x^{68} - 148324x^{69} + \\
& + 15552x^{70} - 225720x^{71} - 32076x^{72} + 108756x^{73} + 196614x^{74} + 74360x^{75} - 58806x^{76} + 229824x^{77} + \\
& + 120878x^{78} - 233928x^{79} + 361152x^{80} - 111340x^{81} - 349920x^{82} - 491832x^{83} - 196569x^{84} - \\
& - 82764x^{85} + 707454x^{86} + 18392x^{87} + 92016x^{88} + 493668x^{89} - 559450x^{90} + 416856x^{91} - 16092x^{92} + \\
& + 320760x^{93} - 361152x^{94} - 724032x^{95} + 7106x^{96} + 270864x^{97} - 530442x^{98} + 56168x^{99} - 261744x^{100} + \\
& + 52272x^{101} + 930204x^{102} + 406296x^{103} + 451440x^{104} - 339196x^{105} + 562464x^{106} - 653400x^{107} - \\
& - 374528x^{108} - 810744x^{109} - 248292x^{110} + 779360x^{111} + 20691x^{112} - 744876x^{113} - 272746x^{114} + \\
& + 570240x^{115} - 153846x^{116} - 69984x^{117} + 922944x^{118} + 1154736x^{119} + 657074x^{120} - 694980x^{121} - \\
& - 489402x^{122} - 349448x^{123} - 812592x^{124} + 1341900x^{125} - 2216160x^{126} - 384912x^{127} + 132354x^{128} + \\
& + 26224x^{129} + 58806x^{130} + 943272x^{131} + 1052676x^{132} - 357048x^{133} + 967518x^{134} - 518320x^{135} - \\
& - 441408x^{136} - 112860x^{137} + 2222726x^{138} - 421344x^{139} - 196614x^{140} - 1552276x^{141} - 541728x^{142} - \\
& - 1515888x^{143} - 1067021x^{144} + 1468776x^{145} - 1072170x^{146} - 414072x^{147} + 2216160x^{148} + \\
& + 1715472x^{149} + 1064800x^{150} - 135432x^{151} - 1875852x^{152} + 1585892x^{153} + 327072x^{154} - 730728x^{155} + \\
& + 584858x^{156} + 470448x^{157} - 2482866x^{158} - 320760x^{159} - 1468368x^{160} + 496584x^{161} + 87362x^{162} - \\
& - 1198824x^{163} + 114048x^{164} + 377948x^{165} + 29502x^{166} + 1177848x^{167} + 639122x^{168} + 355752x^{169} + \\
& + 2298240x^{170} + 2276560x^{171} + 2659392x^{172} - 2904660x^{173} - 3991570x^{174} - 1715472x^{175} + \\
& + 1429218x^{176} - 2531088x^{177} + 627264x^{178} + 1161864x^{179} - 1777203x^{180} - 1566588x^{181} + \\
& + 3648348x^{182} - 1089232x^{183} - 1705374x^{184} - 1715472x^{185} + 3505766x^{186} + 2160432x^{187} + \\
& + 248292x^{188} + 4043852x^{189} - 4038144x^{190} + 5187456x^{191} - 2566080x^{192} + 1197900x^{193} - \\
& - 950346x^{194} - 2437776x^{195} - 1211760x^{196} - 4153248x^{197} - 520738x^{198} + 882816x^{199} + 764370x^{200} - \\
& - 1779008x^{201} - 1360314x^{202} - 160920x^{203} + 2640506x^{204} + 3805704x^{205} + 674784x^{206} + \\
& + 3656664x^{207} + 1779888x^{208} - 4980204x^{209} - 237994x^{210} + \dots \tag{2.9}
\end{aligned}$$

Finally adopting the same procedure for $(T^4)^2$ and multiplying $(T^4)^2$ by x and comparing the coefficients of $x, x^2, x^3, x^4, \dots, x^{210}, x^{211}$ with the coefficients of left hand side of (2.2), we get the values of $\tau(1), \tau(2), \tau(3), \tau(4), \dots, \tau(210), \tau(211)$ and are given in tabular form as follows:

III. EXTENDED TABLE FOR $\tau(n)$; $n \in \{1, 2, 3, 4, 5, \dots, 211\}$

n	$\tau(n)$	n	$\tau(n)$	n	$\tau(n)$
1	+1	37	-182213314	73	+1463791322
2	-24	38	-255874080	74	+4373119536
3	+252	39	-145589976	75	-6425804700
4	-1472	40	+408038400	76	-15693610240
5	+4830	41	+308120442	77	-8951543328
6	-6048	42	+101267712	78	+3494159424
7	-16744	43	-17125708	79	+38116845680
8	+84480	44	-786948864	80	+4767866880
9	-113643	45	-548895690	81	+1665188361
10	-115920	46	-447438528	82	-7394890608
11	+534612	47	+2687348496	83	-29335099668
12	-370944	48	+248758272	84	+6211086336
13	-577738	49	-1696965207	85	-33355661220
14	+401856	50	+611981400	86	+411016992
15	+1217160	51	-1740295368	87	+32358470760
16	+987136	52	+850430336	88	+45164021760
17	-6905934	53	-1596055698	89	-24992917110
18	+2727432	54	+1758697920	90	+13173496560
19	+10661420	55	+2582175960	91	+9673645072
20	-7109760	56	-1414533120	92	-27442896384
21	-4219488	57	+2686677840	93	-13316478336
22	-12830688	58	-3081759120	94	-64496363904
23	+18643272	59	-5189203740	95	+51494658600
24	+21288960	60	-1791659520	96	-49569988608
25	-25499225	61	+6956478662	97	+75013568546
26	+13865712	62	+1268236032	98	+40727164968
27	-73279080	63	+1902838392	99	-60754911516
28	+24647168	64	+2699296768	100	+37534859200
29	+128406630	65	-2790474540	101	+81742959102
30	-29211840	66	-3233333376	102	+41767088832
31	-52843168	67	-15481826884	103	-225755128648
32	-196706304	68	+10165534848	104	-48807306240
33	+134722224	69	+4698104544	105	-20380127040
34	+165742416	70	+1940964480	106	+38305336752
35	-80873520	71	+9791485272	107	+90241258356
36	+167282496	72	-9600560640	108	+107866805760

n	$\tau(n)$	n	$\tau(n)$	n	$\tau(n)$
109	+73482676310	144	-112181096448	178	+599830010640
110	-61972223040	145	+620204022900	179	+1681384224780
111	-45917755128	146	-35130991728	180	+807974455680
112	-16528605184	147	-427635232164	181	-996774496018
113	-85146862638	148	+268217998208	182	-232167481728
114	-64480268160	149	-1115433620850	183	+1753032622824
115	+90047003760	150	+154219312800	184	+1574983618560
116	-189014559360	151	-824447297848	185	-880090306620
117	+65655879534	152	+900676761600	186	+319595480064
118	+124540889760	153	+784811057562	187	-3691995187608
119	+115632958896	154	+214837039872	188	-3955776986112
120	+102825676800	155	-255232501440	189	+1226984915520
121	+498319933	156	+214308444672	190	-1235871806400
122	-166955487888	157	+1315116754406	191	+2762403350592
123	+77646351384	158	-914804296320	192	+680222785536
124	+77785143296	159	-402206035896	193	+5442387685442
125	-359001100500	160	-950091448320	194	-1800325645104
126	-45668121408	161	-312162946368	195	-703199584080
127	-262717201024	162	-39964520664	196	+2497932784704
128	+338071388160	163	-357832759588	197	-2876091504354
129	-4315678416	164	-453553290624	198	+1458117876384
130	+66971388960	165	+650708341920	199	+728391402200
131	+631528759932	166	+704042392032	200	-2154174528000
132	-198311113728	167	+2754833892216	201	-3901420374768
133	-178514816480	168	-356462346240	202	-1961831018448
134	+371563845216	169	-1458379197393	203	-2150040612720
135	-353937956400	170	+800535869280	204	+2561714781696
136	-583413304320	171	-1211595753060	205	+1488221734860
137	-297198746214	172	+25209042176	206	+5418123087552
138	-112754509056	173	-950387449578	207	-2118677359896
139	+596793577940	174	-776603298240	208	-570305978368
140	+119045821440	175	+426959023400	209	+5699723069040
141	+677211820992	176	+527734751232	210	+489123048960
142	-234995646528	177	-1307679342480	211	-6793168439188
143	-308865667656				

REFERENCES RÉFÉRENCES REFERENCIAS

- 1) Hardy, G. H., Aiyar, P. V. Seshu and Wilson, B. M.; Collected Papers of SrinivasaRamanujan, First Published by Cambridge University Press, Cambridge, 1927;Reprinted by Chelsea, New York, 1962; Reprinted by the American Mathematical Society, Providence, Rhode Island, 2000.
- 2) Ramanujan, S.; On Certain Arithmetical Functions, Trans. Cambridge Philos. Soc., 22(9) (1916), 159-184.
- 3) Venkatachala, B. J., Vinay, V. and Yogananda, C. S.; Ramanujan's Papers (Paper No. 18, pp.174-208), Prism Books Pvt. Ltd., Bangalore, Mumbai, 2000.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 2 Version 1.0 March 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975- 5896

Screening of Indian Medicinal Plants and their potentials as Antimicrobial Agents

By Ekta Menghani*, C. K. Ojha, R. S. Negi, Yukta Agarwal and Arvind Pareek

Jaipur, India

Abstracts - Ethanol extracts of certain Indian Medicinal Plants Curculigo orchoides, Symplocos racemosa, Puerariatuberosa, Scindapsus officinarum, Luffa acutangula and Acacia nilotica were examined for their anti-microbial potentials against selected bacteria and fungi. The purpose of screening is to justify, authenticate and validate the use of Indian Medicinal Plants in ethno-medicinal or folklore as traditional treasure to cure various ailments. In present investigations attempts were made to screen the Indian Medicinal Plants as antibiotics. The extracts were tested against selected test bacteria and fungi as antimicrobial assay through disc diffusion assay where standard tetracycline is used and solvent ethanol as control. Indian Medicinal Plants have a traditional background that they have potentials to use as antimicrobial agents. The results showed that all the extracts possess good antimicrobial activity against selected test bacteria and intermediate against fungus. The present results therefore offer a scientific basis for traditional use of ethanolic extracts Curculigo orchoides, Symplocos racemosa, Pueraria tuberosa, Scindapsus officinarum, Luffa acutangula and Acacia nilotica. These results explain that certain plants showed potential antimicrobial activity against *S. aureus* negative can be used as a very good treatment for acne if added to daily diet. Further, almost all the selected plants have also possessed antimicrobial potentials against all test bacteria and fungi which explains that their use in daily life will generate a resistant or immunity to fight against microorganisms.

Classification: GJSFR-F Classification: FOR Code: 060599

SCREENING OF INDIAN MEDICINAL PLANTS AND THEIR POTENTIALS AS ANTIMICROBIAL AGENTS

Strictly as per the compliance and regulations of:

Screening of Indian Medicinal Plants and their potentials as Antimicrobial Agents

Ekta Menghani^{1*}, C. K. Ojha², R. S. Negi¹, Yukta Agarwal¹ and Arvind Pareek¹

Abstract-Ethanol extracts of certain Indian Medicinal Plants Curculigo orchioides, Symplocos racemosa, Pueraria tuberosa, Scindapsus officinarum, Luffa acutangula and Acacia nilotica were examined for their anti-microbial potentials against selected bacteria and fungi. The purpose of screening is to justify, authenticate and validate the use of Indian Medicinal Plants in ethno-medicinal or folklore as traditional treasure to cure various ailments. In present investigations attempts were made to screen the Indian Medicinal Plants as antibiotics. The extracts were tested against selected test bacteria and fungi as antimicrobial assay through disc diffusion assay where standard tetracycline is used and solvent ethanol as control. Indian Medicinal Plants have a traditional background that they have potentials to use as antimicrobial agents. The results showed that all the extracts possess good antimicrobial activity against selected test bacteria and intermediate against fungus. The present results therefore offer a scientific basis for traditional use of ethanolic extracts Curculigo orchioides, Symplocos racemosa, Pueraria tuberosa, Scindapsus officinarum, Luffa acutangula and Acacia nilotica. These results explain that certain plants showed potential antimicrobial activity against *S. aureus* negative can be used as a very good treatment for acne if added to daily diet. Further, almost all the selected plants have also possessed antimicrobial potentials against all test bacteria and fungi which explains that their use in daily life will generate a resistant or immunity to fight against microorganisms.

I. INTRODUCTION

Nature has been a source of medicinal agents since times immemorial. The importance of herbs in the management of human ailments cannot be over emphasized. It is clear that the plant kingdom harbors an inexhaustible source of active ingredients invaluable in the management of many intractable diseases. Ayurveda is ancient health care system and is practiced widely in India, Srilanka and other countries (Chopra and Doiphode, 2002). Ayurveda system of medicine use plants to cure the ailments and diseases. Despite the availability of different approaches

for the discovery of therapeutically, natural products still remain as one of the best reservoir of new structural types. They are used directly as therapeutic agents, as well as starting material for the synthesis of drugs or as models for pharmacologically active compounds (Cowan, 1999). In modern time plants have been sources of analgesics, anti-inflammatory, anti-neoplastic drugs, medicine for asthma, anti arrhythmic agents and anti hypertensive.

Furthermore, the active components of herbal remedies have the advantage of being combined with many other substances that appear to be inactive. However, these complementary components give the plant as a whole a safety and efficiency much superior to that of its isolated and pure active components (Shariff, 2001).

In last three decades numbers of new antibiotics have produced, but clinical efficacy of these existing antibiotics is being threatened by the emergence of multi drug resistant pathogens (Bandow et al., 2003). In general, bacteria have the genetic ability to transmit and acquire resistance to drugs (Cohen, 1992). According to World Health Organization (WHO) medicinal plants would be the best source to obtain a variety of drugs (Santos et al., 1995).

Antibiotic resistance has become a global concern (Westh et al., 2004). There has been an increasing incidence of multiple resistances in human pathogenic microorganisms in recent years, largely due to indiscriminate use of commercial antimicrobial drugs commonly employed in the treatment of infectious diseases. This has forced scientist to search for new antimicrobial substances from various sources like the medicinal plants. Search for new antibacterial agents should be continued by screening many plant families. Recent work revealed the potential of several herbs as sources of drugs (Iwu, 2002). The screening of plant extracts and plant products for antimicrobial activity has shown that higher plants represent a potential source of novel antibiotic prototypes (Afolayan, 2003).

Numerous studies have identified compounds within herbal plants that are effective antibiotics. Traditional healing systems around the world that utilize herbal remedies are an important source for the

About¹-Department of Biotechnology,

About²-Department of Chemistry, Mahatma Gandhi Institute of Applied Sciences, JECRC Campus, Jaipur, India

discovery of new antibiotics. Some traditional remedies have already produced compounds that are effective against antibiotic resistant strains of bacteria (Kone et al., 2004). The results of this indicate the need for further research into traditional health system. It also facilitates pharmacological studies leading to synthesis of a more potent drug with reduced toxicity. The need of the hour is to screen a number of medicinal plants for promising biological activity.

Therefore, in present project attempts have been made to six medicinal plants *Curculigo orchioides*, *Symplocos racemosa*, *Pueraria tuberosa*, *Scindapsus officinarum*, *Luffa acutangula* and *Acacia nilotica* each belonging to different families were evaluated for antibacterial potentials. Further, all the selected medicinal plants were used to justify and authenticate on scientific basis where antimicrobial characters will be aid as a markers to characterize these drugs from their adulterants. These biomarkers can be used further for formation of Indian Pharmacopoeia.

Luffa acutangula
tuberosa
Orchioides

Picrorhiza kurroa
Acacia nilotica

Pueraria
Curculigo

II. MATERIALS AND METHODS

Collection: Plant samples (*Curculigo orchioides*, *Symplocos racemosa*, *Pueraria tuberosa*, *Scindapsus officinarum*, *Luffa acutangula* and *Acacia nilotica*) were collected from various tribes living in tribal pockets of Mt. Abu, arid zone of Rajasthan. These plants were used by these tribes in their daily lives to cure various ailments and few from Chunnilal Attar Ayurvedic Store, Ghat Gate, Jaipur in the month of May, 2009.

Identification: All the samples were authenticated and were given identification number *Curculigo orchioides*, *Symplocos racemosa*, *Pueraria tuberosa*, *Scindapsus*

officinarum, *Luffa acutangula* and *Acacia nilotica*. These samples were authenticated and submitted in Ethnomedicinal Herbarium, Centre of Excellence funded by DST, MGiaS, Jaipur (Rajasthan).

Sources of test organisms: Bacteria-Pure culture of all test organisms, namely *Pseudomonas aeruginosa*, *Staphylococcus aureus* positive, *Escherichia coli*, *Staphylococcus aureus* negative and fungi *Candida albicans*, were obtained through the courtesy of Mahatma Gandhi Institute of applied Sciences(MGiaS), Jaipur, which were maintained on Nutrient broth media.

Culture of test microbes: For the cultivation of bacteria, Nutrient Agar Medium (NAM) was prepared by using 20 g Agar, 5 g Peptone, 3 g beef extract and 3 g NaCl in 1 L distilled water and sterilized at 15 lbs pressure and 121°C temperature for 25-30 min. Agar test plates were prepared by pouring approximately 15 mL of NAM into the Petri dishes (10 mm) under aseptic conditions. A saline solution was prepared (by mixing 0.8% NaCl) in distilled water, followed by autoclaving and the bacterial cultures were maintained on this medium by regular sub-culturing and incubation at 37°C for 24-48 h.

To prepare the test plates, in bacteria, 10-15 mL of the respective medium was poured into the Petri plates and used for screening. For assessing the bactericidal efficacy, a fresh suspension of the test bacteria was prepared in saline solution from a freshly grown Agar slant.

Preparation of test extracts: Crushed powder (50 g) of all the species were successively soxhlet extracted with ethanol. Later, each of the homogenates was filtered and the residue was re-extracted twice for complete exhaustion, the extracts were pooled individually. Each filtrate was concentrated to dryness *in vitro* and re dissolved in respective solvents, out of which 80 mg/10 disc i.e. 8 mg disc⁻¹ concentration were stored at 4°C in a refrigerator, until screened for antibacterial activity.

Bactericidal assay: For both, bactericidal *in vitro* Disc diffusion method was adopted (Gould and Bowie, 1952), because of reproducibility and precision. The different test organisms were proceeded separately using a sterile swab over previously sterilized culture medium plates and the zone of inhibition were measured around sterilized dried discs of Whatman No. 1 paper (6 mm in diameter), which were containing 4 mg of the test extracts, its control (of the respective solvent) and tetracycline as reference drugs (standard disk) separately. Such treated discs were air-dried at room temperature to remove any residual solvent, which might interfere with the determination, sterilized and inoculated. These plates were initially placed at low temperature for 1 h so as to allow the maximum diffusion of the compounds from the test disc into the agar plate and later, incubated at 37°C for 24 h in case of bacteria, after which the zones of inhibition could be easily observed. Five replicates of each test extract were examined and the mean values were then referred.

The Inhibition Zone (IZ) in each case were recorded and the Activity Index (AI) was calculated as compared with those of their respective standard reference drugs (AI = Inhibition Zone of test sample/Inhibition zone of standard).

III. RESULTS

The profile of six medicinal plants used in present investigation. The results of antimicrobial activity of the crude extracts of Selected Indian Medicinal Plants

Table 1: Antimicrobial Efficacy in terms of inhibition zone and activity index of certain Indian Medicinal Plants against selected test bacteria and fungi where tetracycline is used as standard

Ethanol extract	Measures	<i>Pseudomonas aeruginosa</i>	<i>Escherichia coli</i>	S. aureus positive	S. aureus negative	<i>Candida albicans</i>
	Standard IZ	27	28	29	26	30
<i>Curculigo archioides</i>	IZ (mm)	12	11	10	8	11
	AI	0.63	0.647	0.45	0.347	0.5
<i>Symplocos racemosa</i>	IZ (mm)	10	11	10	10	9
	AI	0.526	0.647	0.45	0.43	0.33
<i>Pueraria tuberosa</i>	IZ (mm)	7	10	13	12	9
	AI	0.368	0.35	0.59	0.521	0.33
<i>Scindapsus officinarum</i>	IZ (mm)	10	12	8	9	10
	AI	0.526	0.705	0.363	0.391	0.45
<i>Luffa acutangula</i>	IZ (mm)	10	9	8	8	8
	AI	0.526	0.34	0.363	0.347	0.266
<i>Acacia nilotica</i>	IZ (mm)	7	19	11	11	8
	AI	0.368	0.67	0.37	0.42	0.266

IZ = Inhibition zone, AI = Activity index Standard = tetracycline

While screening of ethanol extract of *Curculigo archioides* the antibacterial activity against selected test bacteria showing good inhibition zone. The ethanol extract have the potential to make inhibition zone against *Pseudomonas aeruginosa* (IZ=12mm), GPB (IZ=10mm), *Staphylococcus aureus* positive strain (IZ=10mm), *E.coli* (IZ=11mm), *Staphylococcus aureus* negative strain (IZ=8mm) & in antifungal activity the inhibition zone against *Candida albicans* is 11 mm. These results showed that the given test extracts have maximum activity against *Pseudomonas aeruginosa* & minimum against *Staphylococcus aureus* negative strain. While screening of ethanol extract of *Symplocos racemosa* the antibacterial activity against selected test bacteria showing good inhibition zone. The ethanol extract have the potential to make inhibition zone against *Pseudomonas aeruginosa* (IZ=10mm), GPB (IZ=10mm), *Staphylococcus aureus* positive strain

(IZ=10mm), *E. coli* (IZ=11mm), *Staphylococcus aureus* negative strain (IZ=10mm) & in antifungal activity the inhibition zone against *Candida albicans* is 9mm. These results showed that the given test extracts have maximum activity against *E.coli* & minimum against *Candida albicans*.

While screening of ethanol extract of *Pueraria tuberosa* the antibacterial activity against selected test bacteria showing very good inhibition zone. The ethanol extract have the potential to make inhibition zone against *Pseudomonas aeruginosa* (IZ=7mm), GPB (IZ=8mm), *Staphylococcus aureus* positive strain (IZ=13mm), *E. coli* (IZ=1mm), *Staphylococcus aureus* negative strain (IZ=12mm) & in antifungal activity the inhibition zone against *Candida albicans* is 9mm. These results showed that the given test extracts have maximum activity against *Staphylococcus aureus* positive strain & minimum against *E. coli*.

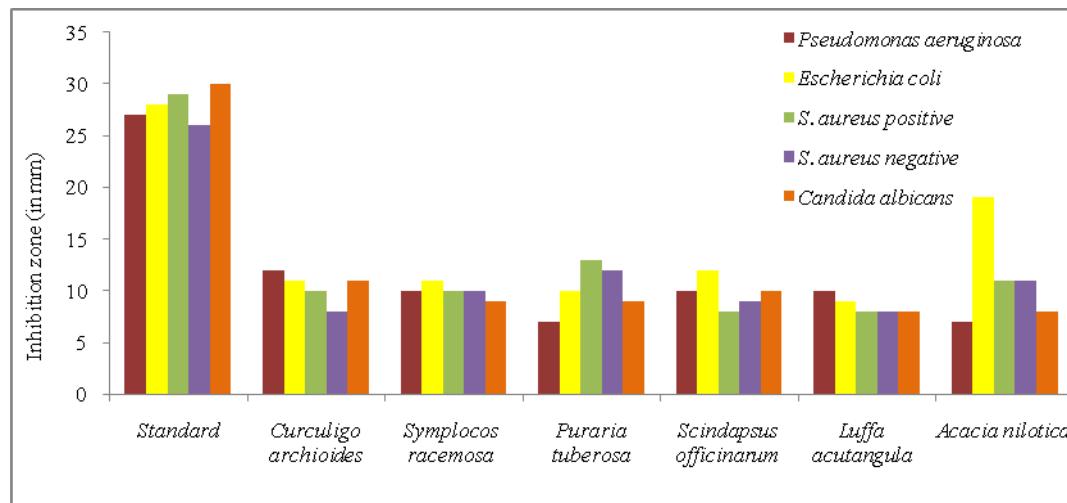


Fig.1. Antimicrobial potentials of certain Indian Medicinal Plants against selected microorganisms in terms of inhibition zone (mm)

These results showed that the given test extracts have maximum activity against *E. coli* & minimum against *Staphylococcus aureus* positive strain. While screening of ethanolic extract of *Luffa acutangula* the antibacterial activity against selected test bacteria showing good inhibition zone. The methanolic extract have the potential to make inhibition zone against *Pseudomonas aeruginosa* (IZ=10mm), *GPB*(IZ=8mm), *Staphylococcus aureus* positive strain (IZ=8mm), *E. coli* (IZ=9mm), *Staphylococcus aureus* negative strain (IZ=8mm) & in antifungal activity the inhibition zone against *Candida albicans* is 8mm. These results showed that the given test extracts have maximum activity against *Pseudomonas aeruginosa* & minimum against, *GPB*, *Staphylococcus aureus* positive strain, *Staphylococcus aureus* negative strain *Candida albicans* While screening of ethanolic extract of *Acacia nilotica* the antibacterial activity against selected test bacteria showing very good inhibition zone. The ethanolic extract have the potential to make inhibition zone against *Pseudomonas aeruginosa* (IZ=7mm), *GPB*(IZ=1mm), *Staphylococcus aureus* positive strain (IZ=11mm), *E. coli* (IZ=19mm), *Staphylococcus aureus* negative strain (IZ=11mm) & in antifungal activity the inhibition zone against *Candida albicans* is 8mm. These results showed that the given test extracts have maximum activity against *E. coli* & minimum against *GPB*

GPB (IZ=9mm), *Staphylococcus aureus* positive strain (IZ=8mm), *E. coli* (IZ=12mm), *Staphylococcus aureus* negative strain (IZ=9mm) & in antifungal activity the inhibition zone against *Candida albicans* is 10mm.

IV. DISCUSSION

Use of ethno-pharmacological knowledge is one attractive way to reduce empiricism and enhance the probability of success in new drug-finding efforts (Patwardhan, 2005). Validation and selection of primary screening assays are pivotal to guarantee sound selection of extracts or molecules with relevant pharmacological action and worthy following up (Cos et al., 2006). The number of multi-drug resistant microbial strains and the appearance of strains with reduced susceptibility to antibiotics are continuously increasing. This increase has been attributed to indiscriminate use of broad-spectrum antibiotics, immunosuppressive agent, intravenous catheters, organ transplantation and ongoing epidemics of HIV infection (Graybill, 1988). In addition, in developing countries, synthetic drugs are not only expensive and inadequate for the treatment of diseases but also often with adulterations and side effects. Therefore, there is need to search new infection-fighting strategies to control microbial infections.

The present results therefore offer a scientific basis for traditional use of ethanolic extracts *Curculigo archioides*, *Symplocos racemosa*, *Pueraria tuberosa*, *Scindapsus officinarum*, *Luffa acutangula* and *Acacia nilotica*. These results explain that Indian Medicinal Plants have potential as antimicrobials against *S. aureus* negative can be used as a very good treatment for acne if added to daily diet and some other showed potentials

against *S. aureus* positive. Further, more or less all the selected Indian Medicinal Plants have also possessed antimicrobial potentials against all test bacteria and fungi which explains that their use in daily life will generate a resistant or immunity to fight against microorganisms.

Ethanol extracts of certain Indian Medicinal Plants showed promising antimicrobial potentials against selected test bacteria and fungi. The main aim of these studies is to validate and authenticate the antimicrobial potentials of certain plants and simultaneously, justify their use in the daily diet to cure mankind from certain ailments.

V. ACKNOWLEDGEMENT

Author acknowledge with thanks the financial support from Department of Science and Technology, Government of Rajasthan, in the form of Centre with Potentials for Excellence in Biotechnology, sanction no F 7(17) (9) Wipro/Gaprio/2006/7358-46(31/10/2008).

REFERENCES RÉFÉRENCES REFERENCIAS

- 1) Afolayan, A. J. (2003) Extract from the shoots of *Arctotis arctotoides* inhibit the growth of bacterial and fungi. *Pharm Biol.* 41:22-25.
- 2) Bandow, J.E., H. Brötz, L.I.O. Leichert, H. Labischinski, and M. Hecker, 2003. Proteomic Approach to Understanding Antibiotic Action. *Antimicrobial Agents and Chemotherapy*, 47: 948-955.
- 3) Chopra, A. and V.V. Doiphode, 2002. Ayurvedic medicine: core concept, therapeutic principles and current relevance. *Medical Clinics of North America*, 86: 75-89.
- 4) Cohen, M.L., 1992. Epidemiology of Drug Resistance: Implications for a Post-Antimicrobial Era. *Sci.*, 257: 1050-1055.
- 5) Cos, P., A.J. Vlietinck, D.V. Berghe and L. Maes, 2006. Antiinfective potential of natural products: How to develop a stronger *in vitro* proof of concept. *J. Ethnopharmacol.*, 106: 290-302.
- 6) Cowan, M.M., 1999. Plant Products as Antimicrobial Agents. *Clinical Microbiology Rev.*, 12: 564-582.
- 7) Gould, J.C. and J.H. Bowie, 1952. The determination of bacterial sensitivity of antibiotics. *Edinburgh Med. J.*, 59: 178-199.
- 8) Graybill, J.R., 1988. Systemic fungal infections: Diagnosis and treatment. I. Therapeutic agents. *Infect. Dis. Clin. North Am.*, 2: 805-825.
- 9) Iwu, M.M. (2002): In: Therapeutic Agents from Ethnomedicine. Ethnomedicine and Drug Discovery. Iwu, M. M. Wooton J C (Eds.) Elsevier Science, Amsterdam.
- 10) Kone, W. M., Kamanzi Atindehou, K., Terreaux, C., Hostettmann, K., Traore, D., Dosso, M. (2004): Traditional medicine in North Côte-d'Ivoire screening of 50 medicinal plants for antibacterial activity. *J. Ethnopharmacol.* 93:43-49.
- 11) Patwardhan, B., 2005. Ethnopharmacology and drug discovery. *J. Ethnopharmacol.*, 100: 50-52.
- 12) Santos, P.R.V., A.C.X. Oliveira and T.C.B. Tomassini, 1995. Controle microbiológico de produtos fitoterápicos. *Rev Farm Bioquím*, 31: 35-38.
- 13) Shariff, Z. U. (2001): Modern Herbal Therapy for common Ailments Nature Pharmacy Series Vol. 1, Spectrum Books LTD., Ibadan, Nigeria in Association with Safari Books Ltd. UK, PP 9-84.
- 14) Westh, H., Zinn, C. S., Rosdahl, V. T., Sarisa Study Group (2004): An international multicenter study of antimicrobial consumption and resistance in *Staphylococcus aureus* isolates from 15 hospitals in 14 countries. *Microbial Drug Resistance* 10: 169-176.

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 2 Version 1.0 March 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975- 5896

Growth and Productivity Analysis of non Metallic Minerals Products Industry of Punjab

By Dr . Gulshan Kumar

D.A.V. College Hoshiarpur

Abstracts - In the fast changing liberalized global environment where growth and productivity have emerged as the important agents of growth and development, present study is an effort to investigate growth pattern and productivity trends of small scale non metallic mineral products industry in Punjab. The growth of industry has been measured in terms of four variables namely: number of units, fixed investment, direct employment and production. Yearly growth rates have been computed to mirror year to-year fluctuations in growth and compound annual growth rates (CAGRs) have been worked out to find the impact of the policies of liberalized regime on growth of this industry. Productivity trends have been sketched in terms of capital intensity, capital output ratio and partial factor productivities. The study observed that the significant growth rate was observed in the variables namely number of units, fixed investment and production. But the policies of liberalized regime have resulted in qualitative rather than quantitative growth in the small scale non-metallic minerals products industry in Punjab. Highly significant growth rate was recorded in fixed investment and production, a slow growth was noticed in number of units but insignificant growth was gauged in employment during the liberalization period. However, in the overall period of the study, significant growth rate was registered in the case of all the four variables. Thus, it could safely be inferred from the analysis that the liberalization has resulted in jobless growth as the rate of growth of employment has gone down miserably. The profile of labour and capital productivity reflects that in absolute terms the labour and capital productivity and the capital intensity exhibited significant growth rate capital output ratio recorded negative growth during the liberalization period. The comparative profile of pre-liberalization and liberalization period indicates that during liberalization period, productivities of labour and capital accompanied by capital intensity have improved significantly whereas capital output ratio decelerated.

Keywords : DOM, Productivity, Compound annual growth rate, capital Intensity .

Classification: GJSFR-I **Classification:** FOR Code: 120405, 120103

GROWTH AND PRODUCTIVITY ANALYSIS OF NON METALLIC MINERALS PRODUCTS INDUSTRY OF PUNJAB

Strictly as per the compliance and regulations of:

Growth and Productivity Analysis of non Metallic Minerals Products Industry of Punjab

Dr. Gulshan Kumar

Abstract : In the fast changing liberalized global environment where growth and productivity have emerged as the important agents of growth and development, present study is an effort to investigate growth pattern and productivity trends of small scale non metallic mineral products industry in Punjab. The growth of industry has been measured in terms of four variables namely: number of units, fixed investment, direct employment and production. Yearly growth rates have been computed to mirror year to-year fluctuations in growth and compound annual growth rates (CAGRs) have been worked out to find the impact of the policies of liberalized regime on growth of this industry. Productivity trends have been sketched in terms of capital intensity, capital output ratio and partial factor productivities. The study observed that the significant growth rate was observed in the variables namely number of units, fixed investment and production. But the policies of liberalized regime have resulted in qualitative rather than quantitative growth in the small scale non-metallic minerals products industry in Punjab. Highly significant growth rate was recorded in fixed investment and production, a slow growth was noticed in number of units but insignificant growth was gauged in employment during the liberalization period. However, in the overall period of the study, significant growth rate was registered in the case of all the four variables. Thus, it could safely be inferred from the analysis that the liberalization has resulted in jobless growth as the rate of growth of employment has gone down miserably. The profile of labour and capital productivity reflects that in absolute terms the labour and capital productivity and the capital intensity exhibited significant growth rate capital output ratio recorded negative growth during the liberalization period. The comparative profile of pre-liberalization and liberalization period indicates that during liberalization period, productivities of labour and capital accompanied by capital intensity have improved significantly whereas capital output ratio decelerated.

Keywords : DOM, Productivity, Compound annual growth rate, Capital Intensity.

I. INTRODUCTION

In Punjab, agricultural growth has saturated and the state government is making every effort to develop secondary and tertiary sectors in order to augment the income of its people. But the efforts of the state government faced numerous challenges which are

factors like militancy and global factors like WTO etc. Still, the small scale industry of the state is able to confine not only to the adverse geo-political situation of the state but also relate to various socio-economic withstand all the challenges. The small scale non-metallic minerals products industry which constitutes manufacture of glass and glass products, cement, lime and plaster, articles of concrete, cutting, shaping and finishing of stones, manufacture of structural non-refractory clay and ceramic products etc., has demonstrated remarkable resilience and succeeded in strengthening its footholds despite the economic challenges unleashed by the policies of the liberalized regime. The policies of the liberalized regime aim to dismantle all the growth retarding structures to trade, investment and productivity. Removal of quantitative and non-quantitative restrictions, rationalization of subsidies, toning up tax administration, easing regulatory controls etc are some of the hallmarks of the liberalized regime. And as a consequence of this, competition has increased manifold, compelling the businesses to enhance productivities in order to survive in the market. Despite the challenges during pre-liberalization and liberalization period, small scale non-metallic minerals products industry of Punjab has made significant growth. The small scale non-metallic minerals products producing units in the small scale sector were only 756 in the year 1980-81 which soared to 1980 units in 1991-92 and further grew to the level of 2682 in 2004-05. As regards employment the industry provided employment to 8212 persons in the year 1980-81 which surged to 23862 persons in the year 1991-92 and further climbed to the level of 33758 persons in the year 2004-05. In the sphere of fixed capital investment, it was only 6.28 crores of rupees in the year 1980-81 which jumped to Rs. 33.81 crores in 1991-92 and further advanced the level of Rs. 109.36 crores in 2004-05. Similarly the value of production of small scale chemical products industry of Punjab was a only worth Rs. 25.47 crores in the year 1980-81, entailed to the level of Rs. 114.03 crores in the year 1991-92 and further enhanced to the level of Rs. 489.75 crores in the year 2004-05 (Directorate of Industries, Punjab ,2005) .

About: Presently working as a senior lecturer in department of Economics at D.A.V. College Hoshiarpur

II. OBJECTIVES OF THE STUDY

Analysis of growth and productivity of an industry plays an instrumental role in framing a pragmatic and result oriented industrial development strategy. In this study, an attempt has been made to dig the facts about small scale non-metallic minerals products industry in Punjab which can be treated as a catalytic agent for the cause of appropriate policy formulation. The specific objectives of the study were:

- 1 To compute partial productivity of labour (AOLR) and partial productivity of capital (AOCR).
- 2 To analyse the comparative picture of growth of number of units, fixed investment, direct employment and production during pre-liberalization and liberalization periods.
- 3 To calculate average capital output ratio and capital intensity of labour in small scale non-metallic minerals products industry of Punjab.

III. DATA BASE AND METHODOLOGY

Present study is based on secondary data for the period of 25 years i.e. 1980-81 to 2004-05. (Due to change in classification of industries, it is not possible to get the data as per requirement for the next four years because that data will not be in uniformity with that for the last 25 years, still study finds data for the 25 years sufficient to draw various conclusions). The data relating to number of units, direct employment, fixed capital and production of small scale small scale non-metallic minerals products industry at aggregate level for the above said period were culled from Directorate of Industries, Punjab. Since the figures of fixed capital and production were given at current prices, these have been converted into constant prices by deflating them with index number of the wholesale prices of manufactured products total, taking 1993-94 as the base year. Yearly growth rates for all the four variables were computed to capture year-to-year fluctuations in growth.

Partial productivities of labour and capital were obtained as O/L and O/K. For making an assessment of the extent of amount of units of capital that are needed to produce a certain level of output as well as the capital intensity, K/O and K/L ratios were computed. Compound Annual Growth Rates (CAGRs) for overall period (1980-81 to 2004-05) and two sub-periods: pre-liberalization (1980-81 to 1991-92) and liberalization periods (1991-92 to 2004-05) for all the eight variables were estimated by fitting an exponential function of the following form

$$Y_t = \beta_0 \beta_1 t e^{U_t} \quad (1)$$

Where Y_t is dependent variable, β_0 and β_1 are the unknown parameters, and U_t is the disturbance term. The equation (1) could be written in the logarithmic form as follows:

$$\log Y_t = \log \beta_0 + t \log \beta_1 + U_t \quad (2)$$

Above equation was estimated by applying Ordinary Least Square Method and compound rate of growth (gr_c) was obtained by taking antilog of estimated regression coefficient, subtracting 1 from it and multiplying the difference by 100, as under:

$$gr_c = (A.L. \hat{\beta}_1 - 1) \times 100 \quad (3)$$

Where $\hat{\beta}_1$ is an estimate for β_1 . The significance of growth rates was tested by applying t – test, given as follows:

$$t = \frac{\hat{\beta}_1}{s(\hat{\beta}_1)} \sim t(n-2) \text{ d.f.} \quad (4)$$

Where $\hat{\beta}_1$ is the regression estimate, $s(\hat{\beta}_1)$ is the respective standard error. All statistically insignificant growth rates are treated as almost zero growth rates.(Gupta and Kumar, 2006).

IV. RESULTS AND DISCUSSION

This section presents the results and discussion of the study. The first subsection is devoted to the analysis of compound annual growth rates of number of units, employment, fixed capital and production. The second subsection is devoted to the profile of capital intensity, capital-output ratio and partial productivities of labour and capital in small scale non-metallic minerals products industry.

V. SECTION – I

a. Growth Performance

Measurement of growth has been one of the most extensively researched areas. The growth rate analysis provides the detailed vision of growth. The year to year growth rates and compound annual growth rates (CAGRs) of number of units, fixed investment, employment and production of small scale non-metallic minerals products industry are shown in table I. The results have been discussed in brief under the following four sub heads:-

Insert Table-I

b. Number of units

The year-to-year growth rates of number of units as demonstrated in column II of table I suggests a growth trend but with a downward bias. Commencing from the level of 12.17 percent in 1981-82 touched the level of 15.67 percent in 1984-85. Then started the decline in growth rate which continued till 1986-87, however fluctuations in growth rates were observed at odd intervals till 1991-92 and the most noticeable one was in the year 1992-93 when it jumped to the level of 48.94 percent. But in the next year, a sharp fall is found to the tune of -26.01 percent. Improved in next year and observing great fluctuations, finally settled at 0.64 percent in 2004-05. Further perusal of the column reveals that the compound annual growth rates for the pre-liberalization period was found to be 9.1 percent which declined to 1.41 percent in the liberalization period. However, a significant CAGR of 5.06 percent was observed during overall period of the study.

c. Fixed Investment

The profile of annual growth rates of fixed investment as envisaged in column III of table I reveals that in 1981-82 rate was 5.72 percent, it touched the level of 13.20 percent in 1983-84.. The yearly growth rate started to fluctuate in the following years and dipped to 0.76 percent in the year 1991-92 and remained in negative zone for next one year and rose to 7.92 percent in 1993-94 and with some fluctuations in following years, escalated to level of 10.47 percent in 1999-2000. Then again witnessing a sharp dip, rate of growth was glanced in 2000-01 of the order of 0.87 but proved to be finalised at the level of -4.67 percent in 2004-05. Further investigation of the column exhibits a significant CAGR of 9.62 percent in the pre-liberalization period which declined to the level of 5.26 percent in the liberalization period. However, a CAGR of 6.40 percent was observed for the entire period of the study.

d. Direct Employment

Perusal of yearly growth rates of employment as contained in column IV of table I exhibits swings of varying magnitude through out the study period. The period 1981-82 observed the rate of growth as 10.83 percent increased to 16.41 percent in 1983-84 and with fluctuations it became 15.28 percent in 1988-89 and with fluctuations at odd intervals, on the whole declining trend continued to be there till 2004-05 when it became very low of the order of 0.64 percent. Further perusal of the column reveals that the pre-liberalisation period noticed a significant CAGR of 10.52, but the liberalisation period failed to register any growth because of insignificant CAGR of 0.41 percent. However, a CAGR of 5.90 percent was observed for the overall period of the study.

e. Production

The annual growth rates of production as sketched in column V of table I reflects an uptrend with volatility at every alternate step. Starting from a yearly growth rate of 4.72 percent in 1981-82 rose to a level of 15.72 percent in 1983-84 and sharp dive appeared when it became 1.95 percent in the very next year. Thereafter, the growth rate after getting variations in the following years, entered the negative zone in 1991-92 and jumped to the level of 13.79 percent in 1994-95. The growth rate started fluctuating again in the following years and reached a level of -0.81 percent in the year 2004-05. The column further reveals that the CAGR for the pre-liberalisation period was found to be 8.05 percent which accelerated to the level of 6.90 percent in the liberalization period. However, a CAGR of 6.69 percent was observed for the overall period of the study. The conclusion that emanates from the above discussion is that the liberalization period failed to register improvement in compound annual growth rates in any of the four variables. In case of number of units, a clear deceleration was recorded while the direct employment disappointed the most also because of very low rather insignificant CAGR. In the sphere of fixed capital investment, the CAGR also declined. Production variable also find decline in growth. Hence the policies of the liberalization remained unable to touch growth of this particular industry in Punjab.

VI.

SECTION – II

a. Productivity Analysis And Profile Of Related Variables

Productivity depends on the relationship between total output and related inputs such as labour and capital which have been used in production of that output. It is evident that the capacity of the economy to produce goods and services mainly depends on productivity of these factors. Productivity can be enhanced through proper utilization of such resources. It is widely agreed that enhancing productivity is a signal of good health of a system which allows producing at lower cost and makes it competitive .

Table –II depicts the profile of capital intensity, capital output ratio and partial productivities of labour and capital of the small scale non-metallic minerals products industry of Punjab. This table also highlights the compound annual growth rates of capital intensity, capital-output ratio and partial productivities of labour and capital for the pre-liberalization and liberalization period. The detailed column wise explanation of table II is discussed as under:

Insert Table-II

b. Labour Productivity (AOLR)

The labour productivity as complied in column II of table II shows a figure of Rs. 0.0080 crores in 1980-81 which continued to fall to the level of 0.0056 till 1992-93 and remained at the same level for the next year. Thereafter the labour productivity escalated in 1994-95 to touch the level of Rs 0.0061 crores and in 2003-04, touched the peak level of 0.0089. The labour productivity finally settled at Rs. 0.0087 crores in 2004-05. The column further reveals that the CAGR for the liberalization period (4.29 percent) registered a remarkable improvement over the CAGR of -2.27 percent belonging to the pre-liberalisation period. However, a CAGR of 0.74 percent was observed for the overall period of the study.

c. Capital Intensity (DOM)

The profile of annual growth rates of capital intensity as sketched in column III of table II demonstrates that the capital intensity which was Rs.0.0020 crores in 1980-81 reached a level of Rs. 0.0018 crores in 1990-91 after experiencing minor fluctuations and declined to 0.0016 crores in 1992-93 and kept the level for the next three years and surged to level of 0.0018 crores in 1996-97 and with minor fluctuations, finally settled at a level of Rs. 0.0020 crores in 2004-05. The column further reveals a significant improvement in the CAGR of liberalization period (2.57 percent) from the CAGR of -0.85 percent belonging to the pre-liberalisation period. However, a CAGR of 0.47 percent (insignificant) was noticed in the overall period of the study.

d. Capital-Output Ratio (Cor)

The column 1V of table II portrays the profile of capital output ratio. Starting from a ratio of 0.25 in 1980-81, continued to increase to the level of 0.30 with marginal fluctuations. Dipped to 0.26 and remaining at the same level for the four years, increased to the level of 0.27 in 1998-99. Showing some fluctuations, ultimately downward march continued till COR settled at a level of 0.22 in 2004-05. Further perusal of the column explains that the CAGR of the pre-liberalisation period which was 1.41 percent declined substantially to reach the level of -1.68 percent in the liberalization period. However, a CAGR of -0.33 percent was observed for overall period of the study.

e. Capital Productivity (Aocr)

The column V of table II reflects improvement in capital productivity but also dots fluctuations at odd intervals. Commencing from a capital productivity of 4.06 in 1980-81 fell to the level of 3.36 in 1991-92, accelerated to touch the level of 3.60 in 1992-93. and managed to touch the highest level of 4.48 in 2004-05. The column further reveals that the CAGR which was -1.43 percent for the pre-liberalisation period cheered up

during the liberalization period to reach the level of 1.56 percent. However a CAGR of 0.27 percent was observed for the overall period of the study. From the above discussion it can be safely inferred that the liberalization has encouraged mechanization and technological up gradation in the small scale non-metallic minerals products industry in Punjab. The policies of the liberalization regime have resulted in lower COR and enhancement of factor productivities.

VII. CONCLUSION AND FINDINGS OF THE STUDY

It is quite evident from the entire discussion that despite the problem of militancy during pre-liberalization period, significant growth rate was observed in all the variables namely number of units, fixed investment and production. But the policies of liberalized regime have resulted in qualitative rather than quantitative growth in the small scale non-metallic minerals products industry in Punjab. Highly significant growth rate was recorded in fixed investment and production, a slow growth was noticed in number of units but insignificant growth was gauged in employment during the liberalization period. However, in the overall period of the study, significant growth rate was registered in the case of all the four variables. Thus, it could safely be inferred from the analysis that the liberalization has resulted in jobless growth as the rate of growth of employment has gone down miserably. The profile of labour and capital productivity reflects that in absolute terms the labour and capital productivity and the capital intensity exhibited significant growth rate capital output ratio recorded negative growth during the liberalization period. The comparative profile of pre-liberalization and liberalization period indicates that during liberalization period, productivities of labour and capital accompanied by capital intensity have improved significantly whereas capital output ratio decelerated.

REFERENCES RÉFÉRENCES REFERENCIAS

- 1) Ahluwalia, I. J. (1991), *Industrial Growth in India: Stagnation Mid-Sixties*, Oxford University Press: Delhi
- 2) Bagchi, A.K. (1975), "Some Characteristics of Industrial Growth in India" *Economic and Political Weekly*, Vol.10, Issue 5, pp.157-61.
- 3) Balakrishnan, P. and Suresh, (2003), "Growth and Distribution in Indian Industry in the Nineties", *Economic and Political Weekly*, Vol. 38 No. 41, pp. 3679-82.
- 4) Bhatia, G. S. (1999), "The Impact of New Economic Policy on Output and

Employment in Manufacturing Sector: A case Study of Punjab" in V. S. Mahajan (ed.), *Economic Reforms and Liberalisation*, New Delhi: Deep & Deep.

5) Bhavani, T.A. (2002), "Small-Scale Units in the Era of Globalisation – Problems and Prospects", *Economic and Political Weekly*, Vol. 37, Issue 29, pp. 3041-52.

6) Brahmananda, P. R. (1982), *Productivity in Indian Economy: Rising Inputs and Falling Outputs*, Himalaya Publishing House: Delhi.

7) Bhatia, G.K. (1999), "The Impact of New Economic Policy on Output and Employment in Manufacturing Sector: A Case Study of Punjab" in V.S. Mahajan (ed.) *Economic Reforms and Liberalization*, Deep & Deep Publications: New Delhi.

8) Chand, Vikram (2000), "Small Industry in Punjab: Technology and Modernisation", *The Tribune*, July 29th, p.10.

9) Chenery, H.B. (1960), "Pattern of Industrial Growth", *The American Economic Review*, Vol. I, Issue 4, p.635.

10) Dandekar, V. M. (1980), "Introduction to Seminar on Data Base and Methodology for the Study of Growth Rates in Agriculture", *Indian Journal of Agricultural Economics*, Vol. XXXV, No. 2, (April – June), pp. 1 – 12.

11) Directorate of Industries, Punjab, Annual Data, 2005 available at www.punjabgovt.nic.in

12) Ferrel, O. Hartline, M. Lucas, G. Luck, D. (1998) "Marketing Strategy", Orlando, FL: Dryden Press.

13) Golder, B. N. (1986), *Productivity Growth in Indian Industry*, Allied Publishing Pvt. Ltd.: New Delhi.

14) Golder, B. and Anita Kumari (2003), "Import Liberalisation and Productivity Growth in Indian Manufacturing in the 1990s", *Developing Economies*, Vol. 41, No. 4, pp. 436-60.

15) Golder, B. (2004), "Indian Manufacturing: Productivity Trends in Pre- and Post – Reform Periods", *Economic and Political Weekly*, pp. 5033-44.

16) Gujarati, D. N., (1995), *Basic Econometrics*, Singapore: McGraw-Hill, Inc.

17) Gupta, Sanjeev and Gulshan Kumar (2006) "Growth Performance and Productivity of Leather Industry in Punjab" *Productivity*, Vol .47, No.3, pp.295-303.

18) Gupta, Deepak (1985), "Productivity Trends and Factor Substitutability in Manufacturing Sector in Maharashtra", *Margin*, Vol. 17 No. 14, pp. 22-70.

19) Gupta, Deepak (1990), " Productivity Trends and Factor Analysis of Indian Automobile Industry", *PSE Economic Analyst*, Vol. XI No. 2, pp. 22-67.

20) .

21) Krishnaji, N. (1980), "Measuring Agricultural Growth", *Indian Journal of Agricultural Economics*, Vol. XXXV, No. 2, (April – June), pp. 31 – 41

22) Krishan, Raj and S. S. Mehta (1968), "Productivity Trends in Large Scale Industries", *Economic and Political Weekly*, Oct. 26

23) Kumar, Arun, A.V. (1996), "Modern Small Industry in Karnataka-Growth and Structure", *Economic and Political Weekly*, Vol.31, Issue21, pp.M.15-M.21.

24) Lal. S. (1966), "Geographical Distribution of Industrial activity in Punjab", *Asian Economic Review*, Vol.8, Issue 2, pp.220-37.

25) Lokanathan, P.S. (1936), "The Structure of Industry in India", *Indian Journal of Economics*, Vol.16, Issue 63, pp. 449-56.

26) Mahajan, V.S. (1971), "Small Industry and Employment", *Yojana*, Vol.15, Issue 15, p.14.

27) Matadeen S. (1997), "Small and Medium Enterprise Sector in Mauritius: Its Evolution and Growth with Special Reference to Investment", *Vision*, Vol. 1, No. 1, pp. 1-13.

28) Mehta, B. C. and G. M. K. Madani (1973), "Size Technology and productivity in Cement Industry in India", *Productivity*, Vol. 14 No. 3-4, pp. 249-253.

29) Pandit, M.L. (1985), *Industrial Development in the Punjab and Haryana*, B.R. Publishing Corporation: Delhi.

30) Ramaswamy, K.V. (1994), 'Small-Scale Manufacturing Industries—Some Aspects of Size, Growth and Structure", *Economic and Political Weekly*, Vol.29, Issue 9, pp. M.13-M.22.

31) Sahoo, S.K. (2003-04), "Small Scale Manufacturing Industries in India", *The Indian Economic Journal*, Vol. 51, Issue 01, pp. 52-64.

32) Sandesara, J.C. (1982), "Industrial Growth in India-Performance and Prospects," *Indian Economic Journal* Vol.30, Issue 2, pp.90-119.

33) Sardana, G. S. (2001), "SMEs: Changing Paradigm of Performance Measures", *Productivity*, Vol. 42, No. 2, pp.191-200.

34) Siddharthan, N.S. (2003), "Liberalisation and Growth of Firms in India" *Economic and Political Weekly*, Vol. 38, Issue 20, pp. 1983-88.

35) Singh, Lal (1963), "Geographical Distribution of Industrial Activity in Punjab", *Asian Economic Review*, pp. 220-235.

36) Singh, Pritam, (1995), *Punjab Economy: The Emerging Pattern*, Enkay Publishers Pvt. Ltd.: New Delhi.

37) Sivaya, K. V. and Das, (2001), *Indian Industrial Economy*, S. Chand & Company Ltd.: New Delhi.

38) Subrahmanyam, M.H. Bala (2004), "Small Industry and Globalisation: Implications, Performance and Prospects", *Economic and Political Weekly*, Vol. 39, Issue 21, pp. 1826-34.

39) Venkataramaiah and L.G. Burange (2003), "Structure and Growth of Industry", *Economic and Political Weekly*, Vol. 38, Issue 12-13, pp. 1212-18.

40) Veeeramani C. and B. Golder (2005), "Manufacturing Productivity in Indian States: Does Investment Climate Matter?" *Economic and Political Weekly*, June 11, PP. 2413-19.

Table I

Year to year and Compound Annual Growth Rates (in percent)

Year	Number of units	Fixed Investment (in Rs.Crore)	Direct Employment (in no.)	Production (in Rs.Crore)
1981-82	12.17	5.72	10.83	4.72
1982-83	14.39	15.43	13.60	10.96
1983-84	15.67	13.20	16.41	15.72
1984-85	10.78	5.93	9.91	1.95
1985-86	8.61	10.93	7.51	8.04
1986-87	6.00	12.61	10.53	7.02
1987-88	7.41	9.73	9.38	14.03
1988-89	9.50	12.96	15.28	8.78
1989-90	7.43	5.82	8.65	10.85
1990-91	4.70	4.71	6.82	2.42
1991-92	4.60	0.76	3.73	-6.24
1992-93	48.94	-3.60	5.52	3.54
1993-94	-26.01	7.92	7.36	6.31
1994-95	4.26	5.91	4.35	13.79
1995-96	2.11	3.47	3.33	2.45
1996-97	4.52	13.60	1.36	14.51
1997-98	0.54	7.66	1.26	7.99
1998-99	1.84	8.99	2.41	4.51
1999-00	2.65	10.47	2.81	11.94
2000-01	2.04	0.87	2.77	2.72
2001-02	1.38	3.69	1.59	8.04
2002-03	0.34	0.29	1.02	3.99
2003-04	0.6	-3.66	0.96	1.59
2004-05	0.64	-4.67	0.64	-0.81
Pre Liberlization	9.1*	9.62*	10.52*	8.05*
Liberalization Period	1.41*	5.26*	0.41**	6.90*
Overall Period	5.06*	6.40*	5.90*	6.69*

*Significant at 5 percent level of significance.

**Insignificant at 5 percent level of significance.

Source: Calculated from the data supplied by Directorate of Industries, Punjab.

Note:1. Fixed investment and Production figures are taken on 1993-94 constant prices

to compute various growth rates.

2. It is not possible to find change for the first year as it is based on previous year
so growth for 1980-81 is not quantifiable.

TABLE II
Profile of Capital Intensity, Capital-Output Ratio and Partial Productivity of Capital and Labour

Year	AOLR (In Rs.Cr.)	DOM (In Rs.Cr.)	COR	AOCR
1980-81	0.0080	0.0020	0.25	4.06
1981-82	0.0075	0.0019	0.25	4.02
1982-83	0.0073	0.0019	0.26	3.86
1983-84	0.0073	0.0018	0.25	3.95
1984-85	0.0068	0.0018	0.26	3.80
1985-86	0.0068	0.0018	0.27	3.70
1986-87	0.0066	0.0019	0.28	3.52
1987-88	0.0069	0.0019	0.27	3.65
1988-89	0.0065	0.0018	0.28	3.52
1989-90	0.0066	0.0018	0.27	3.69
1990-91	0.0063	0.0018	0.28	3.61
1991-92	0.0057	0.0017	0.30	3.36
1992-93	0.0056	0.0016	0.28	3.60
1993-94	0.0056	0.0016	0.28	3.55
1994-95	0.0061	0.0016	0.26	3.81
1995-96	0.0060	0.0016	0.26	3.78
1996-97	0.0068	0.0018	0.26	3.81
1997-98	0.0072	0.0019	0.26	3.82
1998-99	0.0074	0.0020	0.27	3.66
1999-00	0.0081	0.0022	0.27	3.71
2000-01	0.0081	0.0021	0.26	3.78
2001-02	0.0086	0.0022	0.25	3.94
2002-03	0.0088	0.0022	0.24	4.08
2003-04	0.0089	0.0021	0.23	4.30
2004-05	0.0087	0.0019	0.22	4.48
CAGRs:-				
Pre-liberalization period	-2.27*	-0.85*	1.41*	-1.43*
Liberalization period	4.29*	2.57*	-1.68*	1.56*
Overall Period	0.74*	0.47*	-0.33**	0.27*

Source: Calculated from the data supplied by directorate of industries, Punjab.

Note : *significant at 5 percent level of significance.

** Insignificant at 5 percent level of significance

Terms used:

- a) DOM: Degree of Mechanization (capital intensity):- It is fixed capital at constant prices per employee.
- b) COR: Capital output Ratio: - It is ratio of total fixed capital to total production (both deflated).
- c) AOCR:- Average output capital ratio (Capital Productivity):- It is ratio of total production to total fixed capital (both deflated)
- d) AOLR: - Average Output Labour Ratio (Labour Productivity):- It is total production at constant prices per employee.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 2 Version 1.0 March 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975- 5896

On Topological Sets and Spaces

By M.P. Chaudhary, Vinesh Kumar, S. Chowdhary

Jawaharlal Nehru University, New Delhi, INDIA

Abstracts - In this research paper we are introducing the concept of m-closed set and m-T1/3 space,s discussed their properties, relation with other spaces and functions. Also, we would like to discuss the applications of topology in industries through different areas of sciences such as Biology, Chemistry, Physics, Computer Science, Business Economics and Engineering.

Keywords : *Alpha - set, Beta – set, generalized alpha-set and generalized alpha-set, DNA replication, electron microscopy, biomathematics, game theory, inorganic species etc.*

Classification: 2000 AMS Subject Classifications: 54B23, 54A12, 54C17

Strictly as per the compliance and regulations of:

On Topological Sets and Spaces

M.P. Chaudhary^{1*} Vinesh Kumar², S. Chowdhary³

Abstract: In this research paper we are introducing the concept of m-closed set and m-T_{1/3} space,s discussed their properties, relation with other spaces and functions. Also, we would like to discuss the applications of topology in industries through different areas of sciences such as Biology, Chemistry, Physics, Computer Science, Business Economics and Engineering.

Keywords : Alpha - set, Beta – set, generalized alpha-set and generalized alpha-set, DNA replication, electron microscopy, biomathematics, game theory, inorganic species etc.

I. INTRODUCTION

Throughout this paper (X,τ), (Y,τ) and (Z,τ) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space (X, τ), int (A), cl(A) and C(A) represents the interior of A, the closure of A, and the complement of A in X respectively. In present time topology is an important branch of pure mathematics. But it is difficult to fix a date for the starting of topology as a subject in its own right. The first time use of term TOPOLOGY that we know of appeared in title of a book written by J.W.Listing in 1847. Great mathematician Riemann used exclusively used the term “Analysis Situs”. An important work was done by Pioncare in 1985 when he published his first paper on “Analysis Situs”. However, historians of science regard cantor’s research on Fourier series from 1879 to 1884 as the beginning of General Topology. N. Levine [1] and M.E. Abd El. Monsef et al[2] introduced semi-open sets and β-sets

. D. Andrijevic^[3] used notation semi preopen sets for β-sets. Again N. Levine^[4] generalized the concept of closed sets to generalized closed sets. P. Bhattacharya and B.K. Lahiri^[5] generalized the concept of closed sets to semi-generalized closed sets via semi-open sets. N. Biswas^[6] studied that the complement of a semi-open set is called a semi-closed set. The aim of this paper is to draw a new technique to obtain a new class of sets, called m-closed sets. This class is obtained by generalizing semi-closed sets via semi-generalized open sets. It is shown that the class of m-closed sets properly contains the class of semi-closed sets and is properly contained in the class of semi-preclosed sets. Also it is shown that the class of m-closed sets is independent from the class of preclosed sets/the class of generalized closed sets/the class of $\alpha\alpha$ -closed sets/the class of $\alpha\alpha$ -closed sets. P. Bhattacharya and B.K. Lahiri^[5], D.S. Jancovic & K.L. Reilly^[7] and H. Maki et al^[8] introduced semi-T_{1/2} spaces, semi-T_D and $\alpha T_{1/2}$, semi-T_D and semi-T_{1/2} spaces respectively. J. Dontchev^[9&10] shown that $\alpha T_{1/2}$ separation axioms are equivalent. R-Devi et al^[11] introduced αT_b spaces and T_b spaces respectively. As an application of m-closed sets, we introduced a new class of spaces, namely m-T_{1/3} spaces. Also characterize m-T_{1/3} spaces and show that the class of m-T_{1/3} spaces properly contains contains the class of semi-T_{1/2} spaces, the class of αT_b spaces and the class of semi-T_{1/3} spaces.

II. DEFINITIONS AND NOTATIONS

Definitions 2.1: Let A be a subset of topological space X then A is called.

- a *generalized closed (g-closed)* set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
- A *semi-generalized closed (sg-closed)* set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ). The complement of a sg-closed set is called a sg-open set.
- A *generalized semi-closed (gs-closed)* set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
- An α -*generalized closed (ag-closed)* set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ).
- A *generalized α -closed (g α -closed)* set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ).
- A $g\alpha^{**}$ -closed set if $cl(A) \subseteq int(cl(U))$, whenever $A \subseteq U$ and U is α -open in (X, τ).

About:¹ International Scientific Research & Welfare Organization, New Delhi, INDIA

*E-mail: *mpchaudhary_2000@yahoo.com

About:². JRF (December 2009, All India Rank 67), CSIR, GOI and

Jawaharlal Nehru University, New Delhi, INDIA

About:³. Formerly Associate Professor of Mathematics and Acting Principal,Hindu College (University of Delhi) INDIA

A δ -generalized closed (δg -closed) set if $\text{cl}\delta(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

- (g). A generalized semi-preclosed (gsp -closed) set if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (h). A δ -closed set if $A = \text{cl}\delta(A)$ whenever $\text{cl}\delta(A) = \{x \in X \mid \text{int}(\text{cl}(U)) \cap A \neq \emptyset, x \in U \text{ and } U \in \tau\}$.
- (i). A regular-open set if $A = \text{int}(\text{cl}(A))$ and a regular-closed set if $\text{cl}(\text{int}(A)) = A$.
- (j). A semi-regular set if it is both semi-open and semi-closed in (X, τ) .
- (k). A preopen set if $A \subseteq \text{int}(\text{cl}(A))$ and preclosed set if $\text{cl}(\text{int}(A)) \subseteq A$.
- (l). A semi-open set if $A \subseteq \text{cl}(\text{int}(A))$ and a semi-closed set if $\text{int}(\text{cl}(A)) \subseteq A$.
- (m). A semi-preopen set or β -open set if $A \subseteq \text{cl}(\text{int}(\text{cl}(A)))$ and a semi-preclosed set or β -closed set if $\text{int}(\text{cl}(\text{int}(A))) \subseteq A$.

Definitions 2.2: A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (a). Pre-semi-open if $f(U)$ is semi-open in (Y, σ) for every semi-open set U of (X, τ) .
- (b). Pre-semi-closed if $f(U)$ is semi-closed in (Y, σ) for every semi-closed set U of (X, τ) .
- (c). Semi-continuous if $f^{-1}(V)$ is semi-open in (X, τ) for every open set V of (Y, σ) .
- (d). Pre-continuous if $f^{-1}(V)$ is pre-closed in (X, τ) for every closed set V of (Y, σ) .
- (e). g -continuous if $f^{-1}(V)$ is g -closed in (X, τ) for every closed set V of (Y, σ) .
- (f). αg -continuous if $f^{-1}(V)$ is αg -closed in (X, τ) for every closed set V of (Y, σ) .
- (g). $g\alpha$ -continuous if $f^{-1}(V)$ is $g\alpha$ -closed in (X, τ) for every closed set V of (Y, σ) .
- (h). α -continuous if $f^{-1}(V)$ is α -closed in (X, τ) for every closed set V of (Y, σ) .
- (i). β -continuous if $f^{-1}(V)$ is semi-preopen in (X, τ) for every open set V of (Y, σ) .
- (j). sg -continuous if $f^{-1}(V)$ is sg -closed in (X, τ) for every closed set V of (Y, σ) .
- (k). gs -continuous if $f^{-1}(V)$ is gs -closed in (X, τ) for every closed set V of (Y, σ) .
- (l). gsp -continuous if $f^{-1}(V)$ is gsp -closed in (X, τ) for every closed set V of (Y, σ) .
- (m). Irresolute if $f^{-1}(V)$ is semi-open in (X, τ) for every semi-open set V of (Y, σ) .
- (n). sg -irresolute if $f^{-1}(V)$ is sg -closed in (X, τ) for every sg -closed set V of (Y, σ) .

Definitions 2.3: A topological space (X, τ) is called a

- (a). $T_{1/2}$ space if every g -closed set is closed.
- (b). Semi- $T_{1/2}$ space if every sg -closed set is semi-closed.
- (c). Semi- T_D space if every singleton is either open or nowhere dense.
- (d). $\alpha T_{1/2}$ space if every $g\alpha^{**}$ -closed set is α -closed.
- (e). αT^i space if a (X, τ^α) is T_i where $i = 1, 1/2$.
- (f). αT_b space if every αg -closed set is closed.
- (g). T_b space if every gs -closed set is closed.
- (h). αT_m space if every $g\alpha^{**}$ -closed set is closed.
- (i). Feebly- T_1 space if every singleton is either nowhere dense or clopen.
- (j). $T_{3/4}$ space if every δg -closed set is δ -closed.
- (k). Semi- T_1 space if for any $x, y \in X$ such that $x \neq y$, there exists two semi-open sets G and H such that $x \in G, y \in H$ but $x \notin H$ and $y \notin G$.

III. M-CLOSED SET AND ITS PROPERTIES

Definition 3.1: A subset A of a topological space (X, τ) is called a m -closed set if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a sg -open set of (X, τ) .

Theorem 3.1: (i). m -closedness and g -closedness are independent notions.

(ii). m -closedness is independent from $g\alpha$ -closedness, αg -closedness and preclosedness.

Proof: It can be seen by the following examples,

Example 3.1.1: Let $X = \{a, b, c\}$ $\tau = \{\emptyset, X, \{a\}, \{a, c\}\}$ and $C = \{c\}$ and $D = \{a, b\}$, C is a m -closed set but not even a g -closed set of (X, τ) . D is g -closed set but not a m -closed set of (X, τ) .

The following two examples show that m -closedness is independent from $g\alpha$ -closedness, αg -closedness and preclosedness.

Example 3.1.2: Let $X = \{a, b, c\}$ $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $K = \{a\}$. K is m -closed but it is neither a $g\alpha$ -closed nor a αg -closed set. Also K is not preclosed set.

Example 3.1.3: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $L = \{b\}$. Here L is not a m-closed set of (X, τ) . However L is a $g\alpha$ -closed set. Hence it is a αg -closed set. Also L is a preclosed set of (X, τ) .

Lemma 3.1: For a subset A of a space (X, τ) , the following conditions are equivalent.

- (i). A is pre-open, sg-open and m-closed.
- (ii). A is pre-open, sg-open and semi-closed.
- (iii). A is regular open.

The following example shows that a subset B of a space (X, τ) need not be a closed set even though B is pre-open, sg-open and a Q-set.

Example: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$ and $B = \{a\}$. Clearly B is pre-open, sg-open and a Q-set but not a closed set.

Theorem 3.2: For a subset A of a space (X, τ) , the following conditions are equivalent.

- (i) A is clopen.
- (ii) A is preopen, sg-open, Q-set, and m-closed.

Proof: (i) \Rightarrow (ii): It is obvious.

Proof: (ii) \Rightarrow (i): Since A is preopen, sg-open and a m-closed set of (X, τ) , then by Lemma 1, A is a regular open set. This implies A is open. On the other hand, $A = \text{int}(\text{cl}(A)) = \text{cl}(\text{int}(A)) \subseteq \text{cl}(A)$. Since A is a Q-set, so A is closed. Therefore A is a clopen set of (X, τ) . \square

Corollary 3.1: The union of two m-closed sets need not to be m-closed.

Proof: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. $A = \{a\}$ and $B = \{b\}$. Then both A and B are m-closed but $A \cup B$ is not a m-closed set of (X, τ) .

IV. M-T_{1/3} SPACE AND ITS PROPERTIES

Definition 4.1: A space (X, τ) is said to be an m-T_{1/3} space if every m-closed set in it is semi-closed.

Theorem 4.1: For a space (X, τ) , the following conditions are equivalent.

- (i). (X, τ) is a m-T_{1/3} space.
- (ii). Every singleton of X is either sg-closed or semi-open.
- (iii). Every singleton of X is either sg-closed or open.

Proof: (i) \Rightarrow (ii). Let $x \in X$ and assume that $\{x\}$ is not a sg-closed set of (X, τ) . Then $X - \{x\}$ is a sg-open of (X, τ) . So x is the only sg-open set containing $X - \{x\}$. Therefore $X - \{x\}$ is a m-closed set of (X, τ) . Since (X, τ) is a m-T_{1/3} space, then $X - \{x\}$ is a semi-closed set of (X, τ) . \square

Proof. (iii) \Rightarrow (i) Let A be a m-closed set of (X, τ) . Clearly $A \subseteq \text{scl}(A)$. Let $x \in X$. By supposition, $\{x\}$ is either sg-closed or semi-open. \square

Case I: Let us suppose that $\{x\}$ is sg-closed. By Theorem 1.3.2 $\text{scl}(A) - A$ does not contain any non-empty sg-closed set. Since $x \in \text{scl}(A)$, then $x \in A$.

Case II: Let us suppose that $\{x\}$ is a semi-open set. Since $x \in \text{scl}(A)$, then $\{x\} \cap A \neq \emptyset$. So, $x \in A$. Hence in any case $\text{scl}(A) \subseteq A$. Therefore $A = \text{scl}(A)$ or equivalently A is a semi-closed set of (X, τ) . Hence (X, τ) is a m-T_{1/3} space.

Proof: (ii) \Leftrightarrow (iii). It follows from the fact that a singleton is semi-open if it is open. .

V. APPLICATIONS OF GENERAL TOPOLOGY

Here we would like to discuss in brief the use of general topology in industries through by some areas of sciences.

a) Application in BIOLOGY

In recent years, topologists have developed the discrete geometric language of knots to a fine mathematical art one of the most interesting new scientific application of topology is the use of knot theory in analysis of DNA experiments. One of the important issues in molecular

biology in the 3-dimensional structure of proteins and DNA in solution in the Cell and the relationship between structure and functions. Generally, protein and DNA structures are determined by X-rays crystallization and the manipulation required preparing a specimen for electron microscope. The DNA molecules are long and thin and the packing of DNA molecules in the cell nucleus is very complex. The biological solution to this entanglement problem is the existence of enzymes, which convert DNA from one topological form to another and appear to have a preformed role in the central genetic events of DNA replication, recombination and transcription. The topological approach to enzymology aims to exploit knot theory directly to reveal the secrets of enzyme action. How recent results in 3-dimensional topology have proved to be of use in the description and quantization of the action of cellular enzymes on DNA is best described by D.W.Sumners in his research paper published in 1995.

b) Application in CHEMISTRY

As a natural continuation of classical knot theory, chemists have been trying to synthesize and measure molecules with topologically interesting structures. The idea of molecules made of linked rings as a realistic possibility, was discussed at least as early as 1912. The most important tools in the topological method of making chemical predictions are known as indices. They derive from algorithms of procedures for converting the topological structure of a molecule into a single characteristic number. For example, an index might involve adding together the total number of rings in a molecule, or a number of atoms that are connected to three or more other atoms. The topological method has found applications beyond the simple prediction of chemical properties. It has the potential to help in modeling the behavior of gases, liquids and solids and of both organic & inorganic species, in developing new anesthetics and psychoactive drugs, in predicting the degree to which various pollutants might spread in the environment and the harm they might do once they spread, in estimating the cancer causing potential of certain chemicals and even in developing beer with a well balanced taste.

c) Application in Physics

According to Normal Howes – uniform structures are the most important constructs from the physicist's point of view. The importance of uniform spaces from the physicist's points of view is also well brought out by the proceedings of the Nashville Topological Conference .In fact; topology has intrigued particle physicists for a long time. Recall that Donaldson used the Yang Mills field equations of mathematical physics, themselves generalizations of Maxwell's equations to study in 4 –

space, there by reversing tradition by applying methods from physics to the understanding of topology.

d) Application in Computer Science

Recent developments in topology are penetrating other fields is best illustrated by the topics discussed at an extra ordinary research conference which was held at Barkley in 1990 in honor of the great topologist Stephen Smale's 60th birthday. The proceeding were published with title "Form topology to Computation: Unity and diversity in mathematical sciences" edited by Hirsch, Marsden and Shub. There seems to not many examples of the use of topology in computer science, perhaps because it is not clear how it is related to the fundamental questions. However, in recent years, there have been some interesting results. The problem of the minimal number of conditional statements in an algorithm, to solve a particular problem, seems particularly well suited for the topological approach.

e) Application in Business Economics

Topology has had tremendous effect on developments in economics. The study of conflicts of interest between individuals is what makes economics interesting and mathematically complex. Indeed we now know that the space of all individual preferences, which define the individual optimization problems, is topologically nontrivial and that is topological complexity is responsible for the impossibility of treating several individual preferences as if they were one. Because it is not possible, in general, to define a single optimization problem. Because of the complexity arising from simultaneous optimization problems, economic differs from physics where many of the fundamental relations derive from a single optimization problem. The attempt to find solutions to conflicts among individual interests led to three different theories about how economics are organized and how they behave.

f) Application in Engineering

Topology has also found applications in engineering. a problem of great importance to an electric industry, which had failed of solution by its own engineers, has been solved by using methods of set theoretic topology. In particular, Daniel R. Baker has established that topological techniques are used in several robotics applications. Topology has been applied to production and distribution problems as well.

VI. ACKNOWLEDGEMENT

The first author is thankful to the Faculty members and Library staff of CRM, Marseille, France, EUROPE for their cooperation during his visit in February 2010. Second author is thankful to CSIR for JRF in Mathematics.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Levine, N. : Semi open sets and semi continuity in topological spaces.
Amer. Math. Monthly, 70, 1963, 36-41.
2. Abd El- Monsef, M.E., El-Deeb, S.N. & Mahmoud, R.A. : β -open sets and β -continuous Mappings.
Bull. Fac. Sci. Assiut Univ., 12(1), 1983., 77-90.
3. Andrijevic, D. : Semi-preopen sets.
Mat. Vesnik, 38., 1986., 24-32.
4. Levine, N. : Generalized closed sets in topology.
Rend. Circ. Mat. Palermo, 19(2), 1970., 89-96.
5. Bhattacharyya, P. & Lahiri, B.K. : Semi generalized closed sets in topology.
Indian J. Math., 29., 1987., 375-382.
6. Biswas, N. : Characterization of semicontinuous mappings.
Atti. Accad. Naz. Lience. Rend. Cl. Sci. Fis. Mat. Nat. (8), 48., 1970., 399-402.
7. Jankovic, D.S. & Reilly, I.L. : On semi-separation properties.
Indian J. Pure & Appl. Math., 16(9), 1985., 957-964.
8. Maki, H., Devi, R. & Balachandran, K. : Generalized α -closed sets in topology.
Bull. Fukuoka Univ. Ed. Part III., 42., 1993., 13-21.
9. Dontchev, J. : On generalizing semi-preopen sets
Mem. Fac. Sci. Kochi Uni. Ser A. (Math.), 16., 1995., 35-48.
10. Dontchev, J. : On some separation axioms associated with the α -topology.
Mem. Fac. Sci. Kochi Univ. Ser. A. (Math.), 18., 1997., 31-35.
11. Balachandran, K., Devi, R. & Maki, H. : Generalized α - closed maps and α -generalized closed maps.
Indian J. Pure. & Appl. Math., 29(1), 1998., 37-49.
12. Balachandran, K., Devi, R. & Maki, H. : Semi-generalized closed maps and generalized semi-closed maps.
Mem. Fac. Sci. Kochi Univ. Ser. A. (Math.), 14., 1993., 41-54.
13. Sundaram, P., Maki, H. & Balachandram, K. : Semi-generalized continuous maps and semi- $T_{1/2}$ spaces.
Bull. Fukuoka Univ. Ed. Part III, 40., 1991., 33-40.
14. Levine, N. : On the commutativity of the closure and the interior operator in topological spaces.
Amer. Math. Monthly, 68., 1961, 474-477.

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 2 Version 1.0 March 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975- 5896

The Concept of Heart-Oriented Rhotrix Multiplication

By Ezugwu E. Absalom, Sani B., Junaidu B. Sahalu

Ahmadu Bello University, Zaria-Nigeria

Abstracts - This paper introduces the concept of heart-oriented rhotrix multiplication. A generalized representation of n-dimensional heart-oriented rhotrices viewed from the direction of single array indices and double array row-wise indices is presented. We provided a simplified compact mathematical expression for the two multiplication process presented in the paper. The given methods were implemented based on the sequential algorithm developed.

Keywords : *Heart-oriented rhotrix multiplication, Row-wise rhotrix multiplication, Algorithms*

Classification: *GJSFR Classification: FOR Code: 010105,010301*

Strictly as per the compliance and regulations of:

The Concept of Heart-Oriented Rhotrix Multiplication

Ezugwu E. Absalom, Sani B., Junaidu B. Sahalu

Abstract-This paper introduces the concept of heart-oriented rhotrix multiplication. A generalized representation of n -dimensional heart-oriented rhotrices viewed from the direction of single array indices and double array row-wise indices is presented. We provided a simplified compact mathematical expression for the two multiplication process presented in the paper. The given methods were implemented based on the sequential algorithm developed.

Keywords : Heart-oriented rhotrix multiplication, Row-wise rhotrix multiplication, Algorithms

March 2011

35

Volume XI Issue II Version I

Global Journal of Science Frontier Research

The fundamental concept of this paper can be found in [1] which tailored down from the idea of matrix-tertions and matrix-noitrites[2]. The extension of this idea was presented by Ajibade [1] and referred to as rhotrices. In his paper Ajibade presented the initial concept of rhotrix algebra in which he established some interesting relationships between a rhotrix and its hearts. A rhotrix is defined as a mathematical array which is in some way between 2×2 matrix and 3×3 matrix is given as.

$$R = \left\{ \begin{pmatrix} & a & \\ b & c & d \\ e & f & h(R) & h & i \\ & j & k & l \\ & m & & \end{pmatrix} : a, b, c, \dots, m \in \mathbb{R} \right\}$$

The above rhotrix is of the fifth dimension. $h(R)$ is called the heart of the rhotrix. An extension is possible, thereby increasing the dimension which is always odd. The number of entries in an n -dimensional rhotrix is given by $\frac{1}{2}(n^2 + 1)$. Where n is the dimension of the rhotrix.

II. HIGH DIMENSIONAL HEART-ORIENTED RHOTrICES

In this paper we present a general idea on heart-oriented rhotrix multiplication and its formal representation for n -dimensional rhotrix. This new concept of the multiplication of rhotrices gave room for the initial conception of heart-oriented sequential computational implementation which is the basis for this paper.

Ajibade [1] , indicated that the dimension of rhotrices can be increased although a rhotrix would always have an odd dimension. He also indicated that a rhotrix R_n of dimension n will have $|R_n|$ entries where $|R_n| = \frac{1}{2}(n^2 + 1)$. Let's consider generalizing any given rhotrix R_n with entries $a_1, a_2, \dots, a_{\frac{1}{2}(n^2+1)}$, and we assume that the following holds:

- If we denote the number of entries in a rhotrix by N , then the middle entry, known as the heart element, can be expressed as $H = \frac{1}{2}(N+1)$ from statistical distribution expression for median [3]. In our case, the value of H indicates the index of the heart entry.
- Similarly if $N = |R_n|$ then $N = \frac{1}{2}(n^2 + 1)$, hence, $H = \frac{\frac{1}{2}(n^2 + 1) + 1}{2} \equiv \frac{1}{4}[n^2 + 3]$.

III. SINGLE INDICES HEART-ORIENTED RHOTRICES

Some results: we can derive the general representation of high dimensional rhoatrix by considering a sequence of 3, 5, 7 and 9 dimensional rhotrices as illustrated below:

For a rhoatrix of dimension 3, we have $2 \times 1 + 1 = 3$

For a rhoatrix of dimension 5, we have $2 \times 2 + 1 = 5$

For a rhoatrix of dimension 7, we have $2 \times 3 + 1 = 7$

For a rhoatrix of dimension 9, we have $2 \times 4 + 1 = 9$

...

...

For a rhoatrix of dimension n , we have $2 \times k + 1 = n$

Where k is the k^{th} term of the incremental value and n is the dimension of the rhoatrix, and then we have: $k = \frac{1}{2}(n-1)$

- Again, if we denote the direction of the leftmost entry of a rhoatrix by L and the number of entries by $|R_n| = \frac{1}{2}(n^2 + 1)$ then the rhoatrix entry at L is given by
$$L = \frac{1}{4}[n^2 + 3] - \frac{n-1}{2}$$
- Similarly, the rightmost rhoatrix entry denoted by R , is given by
$$R = \frac{1}{4}[n^2 + 3] + \frac{n-1}{2}$$
- It is important to note that L and R denote the leftmost and the rightmost indices of a and b respectively in the rhoatrix.

This is represented as:

$$R_n = \begin{array}{cccccccccc} & & & & a_1 & & & & & \\ & & & a_2 & a_3 & a_4 & & & & \\ & a_5 & & a_6 & a_7 & a_8 & a_9 & & & \\ & \dots \\ a_{\frac{1}{4}(n^2+3)-\frac{n-1}{2}} & \dots & \dots & \dots & a_{\frac{1}{4}(n^2+3)} & \dots & \dots & \dots & \dots & a_{\frac{1}{4}(n^2+3)+\frac{n-1}{2}} \\ \dots & \dots \\ a_{\frac{1}{2}(n^2+1)-8} & a_{\frac{1}{2}(n^2+1)-7} & a_{\frac{1}{2}(n^2+1)-6} & a_{\frac{1}{2}(n^2+1)-5} & a_{\frac{1}{2}(n^2+1)-4} & & & & & \\ a_{\frac{1}{2}(n^2+1)-3} & a_{\frac{1}{2}(n^2+1)-2} & a_{\frac{1}{2}(n^2+1)-1} & & & & & & & \\ a_{\frac{1}{2}(n^2+1)} & & & & & & & & & \end{array}$$

$$Q_n = \left(\begin{array}{ccccccccc} & & & b_1 & & & & & \\ & & b_2 & b_3 & b_4 & & & & \\ & b_5 & b_6 & b_7 & b_8 & b_9 & & & \\ b_{\frac{1}{4}(n^2+3)-\frac{n-1}{2}} & \cdots & b_{\frac{1}{4}(n^2+3)+\frac{n-1}{2}} \\ \cdots & \cdots \\ b_{\frac{1}{2}(n^2+1)-8} & b_{\frac{1}{2}(n^2+1)-7} & b_{\frac{1}{2}(n^2+1)-6} & b_{\frac{1}{2}(n^2+1)-5} & b_{\frac{1}{2}(n^2+1)-4} & & & & \\ b_{\frac{1}{2}(n^2+1)-3} & b_{\frac{1}{2}(n^2+1)-2} & b_{\frac{1}{2}(n^2+1)-1} & & & & & & \\ b_{\frac{1}{2}(n^2+1)} & & & & & & & & \end{array} \right) \quad (2.1)$$

We further simplify equation (2.2) as follow:

since $R = \frac{\frac{1}{2}(n^2+1)+1}{2} + \frac{n-1}{2}$ then $R = \frac{\frac{1}{2}(n^2+1)+1+n-1}{2} = \frac{\frac{1}{2}n^2 + \frac{1}{2} + n}{2} = \frac{\frac{1}{2}n^2 + \frac{1}{2} + n}{2}$ which implies that

$$R = \frac{1}{4}n^2 + \frac{1}{4} + \frac{n}{2} = \frac{n^2 + 2n + 1}{4}$$

$$\text{And hence } R = \frac{n^2 + 2n + 1}{4}$$

We also do the same for L

$$\text{since } L = \frac{\frac{1}{2}(n^2+1)+1}{2} - \frac{n-1}{2} \text{ then } L = \frac{\frac{1}{2}(n^2+1)+1-n+1}{2} = \frac{\frac{1}{2}n^2 + \frac{1}{2} + 1 - n + 1}{2}$$

$$L = \frac{1}{4}n^2 + \frac{5}{4} - \frac{2n}{4} = \frac{n^2 - 2n + 5}{4}$$

$$\text{Thus, } L = \frac{n^2 - 2n + 5}{4}$$

$$\begin{aligned}
 R_n &= \left\{ \begin{array}{ccccccccc}
 & & & a_1 & & & & & \\
 & & a_2 & a_3 & a_4 & & & & \\
 & a_5 & a_6 & a_7 & a_8 & a_9 & & & \\
 \cdots & \\
 \frac{a_{n^2-2n+5}}{4} & \cdots & \cdots & a_{\frac{1}{4}(n^2+3)} & \cdots & \cdots & \cdots & \cdots & \frac{a_{n^2+2n+1}}{4} \\
 \cdots & \\
 a_{\frac{1}{2}(n^2+1)-8} & a_{\frac{1}{2}(n^2+1)-7} & a_{\frac{1}{2}(n^2+1)-6} & a_{\frac{1}{2}(n^2+1)-5} & a_{\frac{1}{2}(n^2+1)-4} & & & & \\
 a_{\frac{1}{2}(n^2+1)-3} & a_{\frac{1}{2}(n^2+1)-2} & a_{\frac{1}{2}(n^2+1)-1} & & & & & & \\
 a_{\frac{1}{2}(n^2+1)} & & & & & & & & \\
 \end{array} \right\} \\
 Q_n &= \left\{ \begin{array}{ccccccccc}
 & b_1 & & & & & & & \\
 & b_2 & b_3 & b_4 & & & & & \\
 b_5 & b_6 & b_7 & b_8 & b_9 & & & & \\
 \cdots & \\
 \frac{b_{n^2-2n+5}}{4} & \cdots & \cdots & b_{\frac{1}{4}(n^2+3)} & \cdots & \cdots & \cdots & \cdots & \frac{b_{n^2+2n+1}}{4} \\
 \cdots & \\
 b_{\frac{1}{2}(n^2+1)-8} & b_{\frac{1}{2}(n^2+1)-7} & b_{\frac{1}{2}(n^2+1)-6} & b_{\frac{1}{2}(n^2+1)-5} & b_{\frac{1}{2}(n^2+1)-4} & & & & \\
 b_{\frac{1}{2}(n^2+1)-3} & b_{\frac{1}{2}(n^2+1)-2} & b_{\frac{1}{2}(n^2+1)-1} & & & & & & \\
 b_{\frac{1}{2}(n^2+1)} & & & & & & & & \\
 \end{array} \right\} \quad (2.2)
 \end{aligned}$$

Substituting the values $n = 3$, $n = 5$ and $n = 7$ in equation (2.2) we have the following rhotrices:

$$R_3 = \left\{ \begin{array}{ccc}
 & a_1 & \\
 a_2 & a_3 & a_4 \\
 & a_5 &
 \end{array} \right\}, \quad R_5 = \left\{ \begin{array}{ccccc}
 & a_1 & & & \\
 & a_2 & a_3 & a_4 & \\
 a_5 & a_6 & a_7 & a_8 & a_9 \\
 a_{10} & a_{11} & a_{12} & & \\
 & a_{13} & & &
 \end{array} \right\} \text{ and } R_7 = \left\{ \begin{array}{ccccccccc}
 & a_1 & & & & & & & \\
 & a_2 & a_3 & a_4 & & & & & \\
 & a_5 & a_6 & a_7 & a_8 & a_9 & & & \\
 a_{10} & a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} & & \\
 a_{17} & a_{18} & a_{19} & a_{20} & a_{21} & & & & \\
 a_{22} & a_{23} & a_{24} & & & & & & \\
 & a_{25} & & & & & & &
 \end{array} \right\}$$

Similarly, from (2.2), we can define the multiplication of any two heart-oriented rhotrices in the following way.

$$R_n \circ Q_n = \left(\begin{array}{ccccccccc} & & & a_1 & & a_4 & & & \\ & & a_2 & a_3 & & & & & \\ & a_5 & a_6 & a_7 & c_8 & & a_9 & & \\ & \dots & \dots & \dots & \dots & & \dots & \dots & \\ \frac{a_{n^2-2n+5}}{4} & \dots & \dots & \dots & \frac{a_1}{4}(n^2+3) & & \dots & \dots & \frac{a_{n^2+2n+1}}{4} \\ \dots & \dots & \dots & \dots & \dots & & \dots & \dots & \dots \\ a_{\frac{1}{2}(n^2+1)-8} & a_{\frac{1}{2}(n^2+1)-7} & a_{\frac{1}{2}(n^2+1)-6} & a_{\frac{1}{2}(n^2+1)-5} & a_{\frac{1}{2}(n^2+1)-4} & & & & \\ a_{\frac{1}{2}(n^2+1)-3} & a_{\frac{1}{2}(n^2+1)-2} & a_{\frac{1}{2}(n^2+1)-1} & & & & & & \\ a_{\frac{1}{2}(n^2+1)} & & & & & & & & \end{array} \right) \circ$$

$$b_{\frac{n^2-2n+5}{4}} \dots \dots \dots \frac{b_1}{4}(n^2+3) \dots \dots \dots \dots \dots \frac{b_{n^2+2n+1}}{4} \\ b_5 b_6 b_7 b_8 b_9 \\ b_{\frac{1}{2}(n^2+1)-8} b_{\frac{1}{2}(n^2+1)-7} b_{\frac{1}{2}(n^2+1)-6} b_{\frac{1}{2}(n^2+1)-5} b_{\frac{1}{2}(n^2+1)-4} \\ b_{\frac{1}{2}(n^2+1)-3} b_{\frac{1}{2}(n^2+1)-2} b_{\frac{1}{2}(n^2+1)-1} \\ b_{\frac{1}{2}(n^2+1)}$$

$$c_{\frac{n^2-2n+5}{4}} \dots \dots \dots \frac{c_1}{4}(n^2+3) \dots \dots \dots \dots \dots \frac{c_{n^2+2n+1}}{4} \\ c_5 c_6 c_7 c_8 c_9 \\ c_{\frac{1}{2}(n^2+1)-8} c_{\frac{1}{2}(n^2+1)-7} c_{\frac{1}{2}(n^2+1)-6} c_{\frac{1}{2}(n^2+1)-5} c_{\frac{1}{2}(n^2+1)-4} \\ c_{\frac{1}{2}(n^2+1)-3} c_{\frac{1}{2}(n^2+1)-2} c_{\frac{1}{2}(n^2+1)-1} \\ c_{\frac{1}{2}(n^2+1)}$$

Let $R_5 = \begin{pmatrix} a_1 & & & & \\ a_2 & a_3 & a_4 & & \\ a_5 & a_6 & a_7 & a_8 & a_9 \\ a_{10} & a_{11} & a_{12} & & \\ a_{13} & & & & \end{pmatrix}$ and $Q_5 = \begin{pmatrix} b_1 & & & & \\ b_2 & b_3 & b_4 & & \\ b_5 & b_6 & b_7 & b_8 & b_9 \\ b_{10} & b_{11} & b_{12} & & \\ b_{13} & & & & \end{pmatrix}$ be two rhotrices of dimension 5

with entries from \mathbb{R} , the set of real numbers. We follow the multiplication (called *heart-oriented multiplication* in this paper) which was first defined in [1] on rhotrices of third dimension as follows:

$$\begin{aligned}
 R_5 \circ Q_5 &= \begin{pmatrix} a_1 & & & & \\ a_2 & a_3 & a_4 & & \\ a_5 & a_6 & a_7 & a_8 & a_9 \\ a_{10} & a_{11} & a_{12} & & \\ a_{13} & & & & \end{pmatrix} \circ \begin{pmatrix} b_1 & & & & \\ b_2 & b_3 & b_4 & & \\ b_5 & b_6 & b_7 & b_8 & b_9 \\ b_{10} & b_{11} & b_{12} & & \\ b_{13} & & & & \end{pmatrix} = \\
 b_7 \circ \begin{pmatrix} a_1 & & & & \\ a_2 & a_3 & a_4 & & \\ a_5 & a_6 & a_7 & a_8 & a_9 \\ a_{10} & a_{11} & a_{12} & & \\ a_{13} & & & & \end{pmatrix} + a_7 \circ \begin{pmatrix} b_1 & & & & \\ b_2 & b_3 & b_4 & & \\ b_5 & b_6 & b_7 & b_8 & b_9 \\ b_{10} & b_{11} & b_{12} & & \\ b_{13} & & & & \end{pmatrix} \\
 &= \begin{pmatrix} a_1 b_7 + a_7 b_1 & & & & \\ a_2 b_7 + a_7 b_2 & a_3 b_7 + a_7 b_3 & a_4 b_7 + a_7 b_4 & & \\ a_5 b_7 + a_7 b_5 & a_6 b_7 + a_7 b_6 & a_7 b_7 & a_8 b_7 + a_7 b_8 & a_9 b_7 + a_7 b_9 \\ a_{10} b_7 + a_7 b_{10} & a_{11} b_7 + a_7 b_{11} & a_{12} b_7 + a_7 b_{12} & & \\ a_{13} b_7 + a_7 b_{13} & & & & \end{pmatrix} \quad (2.4)
 \end{aligned}$$

This can be expressed in the following way:

$$\begin{aligned}
 c_1 &= a_1 b_7 + a_7 b_1 & c_2 &= a_2 b_7 + a_7 b_2 & c_3 &= a_3 b_7 + a_7 b_3 & c_4 &= a_4 b_7 + a_7 b_4 \\
 c_5 &= a_5 b_7 + a_7 b_5 & c_6 &= a_6 b_7 + a_7 b_6 & c_7 &= a_7 b_7 & c_8 &= a_8 b_7 + a_7 b_8 \\
 c_9 &= a_9 b_7 + a_7 b_9 & c_{10} &= a_{10} b_7 + a_7 b_{10} & c_{11} &= a_{11} b_7 + a_7 b_{11} & c_{12} &= a_{12} b_7 + a_7 b_{12} \\
 c_{13} &= a_{13} b_7 + a_7 b_{13} & & & & & & \quad (2.5)
 \end{aligned}$$

where a_7 and b_7 denote the hearts indices defined by $\frac{1}{4}[n^2+3]$ of the two rhotrices, the resulting value of c_7 is the product of the two hearts from the two rhotrices. We can now extend this to accommodate rhotrices of arbitrary dimensions. Going by (2.5), we can represent the rhotrix's heart entry as $a_{\frac{1}{4}[n^2+3]}$ and $b_{\frac{1}{4}[n^2+3]}$ respectively.

Equation (2.5) can be represented in rhoatrix for as:

$$R_5 \circ Q_5 = C = \left\{ \begin{array}{cccc} c_1 & & & \\ c_2 & c_3 & c_4 & \\ c_5 & c_6 & c_7 & c_8 & c_9 \\ c_{10} & c_{11} & c_{12} & \\ c_{13} & & & \end{array} \right\} \quad (2.6)$$

In general, given two rhotrices R_n and Q_n of dimension n , the entries of the heart-oriented product C_n of R_n and Q_n can be expressed as follows:

$$C_i = b_{\frac{1}{4}[n^2+3]} a_i + a_{\frac{1}{4}[n^2+3]} b_i + (1 - \lambda)(a_{\frac{1}{4}[n^2+3]} b_{\frac{1}{4}[n^2+3]}), \text{ for } i = 1, 2, \dots, \frac{1}{2}(n^2 + 1) \quad (2.7)$$

where $\lambda = 0$ when the index value corresponds to that of the heart and $\lambda = 1$ when otherwise. This condition is further illustrated in table I and II.

Alternatively, suppose that we now represent the n -dimensional rhoatrix in equation (2.1) by $R_n = \langle a_i, a_h \rangle$ where of course a_i and a_h represents the a_i entries and its heart respectively, with $i = 1, 2, 3, \dots, |R_n|$ and $h = 3, 7, 13, \dots, \frac{1}{4}[n^2 + 3]$.

Consider an i dimensional rhoatrix, having number of entries $|R_i| = \frac{1}{2}(i^2 + 1)$. Let \bar{i} be the mean of these entries computed as shown in table I:

Table I Setting conditions for λ over a three dimensional rhoatrix entries

i	\bar{i}	$i - \bar{i}$	$ i - \bar{i} $	
1	3	-2	2	
2	3	-1	1	$\lambda = 0$
3	3	0	0	$\lambda = 1$
4	3	1	1	
5	3	2	2	$\lambda = 0$

Table II Setting conditions for λ over a five dimensional rhoatrix entries

i	\bar{i}	$i - \bar{i}$	$ i - \bar{i} $	
1	7	-6	6	
2	7	-5	5	
3	7	-4	4	
4	7	-3	3	$\lambda = 0$
5	7	-2	2	
6	7	-1	1	
7	7	0	0	$\lambda = 1$
8	7	1	1	
9	7	2	2	
10	7	3	3	$\lambda = 0$
11	7	4	4	
12	7	5	5	
13	7	6	6	

Let the heart entry of rhotrix Q_n denoted by b_h multiply all the entries of rhotrix R_n denoted by a_i and vice versa for the heart entry of the rhotrix R_n denoted by a_h . Subsequently, the two corresponding hearts of R_n and Q_n multiply each other as a single resulting product. Based on the derived value of λ , we can then define a function on λ as:

$$\lambda = \begin{cases} 0, & |i - \bar{i}| > 0 \\ 1, & |i - \bar{i}| = 0 \end{cases}$$

We define multiplication thus, of any two heart-oriented rhotrices of the same dimension as follow:

$$R_n \circ Q_n = b_h \circ \langle a_i \rangle + a_h \langle b_i \rangle \circ (1 - \lambda)$$

It follows that,

$$C(i) = \begin{cases} b_h \langle a_i \rangle & \text{for } i = h, \lambda = 1 \\ b_h \langle a_i \rangle + a_h \langle b_i \rangle & \text{for } i \neq h, \lambda = 0 \end{cases}$$

Hence, we can thus generalize this as.

$$C(i) = b_h \langle a_i \rangle + a_h \langle b_i \rangle (1 - \lambda) \quad (2.8)$$

Where $\lambda = 1$ for $i = h$ and $\lambda = 0$ for $i \neq h$

It can also be verified further, though not discussed in this work that multiplication of any two rhotrices is commutative, associative, and distributive over addition. Hence we say that the set R of all rhotrices is a commutative algebra [4].

Algorithm 1: Algorithm for single indexed Multiplication of Rhotrices

Input:

$$h = \frac{1}{4} [n^2 + 3]$$

$a[0..k]$

$b[0..k]$

Output:

$c[0..k]$

for $i =: 1$ to k

if ($i = = \frac{1}{4} [n^2 + 3]$)

$c[i] \leftarrow a[i] * b[i]$;

else

$$c[i] \leftarrow b[h] \times a[i] + a[h] \times b[i];$$

endif

endfor

IV. ROW-WISE DOUBLE INDICES HEART-ORIENTED RHOATRIX MULTIPLICATION

The row-wise rhoatrix multiplication tends to put into consideration the position and direction of each entry in the cause of the multiplicative operations. The operation is performed in a row-wise direction indicated by the entry indices i and j . The index i indicate the row entry position while the index j indicates the row direction. The general representation of the row-wise rhoatrices is as depicted in (3.1). It is important to note that division in this case are all integer division, since we are less concerned with the resulting decimal values.

Definition: The row of any given rhoatrix is an array of entries running diagonally from the top-most left to the bottom rightmost direction of the rhoatrix.

$$R_n = \left\{ \begin{array}{ccccccc} & & & a_{11} & & & \\ & & a_{31} & a_{21} & a_{12} & & \\ & & a_{51} & a_{41} & a_{32} & a_{22} & a_{13} \\ & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n,1} & \dots & \dots & \dots & a_{\frac{n+1}{2}, \lfloor \frac{n+3}{4} \rfloor} & \dots & \dots \\ & \dots & \dots & \dots & \dots & \dots & \dots \\ & a_{n, \frac{n+1}{2}-2} & a_{n-1, \frac{n+1}{2}-2} & a_{n-2, \frac{n+1}{2}-1} & a_{n-3, \frac{n+1}{2}-1} & a_{n-4, \frac{n+1}{2}} & \\ & a_{n, \frac{n+1}{2}-1} & a_{n-1, \frac{n+1}{2}-1} & a_{n-2, \frac{n+1}{2}} & & & \\ & a_{n, \frac{n+1}{2}} & & & & & \end{array} \right\} \quad (3.1)$$

We use commas in (3.1) to avoid any ambiguity with respect to the array indexes separation.

Further simplification of equation 3.1 gives:

$$R_n = \left\{ \begin{array}{ccccccc} & & a_{11} & & & & \\ & & a_{31} & a_{21} & a_{12} & & \\ & & a_{51} & a_{41} & a_{32} & a_{22} & a_{13} \\ & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n,1} & \dots & \dots & \dots & a_{\frac{n+1}{2}, \lfloor \frac{n+3}{4} \rfloor} & \dots & \dots \\ & \dots & \dots & \dots & \dots & \dots & \dots \\ & a_{n, \frac{n-3}{2}} & a_{n-1, \frac{n-3}{2}} & a_{n-2, \frac{n-1}{2}} & a_{n-3, \frac{n-1}{2}} & a_{n-4, \frac{n+1}{2}} & \\ & a_{n, \frac{n-1}{2}} & a_{n-1, \frac{n-1}{2}} & a_{n-2, \frac{n+1}{2}} & & & \\ & a_{n, \frac{n+1}{2}} & & & & & \end{array} \right\} \quad (3.2)$$

$$R_n \circ Q_n = \left(\begin{array}{ccccccccc} & & a_{11} & & a_{12} & & & & b_{11} \\ & & a_{31} & a_{21} & & & & & b_{31} \\ & & a_{51} & a_{41} & a_{32} & a_{22} & a_{13} & & b_{21} \\ & & \dots & \dots & \dots & \dots & \dots & \dots & b_{12} \\ a_{n1} & \dots & \dots & \dots & a_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor} & \dots & \dots & a_{1, \frac{n+1}{2}} & b_{51} \\ \dots & b_{41} \\ & & a_{\frac{n-3}{2}} & a_{\frac{n-1, n-3}{2}} & a_{\frac{n-2, n-1}{2}} & a_{\frac{n-3, n-1}{2}} & a_{\frac{n-4, n+1}{2}} & \dots & b_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor} \\ & & a_{\frac{n-1}{2}} & a_{\frac{n-1, n-1}{2}} & a_{\frac{n-1, n-1}{2}} & a_{\frac{n-2, n+1}{2}} & & & b_{\frac{n-1}{2}, \frac{n-3}{2}} \\ & & a_{\frac{n+1}{2}} & & & & & & b_{\frac{n-2}{2}, \frac{n-1}{2}} \\ \end{array} \right) \circ \left(\begin{array}{ccccccccc} & & b_{11} & & b_{12} & & & & b_{13} \\ & & b_{31} & b_{21} & & & & & \\ & & b_{51} & \dots & \dots & \dots & \dots & \dots & \\ & & b_{n,1} & \dots & \dots & \dots & \dots & \dots & \\ & & b_{\frac{n-3}{2}} & b_{\frac{n-1, n-3}{2}} & b_{\frac{n-2, n-1}{2}} & b_{\frac{n-3, n-1}{2}} & b_{\frac{n-4, n+1}{2}} & & \\ & & b_{\frac{n-1}{2}} & b_{\frac{n-1, n-1}{2}} & b_{\frac{n-1, n-1}{2}} & b_{\frac{n-2, n+1}{2}} & & & \\ & & b_{\frac{n+1}{2}} & & & & & & \end{array} \right) \quad (3.3)$$

$$C_n = \left(\begin{array}{ccccccccc} & & c_{11} & & c_{12} & & & & \\ & & c_{31} & c_{21} & & & & & \\ & & c_{51} & c_{41} & c_{32} & c_{22} & c_{13} & & \\ & & \dots & \dots & \dots & \dots & \dots & \dots & \\ c_{n,1} & \dots & \dots & \dots & c_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor} & \dots & \dots & \dots & c_{1, \frac{n+1}{2}} \\ \dots & \dots \\ & & c_{\frac{n+1}{2}, 2} & c_{n-1, \frac{n+1}{2}, 2} & c_{n-2, \frac{n+1}{2}, 1} & c_{n-3, \frac{n+1}{2}, 1} & c_{n-4, \frac{n+1}{2}} & & \\ & & c_{n, \frac{n+1}{2}-1} & c_{n-1, \frac{n+1}{2}-1} & c_{n-2, \frac{n+1}{2}} & & & & \\ & & c_{n, \frac{n+1}{2}} & & & & & & \end{array} \right) \quad (3.4)$$

Definition: (Row-wise heart-oriented rhotrix multiplication)

Let $a, b, c, \dots, c \in \mathfrak{R}$, $R_n \circ Q_n = a_{11} \times b_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor} + b_{11} \times a_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor} + \dots + a_{n, \frac{n+1}{2}} \times b_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor} + b_{n, \frac{n+1}{2}} \times a_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor}$

Where $a_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor}$ and $b_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor}$ are the hearts of the two rhotrices. This is illustrated as in (3.5) and (3.6).

$$R_5 \circ Q_5 = \left(\begin{array}{ccccc} & a_{11} & & & \\ & a_{31} & a_{21} & a_{12} & \\ a_{51} & a_{41} & a_{32} & a_{22} & a_{13} \\ a_{52} & a_{42} & a_{33} & & \\ & a_{53} & & & \end{array} \right) \circ \left(\begin{array}{cccc} & b_{11} & & \\ & b_{31} & b_{21} & b_{12} \\ b_{51} & b_{41} & b_{32} & b_{22} \\ b_{52} & b_{42} & b_{33} & b_{13} \\ b_{53} & & & \end{array} \right) \quad (3.5)$$

$$R_5 \circ Q_5 = C_5 = \begin{pmatrix} & c_{11} & & & \\ & c_{31} & c_{21} & c_{12} & \\ c_{51} & c_{41} & c_{32} & c_{22} & c_{13} \\ & c_{52} & c_{42} & c_{33} & \\ & c_{53} & & & \end{pmatrix} \quad (3.6)$$

Similarly, multiplication of the rhotrices in (3.5) is commutative. The product operation is similar to the method given earlier for the single indices multiplication approach. The multiplication process for the two rhotrices in (3.5) can thus be expressed as:

$$b_{32} \circ \begin{pmatrix} a_{11} & & & \\ a_{31} & a_{21} & a_{12} & \\ a_{51} & a_{41} & a_{32} & a_{22} \\ a_{52} & a_{42} & a_{33} & \\ a_{53} & & & \end{pmatrix} + a_{32} \circ \begin{pmatrix} b_{11} & & & \\ b_{31} & b_{21} & b_{12} & \\ b_{51} & b_{41} & b_{32} & b_{22} \\ b_{52} & b_{42} & b_{33} & \\ b_{53} & & & \end{pmatrix} =$$

$$\begin{pmatrix} a_{11}b_{32} + b_{11}a_{32} & & & \\ a_{31}b_{32} + b_{31}a_{32} & a_{21}b_{32} + b_{21}a_{32} & a_{12}b_{32} + b_{12}a_{32} & \\ a_{51}b_{32} + b_{51}a_{32} & a_{41}b_{32} + b_{41}a_{32} & a_{32}b_{32} & a_{22}b_{32} + b_{22}a_{32} \\ a_{52}b_{32} + b_{52}a_{32} & a_{42}b_{32} + b_{42}a_{32} & a_{33}b_{32} + b_{33}a_{32} & a_{13}b_{32} + b_{13}a_{32} \\ a_{53}b_{32} + b_{53}a_{32} & & & \end{pmatrix} \quad (3.8)$$

$$\begin{aligned} c_{11} &= a_{11}b_{32} + b_{11}a_{32} & c_{12} &= a_{12}b_{32} + b_{12}a_{32} & c_{13} &= a_{13}b_{32} + b_{13}a_{32} & c_{21} &= a_{21}b_{32} + b_{21}a_{32} \\ c_{22} &= a_{22}b_{32} + b_{22}a_{32} & c_{31} &= a_{31}b_{32} + b_{31}a_{32} & c_{32} &= a_{32}b_{32} & c_{33} &= a_{33}b_{32} + b_{33}a_{32} \\ c_{41} &= a_{41}b_{32} + b_{41}a_{32} & c_{51} &= a_{51}b_{32} + b_{51}a_{32} & c_{52} &= a_{52}b_{32} + b_{52}a_{32} & c_{53} &= a_{53}b_{32} + b_{53}a_{32} \end{aligned}$$

Where a_{32} and b_{32} denote the hearts of the two rhotrices whose indices are defined by $\frac{n+1}{2}$ and $\left\lfloor \frac{n+3}{4} \right\rfloor$ respectively. The resulting value of c_{32} is the product of the two hearts from the two rhotrices. We can equally extend this to accommodate for rhotrix of n -dimension. Then going by equation (3.8), we can represent the row-wise rhotrix hearts as $a_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor}$ and $b_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor}$, such that:

$$c_{i,j} = a_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor} * a_{i,j} + a_{\frac{n+1}{2}, \left\lfloor \frac{n+3}{4} \right\rfloor} * b_{i,j} (1 - \lambda) \quad (3.9)$$

Where λ denotes a constant value that lies between 1 and 0, such that if the indices of a_{ij} and b_{ij} takes the positions of the heart entries, then $\lambda = 0$ and $\lambda = 1$, otherwise.

Algorithm 2: Heart-oriented Row-wise rhoatrix multiplication**Input:**

```

 $p \leftarrow (n+1)/2$ 
 $q \leftarrow (n+3)/4$ 
 $a[0...row\_upperbound, 0...column\_upperbound]$ 
 $b[0...row\_upperbound, 0...column\_upperbound]$ 

```

Output:**endfor**

```

 $c[0...row\_upperbound, 0...column\_upperbound]$ 
For  $i \leftarrow 0$  to  $row\_upperbound$ 
For  $j \leftarrow 0$  to  $column\_upperbound$ 
{
    if ( $i == p \ \&\& j == q$ ){
         $c[i,j] \leftarrow a[i,j] * b[i,j];$ 
    }
    else {
         $c[i,j] \leftarrow a[i][j] * b[p][q] + b[i,j] * a[p,q];$ 
    }
}

```

V. CONCLUSION AND FUTURE WORK

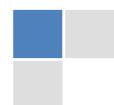
In this paper, we have presented some fundamental concept relating to the general ideas and methods from an already predefined multiplicative process for rhoatrix multiplication. Our major contributions in this area could be found in the two generalization cases presented and the mathematical expression given, that led to the formulation of our sequential algorithm. The implementation of the algorithms showed that extension of rhotrices to higher dimension is possible as indicated in [1]. What is probably left is to find a suitable application area for rhotrices. We actually believe that in some ways, this paper might serve as a catalyst for future researchers who might develop interest in finding such possible application areas.

REFERENCES RÉFÉRENCES REFERENCIAS

- 1) Ajibade, A. O. 2003, The Concept of Rhotrix in Mathematical Enrichment, International Journal of Mathematical Education in Science and Technology, Vol. 34:2s, 175-179.
- 2) Atanassov, K. T., and Shannon, A. G., 1998, International Journal of Math. educ. Sci. Technol., 29, 898-903
- 3) Stroud K.A. Engineering Mathematics 6th Edition. pp1157
- 4) Sani, B. 2004, the row-column multiplication of high dimensional rhotrices, *International Journal of Mathematical Education in Science and Technology*, Vol.35:5, 777-781.

GLOBAL JOURNALS INC. (US) GUIDELINES HANDBOOK 2011

WWW.GLOBALJOURNALS.ORG


FELLOWS

FELLOW OF INTERNATIONAL CONGRESS OF SCIENCE FRONTIER RESEARCH (FICSFR)

- 'FICSFR' title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'FICSFR' can be added to name in the following manner:
e.g. Dr. Andrew Knoll, Ph.D.,FICSFR
- FICSFR can submit two papers every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free unlimited Web-space will be allotted to 'FICSFR 'along with subDomain to contribute and partake in our activities.
- A professional email address will be allotted free with unlimited email space.
- FICSFR will be authorized to receive e-Journals-GJFS for the Lifetime.
- FICSFR will be exempted from the registration fees of Seminar/Symposium/Conference/Workshop conducted internationally of GJFS (FREE of Charge).
- FICSFR will be an Honorable Guest of any gathering held.

ASSOCIATE OF INTERNATIONAL CONGRESS OF SCIENCE FRONTIER RESEARCH (AICSFR)

- AICSFR title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'AICSFR' can be added to name in the following manner:
eg. Dr. Thomas Knoll, Ph.D., AICSFR
- AICSFR can submit one paper every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free 2GB Web-space will be allotted to 'AICSFR' along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted with free 1GB email space.
- AICSFR will be authorized to receive e-Journal GJFS for lifetime.

AUXILIARY MEMBERSHIPS

ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJMBR for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.

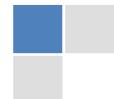
PROCESS OF SUBMISSION OF RESEARCH PAPER

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC, *.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:

(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.


(II) Choose corresponding Journal.

(III) Click 'Submit Manuscript'. Fill required information and Upload the paper.

(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.

(C) If these two are not convenient, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.

PREFERRED AUTHOR GUIDELINES

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: 8.27" X 11"

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Times New Roman.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of .2
- First Character must be two lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt.
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R&D authorship, criteria must be based on:

- 1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
- 2) Drafting the paper and revising it critically regarding important academic content.
- 3) Final approval of the version of the paper to be published.

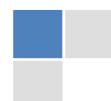
All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.


If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:

Original research paper: Such papers are reports of high-level significant original research work.

Review papers: These are concise, significant but helpful and decisive topics for young researchers.

Research articles: These are handled with small investigation and applications

Research letters: The letters are small and concise comments on previously published matters.

5. STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:

- (a) Title should be relevant and commensurate with the theme of the paper.
- (b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
- (c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
- (d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
- (e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
- (f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
- (g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
- (h) Brief Acknowledgements.
- (i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve brevity.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min, except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 l rather than 1.4×10^{-3} m³, or 4 mm somewhat than 4×10^{-3} m. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

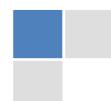
All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the e-mail address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.


Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art. A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: *Please make these as concise as possible.*

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: *Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.*

Figures: *Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.*

Preparation of Electronic Figures for Publication

Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: >650 dpi.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: *Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.*

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded

(Free of charge) from the following website:

www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.

As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services

Online production tracking is available for your article through Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy & electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.

2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.

3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.

4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.

6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.

7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.

8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.

9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.

10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.

11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.

12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.

13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.

14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.

15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.

16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.

17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.

18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.

19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.

20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.

21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.

22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.

23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.

24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.

25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.

26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.

28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.

29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.

30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.

31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be

sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grown readers. Amplification is a billion times of inferior quality than sarcasm.

32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.

33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.

34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

· Adhere to recommended page limits

Mistakes to evade

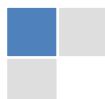
- Insertion a title at the foot of a page with the subsequent text on the next page

- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:


Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to

shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The **Introduction** should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic

principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently. You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

Content

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form.

What to stay away from

- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.

- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

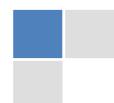
Discussion:

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.


ADMINISTRATION RULES LISTED BEFORE SUBMITTING YOUR RESEARCH PAPER TO GLOBAL JOURNALS INC. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The **major constraint** is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- **Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)**
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

CRITERION FOR GRADING A RESEARCH PAPER (COMPILED)
BY GLOBAL JOURNALS INC. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
	A-B	C-D	E-F
<i>Abstract</i>	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form Above 200 words	No specific data with ambiguous information Above 250 words
	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
<i>Introduction</i>	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
<i>Methods and Procedures</i>	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
<i>Result</i>	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
<i>Discussion</i>	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring
<i>References</i>			

INDEX

A

accommodate · 56, 62
Algorithms · 51
antibacterial · 31, 32, 33, 34, 35
antibiotic · 31, 32
antimicrobial · 31, 32, 33, 34, 35
Antimicrobial · 31, 33, 34, 35
arithmetic · 25

B

biomathematics · 45

C

capital · 37, 38, 39, 40, 44
components · 31
concerned · 59
condition · 1, 2, 6, 7, 11, 14, 16, 17, 18, 22, 57
continuity · 49
convex · 1, 23

D

derived · 58
difference · 24, 25, 26, 38
dimensions · 56

E

emphasized · 31
ethanolic · 31, 33, 34
expression · 13, 51, 63
extracted · 32

F

fluctuations · 37, 38, 39, 40
function · 1, 2, 6, 7, 11, 14, 16, 17, 18, 22, 23, 24,
25, 38, 58

G

generalizations · 48
Generalized · 1, 23, 49
Generating · 24

H

Heart · 51, 59, 63

I

illustrated · 48, 52, 57, 60
industries · 38, 44, 45, 47
Intensity · 37, 40, 44
investigation · 33, 39

L

liberalization · 37, 38, 39, 40, 44

M

Manufacturing · 41, 42
Measurement · 38
militancy · 37, 40
multiplication · 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63

O

obtain · 14, 24, 31, 45
oriented · 38, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63

P

potentials · 31, 32, 33, 34, 35
preclosedness · 46
productivities · 37, 38, 39, 40
Providence · 30
Pseudomonas · 32, 33, 34

Q

quantifiable · 43
quantitative · 37, 40

R

recently · 22
relation · 24, 45
rhotrix · 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63

S

selecting · 26
sequential · 51, 63
starlike · 1, 23
sufficient · 1, 2, 6, 7, 11, 14, 16, 17, 18, 22, 38
Symplocos · 31, 32, 33, 34

T

Technology · 24, 35, 41, 63
topological · 45, 46, 47, 48, 49

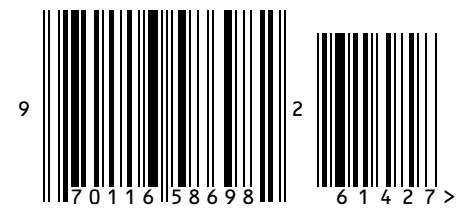
U

uniformly · 1, 23
Uniformly · 1, 2, 7, 12, 14, 16, 18, 23
univalent · 1, 23

V

values · 6, 24, 26, 28, 32, 54, 59
Victoria · 23

W


Wright · 1, 2

save our planet

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org
or email us at helpdesk@globaljournals.org

ISSN 9755853

© 2011 by Global Journals