

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

DISCOVERING THOUGHTS AND INVENTING FUTURE

8 Revolutions
IN
Science Domain

Zeniths

Metric Boolean Algebras

Plant Breeding Programmes

Hypergeometric Functions

Summation Formula Connected

Volume 11
Issue 5 | Version 1.0

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

VOLUME 11 ISSUE 5 (VER. 1.0)

GLOBAL ASSOCIATION OF RESEARCH

© Global Journal of Science
Frontier Research. 2011.

All rights reserved.

This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website <http://www.globaljournals.org/global-journals-research-portal/guideline/terms-and-conditions/menu-id-260/>

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374
Import-Export Code: 1109007027
Employer Identification Number (EIN):
USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; **Reg. Number: 0423089**)
Sponsors: *Global Association of Research
Open Scientific Standards*

Publisher's Headquarters office

Global Journals Inc., Headquarters Corporate Office, Cambridge Office Center, II Canal Park, Floor No. 5th, **Cambridge (Massachusetts)**, Pin: MA 02141 United States

*USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392*

Offset Typesetting

Global Association of Research, Marsh Road, Rainham, Essex, London RM13 8EU United Kingdom.

Packaging & Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please email us at local@globaljournals.org

eContacts

Press Inquiries: press@globaljournals.org

Investor Inquiries: investers@globaljournals.org

Technical Support: technology@globaljournals.org

Media & Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):

For Authors:

22 USD (B/W) & 50 USD (Color)

Yearly Subscription (Personal & Institutional):

200 USD (B/W) & 250 USD (Color)

EDITORIAL BOARD MEMBERS (HON.)

John A. Hamilton,"Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software
Engineering
Director, Information Assurance
Laboratory
Auburn University

Dr. Henry Hexmoor
IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor
Department of Computer Science
Virginia Tech, Virginia University
Ph.D. and M.S. Syracuse University,
Syracuse, New York
M.S. and B.S. Bogazici University,
Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes
Associate Professor and Range
Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal
Nutrition
B.A. University of Dublin- Zoology

Dr. Wenyi Feng
Professor, Department of Computing &
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll
Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz
Computer Science & Information Systems
Department
Youngstown State University
Ph.D., Texas A&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He
Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS,
PhD., (University of Texas-Dallas)

Burcin Becerik-Gerber
University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley
& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and Finance
Professor of Finance
Lancaster University Management School
BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of Navarra
Doctor of Philosophy (Management), Massachusetts Institute of Technology (MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of Regina
Ph.D., M.Sc. in Mathematics
B.A. (Honors) in Mathematics
University of Windsor

Dr. Lynn Lim

Reader in Business and Marketing
Roehampton University, London
BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical Biology, Mount Sinai School of Medical Center
Ph.D., Eötvös Loránd University
Postdoctoral Training, New York University

Dr. Söhnke M. Bartram

Department of Accounting and Finance
Lancaster University Management School
Ph.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management
IESE Business School, University of Navarra
Ph.D in Industrial Engineering and Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.

Director, EP Laboratories, Philadelphia VA Medical Center
Cardiovascular Medicine - Cardiac Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D
Associate Professor and Research
Department Division of Neuromuscular Medicine
Davee Department of Neurology and Clinical Neuroscience
Northwestern University Feinberg School of Medicine

Dr. Pina C. Sanelli

Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic
Radiology
M.D., State University of New York at
Buffalo, School of Medicine and
Biomedical Sciences

Dr. Michael R. Rudnick

M.D., FACP
Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center,
Philadelphia
Nephrology and Internal Medicine
Certified by the American Board of
Internal Medicine

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical
Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D
Marketing
Lecturer, Department of Marketing,
University of Calabar
Tourism Consultant, Cross River State
Tourism Development Department
Co-ordinator , Sustainable Tourism
Initiative, Calabar, Nigeria

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences,
National Central University, Chung-Li,
TaiwanUniversity Chair Professor
Institute of Environmental Engineering,
National Chiao Tung University, Hsin-
chu, Taiwan.Ph.D., MS The University of
Chicago, Geophysical Sciences
BS National Taiwan University,
Atmospheric Sciences
Associate Professor of Radiology

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer
Science
AUST - American University of Science &
Technology
Alfred Naccash Avenue – Ashrafieh

PRESIDENT EDITOR (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences

Denham Harman Research Award (American Aging Association)

ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization

AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences

University of Texas at San Antonio

Postdoctoral Fellow (Department of Cell Biology)

Baylor College of Medicine

Houston, Texas, United States

CHIEF AUTHOR (HON.)

Dr. R.K. Dixit

M.Sc., Ph.D., FICCT

Chief Author, India

Email: authorind@computerresearch.org

DEAN & EDITOR-IN-CHIEF (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),

MS (Mechanical Engineering)

University of Wisconsin, FICCT

Editor-in-Chief, USA

editorusa@computerresearch.org

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant

CEO at IOSRD, GAOR & OSS

Technical Dean, Global Journals Inc. (US)

Website: www.suyogdixit.com

Email:suyog@suyogdixit.com

Sangita Dixit

M.Sc., FICCT

Dean & Chancellor (Asia Pacific)

deanind@computerresearch.org

Pritesh Rajvaidya

(MS) Computer Science Department

California State University

BE (Computer Science), FICCT

Technical Dean, USA

Email: pritesh@computerresearch.org

Luis Galárraga

J!Research Project Leader

Saarbrücken, Germany

CONTENTS OF THE VOLUME

- i. Copyright Notice
- ii. Editorial Board Members
- iii. Chief Author and Dean
- iv. Table of Contents
- v. From the Chief Editor's Desk
- vi. Research and Review Papers

- 1. Metric Boolean Algebras and an Application To Propositional Logic. **1-4**
- 2. Review: The Importance of Molecular Markers in Plant Breeding Programmes. **5-12**
- 3. Surface Water Quality Status in the part of Bhadravathi Industrial Town, Shimoga District, Karnataka, India. **13-16**
- 4. On Fractional Calculus and Certain Results Involving K2- Function. **17-21**
- 5. Determinant Post Harvest Losses among Tomato Farmers in Imeko-Afon Local Government Area of Ogun State, Nigeria. **23-27**
- 6. On Some Transformations Involving Unit And Quarter Arguments. **29-37**
- 7. Creation of a Summation Formula Connected To Contigious Relation and Hypergeometric Function. **39-56**
- 8. Development of a Summation Formula Related To Hypergeometric Functions. **57-69**

- vii. Auxiliary Memberships
- viii. Process of Submission of Research Paper
- ix. Preferred Author Guidelines
- x. Index

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 5 Version 1.0 August 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975-5896

Metric Boolean Algebras and an Application To Propositional Logic

By Li FU, Guojun Wang

Qinghai Nationalities University, China

Abstract - Let B be a Boolean algebra and Ω be the set of all homomorphisms from B into D , and μ be a probability measure on Ω . We introduce the concepts of sizes of elements of B and similarity degrees of pairs of elements of B by means of μ , and then define a metric on B . As an application, we propose a kind of approximate reasoning theory for propositional logic.

Keywords : Boolean algebra, probability measure, size, similarity degree, approximate reasoning, propositional logic.

GJSFR Classification : 03G05, 54E35, 60A10

Strictly as per the compliance and regulations of:

Metric Boolean Algebras and an Application To Propositional Logic

Li FU^a, Guojun Wang^Ω

Abstract - Let B be a Boolean algebra and Ω be the set of all homomorphisms from B into D , and μ be a probability measure on Ω . We introduce the concepts of sizes of elements of B and similarity degrees of pairs of elements of B by means of μ , and then define a metric on B . As an application, we propose a kind of approximate reasoning theory for propositional logic.

Keywords : Boolean algebra, probability measure, size, similarity degree, approximate reasoning, propositional logic.

August 2011

1

Issue V Version I
Volume XI

Global Journal of Science Frontier Research

Let L be a distributive lattice and D be the lattice $\{0, 1\}$. Assume Ω is the set of all homomorphism from L to D , then $\forall f \in \Omega, f$ is order-preserving, i.e., $a, b \in L, a \leq b$ if and only if $f(a) \leq f(b)$.

In fact, if $a, b \in L, a \not\leq b$, then there exists an $f \in \Omega$, such that $f(a) = 1$ and $f(b) = 0$ (see [4]). Therefore, if we think of elements of L as functions from Ω to D , i.e., $\forall a \in L$ defining $a : \Omega \rightarrow \{0, 1\}, a(f) = f(a) (f \in \Omega)$, then the partial order \leq or L will have a representation by means of the partial order among function of 2^Ω . This fact is also true for Boolean algebras. We use the same symbol Ω to denote the set of all (Boolean) homomorphisms from a Boolean algebra B into D .

Proposition 1 : Suppose that B is a Boolean algebra, $D = \{0, 1\}$, and Ω is the set of all homomorphism from L to D , then $a, b \in B, a \leq b$ if and only if $\forall f \in \Omega, f(a) \leq f(b)$. Throughout this paper, assume that B is a Boolean algebra and a probability measure μ is given on Ω , we will introduce the concepts of sizes of elements of B and similarity degrees between elements pairs of elements of B by means of μ and proposition 1, and finally define a metric ρ on B therefrom. Especially, this can be done the Lindenbaum algebra $B_L = F(S)/\approx$, where $F(S)$ is the set consisting of all logic propositions and \approx is the congruence relation of logically equivalence[6], and Ω is the set consisting of all valuations of $F(S)$ of which a probability measure can naturally be introduced. Finally, a kind of approximate reasoning theory can be developed on $F(S)$ because there have been distances among propositions.

II. METRIC BOOLEAN ALGEBRAS

Suppose that μ is a probability measure on Ω

Definition 1 : Define $\tau : B \rightarrow [0, 1]$ as follows:

$$\tau(a) = \mu(\{f \in \Omega \mid a(f) = 1\}), \quad a \in B$$

then $\tau(a)$ is called the *size* of a with respect to μ , or briefly, *size* of a if no confusion arises.

The following proposition is obvious.

Proposition 2 : (i) $0 \leq \tau(a) \leq 1, a \in B$;

(ii) $\tau(1_B) = 1, \tau(0_B) = 0$, where 1_B and 0_B are the greatest element and the least element of B respectively;

(iii) $\tau(a') = 1 - \tau(a), a \in B$

(iv) If $a \leq b$, then $\tau(a) \leq \tau(b), a, b \in B$.

*Foundation item : QingHai Province 135 program.

†Biographical : FULi, Female, Doctor, Research field : Non-determinacy Reasoning, E-mail : 0971@163.com.

Author^a : College of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, P.R.China.

Author^Ω : Shanxi Normal University, Xian, 710062, P.R.China.

Example 1 : Consider the Boolean algebra $\mathcal{P}(X)$, where X is non-empty finite set, and $\mathcal{P}(X)$ is the power set of X . It is easy to verify that a mapping $f : \mathcal{P}(X) \rightarrow D$ is a homomorphism iff there exists an (unique) element x of X such that $f^{-1}(1) = \{A \subset X \mid x \in A\}$. Hence, $|\Omega| = |X|$. Assume that μ is the evenly distributed probability measure on Ω , then the size of an element A of $\mathcal{P}(X)$ is the cardinal of A over $|X|$, i.e., $\tau(A) = |A|/|X|$ ($A \in \mathcal{P}(X)$).

Proposition 3 : $\tau(a \vee b) = \tau(a) + \tau(b) - \tau(a \wedge b)$, $a, b \in B$.

Assume that $a \rightarrow b = a' \vee b$ ($a, b \in B$) (see 5), then we have:

Proposition 4 : $\tau(a) \geq \alpha$, $\tau(a \rightarrow b) \geq \beta$, then $\tau(b) \geq \alpha + \beta - 1$, where $\alpha, \beta \in [0, 1]$.

Proposition 5 : If $\tau(a \rightarrow b) \geq \alpha$, $\tau(b \rightarrow c) \geq \beta$, then $\tau(a \rightarrow c) \geq \alpha + \beta - 1$.

Definition 2 : Define $\eta : B \times B \rightarrow [0, 1]$ as follows:

$$\eta(a, b) = \tau(a \rightarrow b) \wedge (b \rightarrow a), a, b \in B.$$

then $\eta(a, b)$ is called the **similarity degree** between a and b , and η the similar relation on B with respect to μ .

Example 2 : Consider the Boolean algebra $\mathcal{P}(X)$ where X is any non-empty set, and μ is any probability measure on Ω . Then

(1) $\eta(A, X - A) = 0$, ($A \in \mathcal{P}(X)$). In fact, $A \rightarrow (X - A) = (X - A) \cup (X - A) = X - A$, $(X - A) \rightarrow A = A \cup A = A$

Hence, $\eta(A, X - A) = \tau((X - A) \cap A) = \tau(\emptyset) = 0$.

(2) $\eta(A, B) + \eta(A, X - B) = 1$. In fact, let $G = ((X - A) \cup B) \cap ((X - B) \cup A)$, $H = ((X - A) \cup (X - B)) \cap (B \cup A)$. then it is routine to verify that $G \cup H = X$, $G \cap H = \emptyset$. Hence, $\eta(A, B) + \eta(A, X - B) = \mu(G) + \mu(H) = 1$.

Proposition 6 : $\eta(a, b) = \mu(\{f \in \Omega \mid f(a) = f(b)\})$, $a, b \in B$.

Proposition 7 :

- (i) $\eta(a, b) = 1$ if and only if $a = b$.
- (ii) $\eta(a, a') = 0$
- (iii) $\eta(a, b) + \eta(a, b') = 1$.
- (iv) $\eta(a, c) \geq \eta(a, b) + \eta(b, c) - 1$.

Proposition 8 : Suppose that $\eta(x, a) \geq \alpha$, $\eta(y, b) \geq \beta$ then $\eta(x \rightarrow y, a \rightarrow b) \geq \alpha + \beta - 1$.

It follow from proposition 7 that the function ρ defined below is a metric on B .

Definition 3 : Define $\rho : B \times B$ as follows:

$$\rho(a, b) = 1 - \eta(a, b), a, b \in B.$$

Then ρ is a metric on B and (B, ρ) is called the **metric Boolean algebra** with respect to μ .

Theorem 1 : Let (B, ρ) be the metric Boolean algebra, then

- (i) All the operations $', \vee, \wedge, \rightarrow$ are uniformly continuous.
- (ii) If (B, ρ) is a complete metric space, then B is a ω -complete lattice.

Proof : (i) By proposition 7, it follows that $\rho(a', b') = 1 - \eta(a', b') = \eta(a', b) = 1 - \eta(a, b) = \rho(a, b)$. If $\rho(a, b) \leq \varepsilon$, then $\rho(a', b') \leq \varepsilon$, where ε is any given positive number. This proves the continuity of the operation $' : B \rightarrow B$.

Suppose that $\rho(x, a) \leq \varepsilon$, $\rho(y, b) \leq \varepsilon$, then $\eta(x, a) > 1 - \varepsilon$, $\eta(y, b) > 1 - \varepsilon$, and it follows proposition 8, having $\eta(x \rightarrow y, a \rightarrow b) \geq (1 - \varepsilon) + (1 - \varepsilon) - 1 = 1 - 2\varepsilon$, hence $\rho(x \rightarrow y, a \rightarrow b) \leq 2\varepsilon$. This proves that the operation $\rightarrow : B \times B \rightarrow B$ is uniformly continuous.

Since $a \vee b = a' \rightarrow b$, $a \wedge b = (a' \vee b')'$, hence the operations \vee and \wedge also uniformly continuous.

(ii) Suppose that (B, ρ) is a complete metric space, and $\Delta = \{a_1, a_2, \dots\} \subset B$. Let $b_n = \bigvee_{i=1}^n a_i$, then b_1, b_2, \dots is an increasing sequence and hence $\tau(b_1), \tau(b_2), \dots$ is an increase sequence in $[0, 1]$ and is therefore Cauchy. Note that $b_n \rightarrow b_m = b'_n \vee b_m = 1_B$, and $b'_m \wedge b_n = 0_B$ whenever $b_n \leq b_m$, then $\rho(b_m, b_n) = 1 - \eta(b_m, b_n) = 1 - \tau((b_m \rightarrow b_n) \wedge (b_n \rightarrow b_m)) = 1 - \tau(b_m \rightarrow b_n) = 1 - \tau(b'_m \vee b_n) = 1 - [\tau(b'_m) + \tau(b_n) - \tau(b'_m \wedge b_n)] = 1 - \tau(b'_m) - \tau(b_n) = \tau(b_m) - \tau(b_n)$. hence b_1, b_2, \dots is a Cauchy sequence in (B, ρ) and converges to an element c of B . Fix an n we have from $b_n = b_n \wedge b_{n+k}$ and the continuity of \wedge that

$$b_n = \lim_{k \rightarrow \infty} (b_n \wedge b_{n+k}) = b_n \wedge \lim_{k \rightarrow \infty} b_{n+k} b_n \wedge c,$$

hence $b_n \leq c$ and c is an upper bound of $\Sigma = \{b_1, b_2, \dots\}$. On the other hand, let e be any upper bound of Σ , then $b_n = b_n \wedge e$ and hence

$$c = \lim_{n \rightarrow \infty} b_n = \lim_{n \rightarrow \infty} (b_n \wedge e) = (\lim_{n \rightarrow \infty} b_n) \wedge e = c \wedge e.$$

This means that $c \leq e$, hence $c = \sup \Sigma$. It is clear that $\sup \Delta = \sup \Sigma = c$. We can prove that $\inf \Delta$ exists in a similar way, hence B is ω -complete lattice.

III. AN APPLICATION

Consider the set of all abstract formulas in propositional logic. Let $S = \{p_1, p_2, \dots\}$ be a countable set and $F(S)$ be free algebra of type (\neg, \rightarrow) generated by S where \neg and \rightarrow are unary and binary operations respectively. Homomorphisms from $F(S)$ to $D = \{0, 1\}$ called valuations of $F(S)$, the set is consisting of valuations will be denoted Ω . Assume that A, B are formulas (propositions) of $F(S)$, A and B are logically equivalent if $\forall \nu \in \Omega, \nu(A) = \nu(B)$. It is well known that the logical equivalence relation \approx is a congruence relation on $F(S)$ with respect to (\neg, \rightarrow) , and the quotient algebra $F(S)/\approx$ is a Boolean algebra and called the Lindenbaum algebra[6], and denoted B_L . Let $X = \prod_{n=1}^{\infty} X_n$, where $X_n = \{0, 1\}$, and μ_n be the evenly distributed probability measure on X_n , i.e., $\mu(\emptyset) = 0, \mu(X_n) = 1$, and $\mu_n(\{0\}) = \mu_n(\{1\}) = \frac{1}{2}, (n = 1, 2, \dots)$, and let μ be the infinite product of μ_1, μ_2, \dots on X (see[3]). Since $F(S)$ is the free algebra generated by S , a valuation $\nu : F(S) \rightarrow \{0, 1\}$ is completely decided by its restriction $\nu|S$. Since $\nu|S = \{\nu(p_1), \nu(p_2), \dots\}$ can be thought of as a point of X , there is a bijection between Ω and X and hence the measure μ on X can be transplanted on Ω . We use the same symbol μ to denote the measure on Ω , i.e.,

$$\mu(\Sigma) = \mu(\{(x_1, x_2, \dots) \in X \mid \exists \nu \in \Sigma, x_n = \nu(p_n), n = 1, 2, \dots\}) \Sigma \subset \Omega.$$

Assume that $A, B \in F(S)$ and $A \approx B$ and $\nu \in \Omega$, then $\nu(A) = \nu(B)$ hence ν induces a unique Boolean homomorphism $\nu^* : B_L = F(S)/\approx \rightarrow \{0, 1\}$ defined by $\nu^*(a) = \nu(A)$, where a is the congruence class containing $A (a \in B_L)$. In the following ν^* will be simplified as ν and Ω can be thought of as the set consisting of all Boolean homomorphisms B_L to $\{0, 1\}$. Therefore there is a metric ρ on the Lindenbaum algebra B_L and (B_L, ρ) will be called the **metric Lindenbaum algebra**. Denote the congruence class B_L containing A by $[A]$, where $A \in F(S)$ and define $d : F(S) \times F(S) \rightarrow [0, 1]$ as follows:

$$d(A, B) = \rho([A], [B]), \quad A, B \in F(S),$$

then d is a pesudo-metric on $F(S)$. Now that there exists the concept of distances among formulas, an approximate reasoning theory can naturally be developed on $F(S)$. We give in the following only a short sketch.

Definition 4 : Let T be the set consisting of all theorems in $F(S)$ (see[2]) and $A \in F(S)$. If $d(A, T) < \varepsilon$, then A is called a **theorem with error ε** , and denoted $(\varepsilon) \vdash A$. Moreover, let $D(\Gamma)$ be the set of all Γ -conclusions, i.e., $D(\Gamma) = \{A \in F(S) \mid \Gamma \vdash A\}$.

If $\inf\{H(D(\Gamma), T) \mid \Gamma \vdash A\} < \varepsilon$, where $H(\Sigma, \Delta)$ is Hausdorff distance between Σ and Δ (Σ, Δ are non-empty subsets of $F(S)$, for a general definition of the Hausdorff distance between two non-empty, bounded subsets of a metric space without the requirement of closedness see[1], and that of subsets of a pseudo-metric space, see[6]), then A is called ε -**quasi theorem** and denoted $\vdash (\varepsilon)A$.

Theorem 2 : Suppose that A is any formula of $F(S)$, then

$$(\varepsilon) \vdash A \text{ if and only if } \vdash (\varepsilon)A$$

Definition 5 : Suppose that $\Gamma \subseteq F(S)$, let $Div(\Gamma) = \sup \{\rho(A, B) \mid A, B \in D(\Gamma)\}$, where $\sup \emptyset = 0$ is assumed, then $Div(\Gamma)$ is called **the divergence degree of Gamma**. Moreover, let $Dev(\Gamma) = H(D(\Gamma), T)$, then $Dev(\Gamma)$ is called the **deviation** of Γ .

Theorem 3 : Suppose that $\Gamma \subseteq F(S)$, then $Div(\Gamma) = Dev(\Gamma)$.

Proof : Suppose that $Dev(\Gamma) = \alpha$ and $\varepsilon > 0$, then it follows from

$$\begin{aligned}
 H(D(\Gamma), \mathcal{T}) &= \max(\sup\{d(A, \mathcal{T}) | A \in D(\Gamma)\}, \sup\{d(T, D(\Gamma)) | T \in \mathcal{T}\}) \\
 &= \sup\{d(A, \mathcal{T}) | A \in D(\Gamma)\} = \alpha.
 \end{aligned}$$

that there is an $A \in D(\Gamma)$ such that $d(A, \mathcal{T}) \geq \alpha - \varepsilon$. Choose any T from \mathcal{T} , then $A, T \in D(\Gamma)$ and we have $Div(\Gamma) \geq d(A, T) \geq \alpha - \varepsilon$. Since ε is arbitrary, we have $Div(\Gamma) \geq \alpha = Dev(\Gamma)$.

Conversely, we have

$$\begin{aligned}
 Dev(\Gamma) &= H(D(\Gamma), \mathcal{T}) = \max(\sup\{d(A, \mathcal{T}) | A \in D(\Gamma)\}, \sup\{d(T, \mathcal{T}) | T \in D(\Gamma)\}) \\
 &= \sup\{d(A, \mathcal{T}) | A \in D(\Gamma)\} = \sup\{1 - \tau([A]) | A \in D(\Gamma)\}.
 \end{aligned}$$

Moreover, assume that $A, B \in D(\Gamma)$. Note that $[A] \leq [B] \rightarrow [A]$, and $[B] \leq [A] \rightarrow [B]$, we have $d(A, B) = \rho([A], [B]) = 1 - \eta([A], [B]) = 1 - \tau(([A] \rightarrow [B]) \wedge [B] \rightarrow [A])) \leq 1 - \tau([A]) \wedge \tau([B]) = (1 - \tau([A])) \vee (1 - \tau([B]))$. Hence, $Div(\Gamma) = \sup\{d(A, B) | A, B \in D(\Gamma)\} \leq Dev(\Gamma)$.

REFERENCES RÉFÉRENCES REFERENCIAS

1. A.Csaszar, General Topology, Adam Hilger Ltd, Bristol, 1978.
2. A.G.Hamilton, Logic for Mathematicians, Cambridge University Press, London,1978.
3. P.R.Halmos, Measure Theory, Springer-Verlag, New York,1974.
4. P.J.Johnstone, Stone Space,Cambridge University Press, London,1982.
5. H.Rasiowa ,R.Sikorski, The Mathematics of Metamathematics, Panstwowe Wydawnictwo Naukowe,Warszwa,1963.
6. G.J.Wang, Non - classical Mathematical Logis and Approximate Reasoning, Science in China Press, Bejing (in Chinese), 2000.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 5 Version 1.0 August 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975-5896

Review : The Importance of Molecular Markers in Plant Breeding Programmes

By P.M Jonah, L. L. Bello, O. Lucky, A. Midau, S. M. Moruppa

Adamawa State University, Nigeria

Abstract - Since the advent of restriction fragment length polymorphism (RFLP) markers, a range of other markers such as Random Amplified Polymorphism DNA (RAPD), amplified fragment length (AFLP), Simple sequence repeats (SSRS), etc has been introduced during the last two decades of the 20th century to fulfill various demands of the last breeding programmes. Ever since their invention, they are being, constantly modified for enhanced utility as a means to solve problems and to bring about automation in the genome analysis, gene tagging, phylogenetic analysis and selection of desirable genotypes. It is also evidence that molecular markers (non morphological markers) offer several advantages over the morphological markers (conventional phenotypic markers), as they provide data that can be analyzed objectively; giving new dimension to breeding especially with respect to the time required to developing new improved crop varieties. In terms of scientific progress, the old disciplines of quantitative genetics and plant taxonomy have been revived by the molecular marker approach, which have the immediate application in supportive research for advanced breeding programmes. Therefore, the success of DNA marker technology for bring genetic improvement in crop plants would depend on close interaction between plant breeders and biotechnologists, availability of skilled manpower and substantial financial investment on research.

GJSFR Classification : FOR Code : 070602

Strictly as per the compliance and regulations of:

Review : The Importance of Molecular Markers in Plant Breeding Programmes

P.M Jonah^a, L. L. Bello^b, O. Lucky^b, A. Midau^Q S. M. Moruppa^Q

Abstract - Since the advent of restriction fragment length polymorphism (RFLP) markers, a range of other markers such as Random Amplified Polymorphism DNA (RAPD), amplified fragment length (AFLP), Simple sequence repeats (SSR_s), etc has been introduced during the last two decades of the 20th century to fulfill various demands of the last breeding programmes. Ever since their invention, they are being, constantly modified for enhanced utility as a means to solve problems and to bring about automation in the genome analysis, gene tagging, phylogenetic analysis and selection of desirable genotypes. It is also evidence that molecular markers (non morphological markers) offer several advantages over the morphological markers (conventional phenotypic markers), as they provide data that can be analyzed objectively; giving new dimension to breeding especially with respect to the time required to developing new improved crop varieties. In terms of scientific progress, the old disciplines of quantitative genetics and plant taxonomy have been revived by the molecular marker approach, which have the immediate application in supportive research for advanced breeding programmes. Therefore, the success of DNA marker technology for bring genetic improvement in crop plants would depend on close interaction between plant breeders and biotechnologists, availability of skilled manpower and substantial financial investment on research.

I. INTRODUCTION

The theoretical advantages of using genetic markers and the potential value of genetic marker linkage maps and direct selection in plant breeding were first reported about eighty years ago (Crouch and Ortiz 2004). However, it was not until the advent of DNA marker technology in the 1980s, that a large enough number of environmentally insensitive genetic markers generated to adequately follow the inheritance of important agronomic traits and since then DNA marker technology has dramatically enhanced the efficiency of plant breeding. DNA-based molecular markers have acted as versatile tools and have found their own position in various fields like taxonomy, plant breeding, genetic engineering e.t.c (Joshi *et al*, 2011).

A number of breeding companies have in the past two decades to varying degrees started using

markers to increase the effectiveness in breeding and to significantly shorten the development time of varieties and therefore plant geneticist consider molecular marker assisted selection a useful additional tool in plant breeding programs to make selection more efficient (Bueren *et al*, 2010; Joshi *et al*, 2011) over the last few decades plant genomics has been studied extensively bring about a revolution in this area, making molecular markers useful for plant genomic analysis, therefore becoming and important tool in this revolution. (Joshi *et al*, 2011).

The most significant breakthrough in agricultural biotechnology is coming from research into the structure of genomes and the genetic mechanisms behind economically important traits. The rapidly progressing discipline of genomics also known as molecular biology, is the provision of information on the identity, location, impact and function of genes affecting such traits which researchers have been identifying, cataloging and mapping single gene markers in many species of higher plants.

Molecular markers include biochemical constituents (e.g. secondary metabolites in plants) and macro-molecules, viz proteins and deoxyribonucleic acid (DNA). Analysis of secondary metabolites is, however restricted to those plants that produce a suitable range of metabolites which can be easily analyzed and which can be distinguished by varieties (Joshi *et al*, 2011). These metabolites which are being use as markers should be ideally neutral to environmental effects or management practices. Hence, amongst the marker molecular markers used, DNA markers are more suitable and ubiquitous to most of the living organisms.

Diversity based on phenotypic and morphological characters, usually varies with environments and evaluation of traits requires growing the plants to full maturity prior to identification, but now the rapid development of biotechnology allows easy analysis of large umber of loci distributed throughout the genome of the plants. Molecular makers have proven to be powerful tools in the assessment of genetic variation and in elucidation of genetic relationships within and among species (Chakravarthi and Naravaneni, 2006).

Molecular markers for classification of genotype are abundant, but unlike morphological traits, markers are not affected by environment (Staub, *et al*, 1997). Collecting DNA marker data to determine whether

Author^a : Department of Crop Science, Adamawa State University, PMB 25 Mubi, Nigeria.

Author^Q : Animal Production Adamawa State University Mubi, PMB 25, Nigeria.

Author^b : Department of Plant Breeding and Seed Science, University of Agriculture Makurdi, Benue State, Nigeria.

phenotypically similar cultivars are genetically similar would therefore be of great interest in crop breeding programme (Duzyaman, 2005).

Molecular genetics or the use of molecular technique for detecting differences in the DNA of individual plants has many applications of value to crop improvement (Wamanda and Jonah, 2006). The differences are called molecular markers because they are often associated with specific gene and acts as a 'sign posts' to those genes and such markers when very tightly linked to genes of interest, can be used to select indirectly for the desirable allele and this represents the simplest form of marker-assisted selection (MAS). (Hoisington, *et al*, 2002).

Markers can also be used for dissecting polygenic traits into their Mendelian components or Quantitative Trait Loci (QTL) and this increasing understanding of the inheritance and gene action for such traits allows the use of markers – selection procedures (Anderson *et al*, 1993).

The molecular markers are no longer looked upon as simple DNA fingerprinting markers in variability studies or as mere forensic tools, but, they are constantly being modified to enhance their utility and to bring about automation in the process of genome analysis (Joshi *et al*, 2011). The discovery of polymerase chain reaction (PCR) was a landmark in this effort and proved to be a unique process that brought about a new class of DNA profiling marker, which has facilitated the development of marker-based gene tags, map-based cloning of agronomic important genes, variability studies, phylogenetic analysis, synteny mapping, market assisted selection of desirable genotypes e.t.c. DNA markers offer several advantages over traditional phenotypic markers, as they provide data that can be analyzed objective. Therefore, several molecular marker types are available and they each have their advantages and disadvantages (Cadalen *et al*, 1998).

II. MOLECULAR MARKERS

In the early part of the 20th century, scientist discovered that, Mendelian factor controlling inheritances (genes) are organized in linear order on cytogenetically defined structure called chromosomes. It was shown that, combination of genes can be inherited in a group (i.e. they are linked together because they are close to each other on the same chromosomes. The individual genes flanking within a defined close interval are known as molecular DNA markers. Molecular markers are identifiable DNA sequence, found at specific locations of the genome and associated with the inheritance of a trait or linked gene (FAO, 2004). Thottappilly *et al* (2000), refer to molecular markers as naturally occurring polymorphism which include proteins and nucleic acids that are detectably different. Rapid advances are genome research and molecular biology

has led to the use of DNA markers in plant breeding. Target genes in a segregating population can be identified with the assistance of DNA makers so as to accelerate traditional breeding programs (Thottappilly *et al*, 2000). Markers must be polymorphic (i.e. they must exist in different forms so that the chromosome carrying the mutant gene can be distinguished from the chromosome with normal gene by form of the marker it carries. Polymorphism can be detected at three levels: morphological, biochemical or molecular. Recently, the term DNA fingerprinting /profiling is used to describe the combined use of several single locus detection systems and are being used as versatile tools for investigating various aspects of plant genomes. These include characterization of genetic variability, genome fingerprinting, genome mapping, gene localization, analysis of genome evolution, population genetics, taxonomy, plant breeding and diagnostics (Joshi *et al*, 2011) The development of DNA (or molecular markers) has irreversibly changed the disciplines of plant genetics and breeding (Collard and Mackill, 2006). According to Joshi *et al* (2011), an ideal DNA marker should however possess the following properties.

- (i) Co dominant inheritance- different form of marker should be detected in a diploid organism to allow discrimination of homozygote and heterozygote.
- (ii) Frequent occurrence in genome
- (iii) Selective neutral behaviour (the DNA sequences of any organism are neutral to environmental conditions or management practices)
- (iv) Easy access (availability)
- (v) Easy and fast assay
- (vi) Reproducible – highly reproducibility and
- (vii) Easy exchange of data between laboratories.

It is extremely difficult for a single genetic marker to possess all properties above. Depending on the type of study to be undertaken a marker system can be identified that would fulfill at least a few of the above characteristics.

a) Types and description of DNA markers

i. Non-PCR based genetic markers (Restriction fragment length polymorphism):

The first and most molecular markers system called the Restriction Fragment length Polymorphism (RFLP), was developed in early 1980 (Farooq and Azam, 2002). The RFLPs are simply inherited naturally occurring Mendelian characters. Genetic information is stored in the DNA sequence on a chromosome and variation in this sequence is the basis for the genetic diversity within species. Plants are able to replicate their DNA with high accuracy and rapidity, but many mechanisms causing changes (mutation) in the DNA

are operative (Joshi *et al*, 2011). This leads to simple or large-base pair changes as a result of inversion, translocation, transpositions or deletion which may occur, resulting in a loss or gain of a recognition sites and in turn lead to restriction fragment of different lengths. This marker was first reported by Botstein *et al*, (1980); in the detection of DNA polymorphism (Agarwal *et al*, 2008).

Genomic restriction fragment of different length between genotypes can be detected on southern blots and by a suitable probe. In this method, DNA is digested with restriction enzyme like EcoR1, which cut the DNA at specific sequences, electrophoresed, blotted on a membrane and probed with a labeled clone. RFLP marker provides a way to directly follow chromosome segments during recombination as they follow Mendelian rules and greatly aid in the construction of genetic maps. When an F_1 plants undergoes meiosis to produce gametes, its chromosomes will undergo recombination by crossing over and this recombination is the basis of conventional genetic mapping and when use, RFLP markers, require hybridization of probe DNA with sampled plant DNA.

III. POLYMERASE CHAIN REACTION BASED MARKERS

A decade after the emergence of AFLP, there was another breakthrough which involves the use of PCR in 1990 (Farooq and Azam, 2002).

PCR is an in vitro method of nucleic acid synthesis by which a particular segment of DNA can be specifically replicated (Mullis and Faloona, 1987). The process involves two oligonucleotide primers that flank the DNA fragment of interest and amplification is achieved by a series of repeated cycles of heat denaturation of the DNA, annealing of the primer to their complementary sequences, and extension of the annealed primers with a thermophilic DNA polymerase. Since the extension products themselves are also complementary to primers, successive cycles of amplification essentially double the amount of the target DNA synthesized in the previous cycle and the result is an exponential accumulation of the specific target fragment.

Genomic DNA from two different individual often produces different amplification and a particular fragment generated from one individual but not for other represent DNA polymorphism and can be used as genetic markers. The pattern of amplified bands so obtained could be use for genomic fingerprint (Welsh and McClelland 1990).

a) Randomly-amplified polymorphic DNA marker

The randomly-amplified polymorphic DNA marker (RAPD), detects nucleotide sequence polymorphism in DNA by using a single primer of arbitrary nucleotide sequence (Oligonucleotide primer,

mostly ten bases long) (William *et al*, 1991). In this reaction, a single species of primer anneals to the genomic DNA at two different sites on complementary strands of DNA template.

Advantages associated with RAPD analysis include:

- (i) Use of small amount of DNA which makes it possible to work with population that is not accessible with RFLP. It is fast and efficient in analysis having high-density genetic mapping as in many plant species such as alfalfa (Kiss *et al*, 1993), fabean bean (Torress *et al*, 1993) and apple (Hammat *et al*, 1994)
- (ii) Non involvement with radioactive assays (Kiss *et al*, 1993)
- (iii) Non – requirement of species specific probe libraries
- (iv) Non – involvement in blotting or hybridization.

Limitations of RAPD markers are:

- (i) Its polymorphisms are inherited as dominant or recessive characters causing a loss of information relative to markers which show co-dominance.
- (ii) Primers are relatively short, a mismatch of even a single nucleotide can often prevent the primer from annealing, hence leads to a loss of band.
- (iii) Suffers from problems of repeatability in many systems, especially when transferring between populations or laboratories as is frequently necessary with marker assisted selection programs (Liu *et al*, 1994).

b) Amplified Fragment Length Polymorphism (AFLP)

AFLPs are fragments of DNA that have been amplified using directed primers from restriction of genomic DNA (Metthes *et al*, 1998). In this approach the sample DNA is enzymatically cut up into small fragments (as with RFLP analysis), but only a fraction of fragments are studied following selective PCR amplification (Liu *et al*, 1994). It is a combination of RFLP and RAPD methods.

AFLP technique shares some characteristic with both RFLP and RAPD analysis (Farooq and Azam, 2002) and combines the specifically of restriction analyses with PCR amplification.

AFLP is extremely sensitive technique and the added use of fluorescent primers for automated fragment analysis system and software packages to analyze the biallelic data makes it well suitable for high thorough put analysis.

The major advantages of AFLP techniques (Farooq and Azam, 2002) are: (i) generation of a large number of polymorphism.

- (i) No sequence information is required
- (ii) The PCR technique is fast with high multiplex ratio which makes the AFLP very attractive choice.

The problems associated with AFLPs are of three types and all are related with practical handling, data generation and analysis. These problems are not unique to AFLP technology but also associated with other markers systems.

An ideal marker should have sufficient variation for the problem under study, be reliable and simple to generate and interpret. Unfortunately, neither AFLP nor other DNA markers exhibit these qualities. Thus a specific technique or techniques selected on the basis of objectives be utilized collectively to achieve the best results (Kharp *et al*, 1997; Harris, 1999).

c) Simple sequence repeat or short tandem repeats (SSRs) or micro satellites

These are ideal genetic markers for detecting differences between and within species of genes of all eukaryotes (Farooq and Azam, 2002).

It consist of tandemly repeated 2-7 base pair units arranged in repeats of mono-, di-, tri-, tetra and penta-nucleotides (A,T, AT, GA, AGG, AAAG etc) with different lengths of repeat motifs. These repeats are widely distributed throughout the plants and animal genomes that display high level of genetic variation based on differences in the number of tandemly repeating units of a locus. The variation in the number of tandemly repeated units results in highly polymorphic banding pattern (Farooq and Azam, 2002) which are detected by PCR, using locus specific flanking region primers where they are known.

Some of the prominent features of these markers are that they are dominant fingerprinting markers and codominant sequence tagged microsatellites (STMS) markers (Joshi *et al*, 2011).

The reproducibility of microsatellites is such that they can be used efficiently by different research laboratories to produce consistent data (Saghai Maroof *et al*, 1994). Locus-specific micro-satellite-based markers have been reported from many plant species such as Lettuce (*Lactuca sativa* L.) (Van de Wiel *et al*, 1999), barley (*Hordeum vulgare* L.) (Saghai Maroof *et al*, 1994) and rice (*Oryza Sativa* L) (Wu and Tanksley, 1993).

Some other microsatellites based on the same principle include the following:

(i) Randomly Amplified Microsatellite Polymorphism (RAMP): This is a micro satellite – based marker which show a high degree of allelic polymorphism, but they are labor-intensive (Agarwal and Shrivastava, 2008). On the other hand RAPD markers are inexpensive but exhibit a low degree of polymorphism. To compensate for the weaknesses of these approaches, a technique termed as RAMP was developed (Wu *et al*, 1994). The technique involves a radiolabeled primer consisting of a 5¹ anchor and 3¹ repeats which is used to amplify

genomic DNA in the presence or absence of RAPD primers. (Agarwal and Shrivastava, 2008).

- (ii) The Sequence Characterized Amplified Region (SCAR):* The SCARS are PCR-based markers that represent genomic DNA fragments at genetically defined loci that are identified by PCR amplification using sequence specific oligonucleotide primer (McDermoth *et al*, 1994).
- (iii) Simple Primer Amplification Reaction (SPAR):* SPAR uses the single SSR oligonucleotide principles.
- (iv) Sequence – Related Amplified Polymorphism (SRAP):* The aim of SRAP technique (Li and Quiros, 2001) is the amplification of open reading frames (ORFs). It is base on two-primer amplification using the AT- or GC- rich cores to amplify intragenic fragment for polymorphism detection (Agarwal and Shrivastava, 2008).
- (v) Target region amplification polymorphism (TRAP):* The TRAP technique (Hu and Vick, 2003) is a rapid and efficient PCR-based technique, which utilizes bioinformatics tools and expressed sequence tag (EST) database information to generate polymorphic markers, around targeted candidate gene sequences.

IV. MARKER ASSISTED SELECTION (MAS)

MAS which is sometimes referred to as genomics is a form of biotechnology which uses genetic finger printing techniques to assist plant breeders in matching molecular profile to the physical properties of the variety. It is the identification of DNA sequences located near genes that can be tracked to breed for traits that are difficult to observe (Barloo and Stam, 1999). MAS refer to the use of DNA markers that are tight-linked to target loci as a substitute for or to assist phenotype screening. By determining the allele of a DNA marker, plants that possess particular genes or quantitative trait loci (QTL) may be identified based on their genotype rather than their phenotype.

Collard and Mackill (2006), reported the fundamental advantages of MAS compared to conventional phenotypic selection which are:-

- (i) Simpler compared to phenotypic breeding
- (ii) Selection may be carried out at breeding stage and single plants may be selected with high reliability.

In this technique, linkages are sought between DNA markers and agronomic important traits such as resistance to pathogens, insects and nematodes, tolerance to biotic stresses, quality parameters and quantitative traits.

MAS is in contrast to genetic engineering which involves the artificial insertion of such individual genes from one organism into the genetic material of another (typically, but not exclusively from other unrelated species (Wamanda and Jonah, 2006).

V. BREEDING OF POLYGENIC TRAITS

The utilization of markers can obviously prevent loss of quantitative trait loci (QTL) common with some crops DNA markers and this allow us to unravel the genetic basis of traits expressing continuous phenotypic variations as they are abundant and scattered throughout the genome. By using dense genetic marker maps, the contributions of separate regions of the genome on the trait values can be estimated once the mapping population is sufficiently large. In addition, agronomic important traits like nutritional quality, yield, flower time and durable resistance which appear to follow complex, polygenic inheritance patterns with multiple genes having small effects on the trait value can easily be analyzed using markers. Evidences obtained from various crops indicate that even such complex traits appear to be determined by only a few major factors/genes. (Frary *et al*, 2000 and Thornsberry *et al*, 2001).

VI. APPLICATION OF MOLECULAR MARKERS IN PLANT GENOME ANALYSIS AND BREEDING

Molecular markers have been look upon as a tools for a large number of applications ranging from localization of a gene to improvement of plant varieties by marker-assisted selection, called genome analysis which has generated a vast amount of information and a number of databases are being generated to preserve and popularize it (Joshi *et al*, 2011).

a) Application of MAS in vegetative propagated crops

The first generation of DNA markers analysis of vegetative propagated crops at IITA was focused on germplasm characterization, construction of preliminary linkage maps and development of disease diagnostics in plantain/banana, cassava and yam (Ortiz, 2004).

i. Plantain / Banana

At IITA plantain improvement was nominated as the model system for developing molecular breeding systems within this Institute (Crouch and Tenkouene, 1999). Parthenocarpy (ability to develop fruit in the absence of seed development) was chosen as an ideal character for the initiation of a marker assisted selection program.

Parthenocarpy seems to be controlled by just a few genes yet a high proportion of current breeding populations are non-parthenocarpic but can not be identified as such until close to harvest. As such MAS for parthenocarpy at seedling stage would have a dramatic influence on breeding efficiency. Plantain and banana current priorities for the molecular breeding of Musa crops focus on the development of appropriate MAS schemes for parthenocarpy, apical dominance/regulated suckering and short cropping cycle. Thereafter, the

focus will turn to markers for post-harvest characters and for favorable alleles contributing to heterosis in yield components.

ii. Cassava

The development of markers for post-harvest characters and virus resistances appears to warrant the greatest emphasis for cassava breeders. Based on the urgent need, William, (1999) proposed that attention should be focus on the development of DNA markers for tolerance to abiotic stress and for storage characteristics.

iii. Legumes

a. Bambara groundnut

Amplified fragment length polymorphism (AFLP) was used to assess genetic diversity among 100 selected bambara groundnut (*Vigna subterranea* L Verdc).

The results showed that bambara groundnut landraces from Tanzania form a genetically diverse population. Therefore, AFLP markers can be effectively employed to assess genetic diversity and to measure genetic relationship among accessions (Ntundu *et al*, 2004)

b. Cowpea

Cowpea, a legume crop grown in the semi-arid tropics is attacked by insect pests. Thus, in cowpea, the development of markers for resistance to thrips, bruchids, maruca and pod borer is considered of great priority. In the long term, markers for resistance to parasitic weed (striga) and markers for genes contributing to drought resistance are considered a high priority intervention (Morales *et al*, 2000).

c. Soybean

Tremendous advances in all aspects of the molecular breeding of soybean are being made in advanced laboratories particularly in the USA. These may provide substantial background understanding many of the constraints to soybean cropping in sub-Saharan Africa which are very different. Therefore, a high priority for example, could be the use of marker-assisted breeding for selecting lines with the ability to cause suicidal germination of *Striga hermonthica*, a parasitic weed affecting maize but not soybean (trap crop). In the longer term, increased nodulation and resistance to pod shattering would be highly important candidates for MAS systems (Ortiz, 2004).

d. Chickpea

Ascochyta rabiei (pass) Labri is the most severe fungal disease limiting chickpea production and studies in Syria revealed the occurrence of three pathotypes for *A. rabiei*. A set of micro satellite and RAPD markers were also used which lead to identification of suitable RAPD markers, allowing a more precise determination of the pathotypes. Furthermore, the availability of markers for

pathotype I and II allow the monitoring of the pathotype distribution, which gives the recommendation for the planting of suitable chickpea cultivars (Baum, 2003)

IV. Cereal

a. Maize

Prasanna and Pixley (2010) stress the importance of efforts in meeting the growing demand for maize and provide examples of the recent use of molecular markers with respect to (i) DNA finger printing and genetic diversity analysis of maize germplasm (inbreds and landraces/OPVs), (ii) QTL analysis of important biotic and abiotic stresses and (iii) MAS for maize improvement. Advances in genome analysis led to the identification of numerous DNA markers in maize includes thousand of mapped micro-satellite markers and more recently, single nucleotide polymorphisms (SNPs) and insertion-deletion (INDel) markers. With the SSRs and SNPs, a large number of genes controlling various aspects of plant development, biotic and abiotic stress resistance, quality characters etc, have been cloned and characterized in maize, which are excellent assets for molecular-assisted breeding (Prassana and Pixley, 2011).

At present SSRs are the most widely used markers by maize researchers due to their availability in large numbers in the public domain including their simplicity and effectiveness (Maize CrDB; <http://www.maizegdb.org>). These PCR-based, genetically co-dominant marker are robust, reproducible, hyper variable, abundant, and uniformly dispersed in plant genomes (Powell *et al*, 1996). Also both SSRs and SNPs can be reliably applied on a large scale and therefore offer significant advantages for genetic and breeding purposes.

SSR markers have been successfully used for DNA finger printing and analysis of genetic diversity in China, India, Indonesia and Thailand (Prassana and Pixley, 2010).

Following the first report on QTLs for yield-related traits in maize (Stuber *et al*, 1987), maize researchers worldwide have generated numerous reports of molecular markers tagging genes/QTLs for diverse traits of agronomic and scientific interest (Prasanna and Pixley, 2010).

QTLs for several important traits affecting maize such as plant height, downy mildew resistance, Maize dwarf Mosaic Virus resistance, head smut resistance, drought stress tolerance, water logging, nutrient components under low nitrogen and high-oil content.

Further, significant progress has been made world wide in optimizing MAS for improvement of both qualitative and quantitative inherited traits using maize as a model system. One successful example of MAS for maize development and of particular use is the utilization of opaque 2-specific SSR markers in

conversion of maize lines in quality protein maize (QPM) lines with enhanced nutritional quality (Buba *et al*, 2005). A MAS-derived QPM hybrid is the "Vivek QPM hybrid 9," recently released in Almora, India, which was developed through marker-assisted transfer of the 02 gene and phenotypic selection for endosperm modifiers in the parental lines (Buba *et al*, 2005). Using MAS Scientist at IARI have pyramided major genes /QTLs for resistance to *turicum* leaf blight and *Polysora* rust in five elite Indian lines (Prassana *et al*, 2009b) and these are CM 137, CM138, CM139, CM150 and CM151 which are parents of three single-cross hybrids.

b. Sorghum

The development of DNA markers for resistance to pests and diseases in sorghum is receiving great priority e.g. in breeding new populations for striga prone environment (Crouch and Ortiz, 2004). Five genomic regions (QTL) associated with stable striga resistance from resistant line N13 have been identified across a range of 10 field trials in Mali and Kenya and two independent samples of a mapping population involving this resistance source, indicating that the QLT are biological realities.

v. Vegetable - Okra

Okra is an important vegetable in India, West Africa, south-east, Asia, USA, Brazil, Australia and Turkey, which provides an important input of vitamin and mineral salts including calcium (IBPGR, 1990).

Omahinmin and Osawaru (2005) reported that high degree of wide morphological variation exist among accession of okra which requires further evidence using molecular markers to clarify. Among wide relatives of okra, *Abelmoschus angulosus* showed complete resistance to yellow vein mosaic virus (YVMV) and powdery mildew disease. *A. ficulneus* and *A. moschatus* accompany a high degree of resistance only to powdery mildew and these germplasm can be potential genetic resources in breeding okra for YVMV and powdery mildew resistance (Samarajeewa and Rathnayaka, 2004). Furthermore, Aladele *et al*, (2008), reported that 93 accessions of okra were assessed for genetic distinctiveness and relationships using RAPD (i.e 75 primers used). 59 showed strong and clear amplification, 7 showed weak amplification, while 9 primers did not show any application.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Agawal, M., Shrivastava, N and Padh, H (2008). Advances in molecular marker technique and their application in plant science. *Plant cell Rep*, 27:617-631
2. Aladele, S.E., Ariyo, O.J., and de Lapena R (2008). Genetic Relationships among West African Okra (*Abelmoschus caeruleus*) and Asian genotypes

(*Abelmoschus esculentus*) using RAPD, *Afr. J. Biotechnol.* 7:1426-1431.

3. Anderson J.A, Sorrells; M.E. and Tanksley, S.D (1993). RFLP analysis of genomic regions associated with resistance to pre-harvest sprouting in wheat (*Triticum aestivum*). *Crop sci*, 33:453-459.
4. Baum .M (2005). Biotechnological approaches to crop improvement in the dry areas at the International Centre for Agricultural Research in the dry areas. *Afri. J. of food, Agric. Nutrition and Development*, Vol 3 No. 1, pp 39-44
5. Berloo R.V., and Stam, P (1999), Comparison between marker - assisted selection and pheno-typical selection in a set of *Arabidopsis thaliana* recombinant inbred lines. *Theoretical and applied genetics* 98:113-118.
6. Bostein D, White R.L, Skolnick, M, Davis R.W (1980) Construction of a enetic linkage map in man using restriction fragment length polymorphisms. *Am. J. Hum Genet*, 32:314-333
7. Buba, R. Nair, S.K and Kuma, A (2005). Two generation marker-Aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). *Theor. Appl Genet* 111:888-897
8. Bueren E., Backer, G., Vriend, H., Ostergard H. (2010). The role of Molecular markers and marker assisted selection in breeding for organic agriculture. *Euphytica*, Vol. 175, Number 1, PP 51-64. Springer Publisher
9. Cadalen, T., Boeuf, C., Bernard M. (1998). An intervarietal molecular marker map in *Triticum aestivum*. L. Em. Thell and Comparison with a map from a wide cross. *Theor. Appl. Genet* 789:495-504
10. Chakravarthi, B.K., and Naravaneni, R. (2006) SSR marker based DNA fingerprinting and diversity study in rice (*Oryza sativa L.*) *African J. Biotech.* 5 (9): 684-688
11. Crouch, J.H and Tenkuano, A. (eds), (1999). DNA marker assisted Improvement of the staple crops of sub-Saharan Africa, IITA, Ibadan, Nigeria. CTA Wageningen, Netherlands.
12. Crouch J.H., and Ortiz, R. (2004) Applied genomics in the improvement of crops grown in Africa. *African journal of Biotechnology* 3 (10): PP 489-496
13. Daniel, T. W and Jonah, P.M (2006). Biotechnology as a useful tool in wheat (*Triticum aestivum*) improvement. *Journal of Research in Agriculture*, volume 3, number 3, PP 18-23
14. Duzyaman, E. (2005) phenotypic diversity within a collection of distinct okra (*Abelmoschus esculentus*) cultivars derived from Turkish landraces, *genet. Res. And Crop Evol*/vol. 52:1019-1030.
15. FAO (2004). Scientific facts on genetically modified crops.
16. Farooq, S; and Azam, F (2002). Molecular markers in plantbreeding – 1: concepts and characterization. *Pakistan journal of biological sciences* 5 (10): 1135-1140.
17. Frary A., Clint Nesbitt, T., Frary, A., Grandillo, S., Van der Kannpe Knaap, E, Cong, B., Liu, J. Meller, J., Elber, R., Alpert, K.B and Tanksely S.D. (2000), A quantitative trait locus key to the evolution of tomato fruit size. *Science* 289:85-88
18. Harris, S.A. (1999) Molecular approaches to assessing plant diversity. In :Plant conservation biotechnology (E.E. Benson (ed.) Taylor and Francis, London, pp 11-24
19. Hemmat, M, Weeden, N.F, Managanaris, A.G, Lawson, DM (1994). Molecualr marker linkage map for apple *J. Heredity* 85:4-11
20. Hoisington, D., Bohorova, N., Fennell, S., Khairallah, M.,Pellegrineschi, A. and Ribaut, J.M, (2002). The application of biotechnology in wheat improvement and production. Curtics, B.C. Rajaram S. and Gomez, H. (eds). FAO, Rome.
21. Hu J. and Vicks B.A (2003). Target region amplification polymorphism a novel marker technique for plant genotyping. *Plant Mol biol Rep* 21:289-294
22. IBPGR (International Board for Plant genetic resources). Report on International workshop on Okra genetic resources held at the National Bureau for Pant Genetic Resources New Delhi, India, 8-12 October, 1990.
23. Joshi, S.P., Prabhakar K., Ranjekar, P.K and Gupta, V.S. (2011), Molecular markers in plant genome analysis. <http://www.ias.ac.in/currsci/jul25/articles/15.htm>. Pp 1-19
24. Kiss, G B., Osanandi G., Kalman K, Kalo P, Okresz L (1993). Construction of a basic linkage map of alfalfa using RFLP, RAPD, isozyme and morphological markers. *Mol. Gen Genet* 238:129-137
25. Kharp, A., Kresovich, S, Bhat, K.V., Ayand, W. G and Hodgkin, T. (1997) Molecular tools in plant genetics resources conservation: a guide to the technologies, *IPGRI Tech bull*. No. 2)
26. Li, G and Quiros, C.F. (2001) Sequence related amplified polymorphism, a new marker system based on a simple PCR reaction. Its application to mapping and gene tagging in Brassica. *Theor. Appl. Genet* 103:455-546.
27. Liu, C.J., Witcombe, J.R., Pittawy T.S., Nash, M, Hash C.T., Brusso, C.S. and Gale, M.D (1994) An RFLP-based genetic map of pearl millet (*Pennisetum glaucum*). *Theoretical and applied genetics* 8:481-487
28. McDermoth, J.M, Brandle, U. Dutly F, Haemmerli U.A., Keller, S, Muller, K.E., Wolf, MS (1994) Genetic variation in powdery mildew of barley: development of RAPD, SCAR and VNTR markers. *Phytopathology* 84:1316-1321.

29. Mullis, K.B., and Facoona, F.A (1987). Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. *Methods enzymological* 155:335-350.

30. Ntundu, W.H, Bach, I.C, Christiansen J.L, and Anderson S.B (2004). *African Journal of Biotech* vol 3 (4): 220 - 225

31. Omahinmin and Osawaru (2005).Morphological characterization of two pecies of *Abelmoshus*. *Abelmoshus esculentus* and *Abelmoshus caillei*. *Genetic Resource Newsletter* No.144:51-55

32. Ortiz, R. (2004) Biotechnology with horticultural and agronomic Crops in Africa. *Acta Horticulture* 642:43-56.

33. Powell, W, Morgante, M and Andre, R (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplams analysis. *Mol Breed* 2:225-238.

34. Prasanna B.M., Hettiarachchi, K., and Mahatman, K. (2009b) Molecular marker-assisted pyramiding of genes conferring resistance to Turcium leaf blight and polysora rust in maize in bred lines in India. In: Proceedings of 10th Asian region Maize workshop (October 20-23, 2008, Makassar, Indonesia). CIMMYT, Mexico DF

35. Prasanna, B.M., and Pixley K. (2010). Molecular marker-assisted breeding options for maize improvement in Asia. *Mol Breeding*, 26:339-356

36. Sagai Maroof, M.A, Biyashev, R.M, Yang G.P., Zhang, Q, Allard R.W (1994). Extraordinarily polymorphic satellite DNA in barley: species diversity, chromosomal locations, and population dynamics. *Proc. Natl Acad. Sci, USA*, 91:5466-5470

37. Samarajeewa, P.K., and Rathnayaka R.M.U.S.K (2004). Disease resistance in genetic variation of wild relatives of Okra (*Abel moschus esulentus* L.) *Annals of the Sri Lanka Department of Agriculture* 6:167-176

38. Staub, J. C., Serquen, F.C., and McCreight, J.A. (1997). Genetic diversity in cucumber (*Cucumis sativus* L.). An evaluation of Indian germplasm. *Genetic Res and Crop evolution*, 44 (4): 315-326.

39. Stuber C.W., Edwards, M.D., and Wendel J.F. (1987). Molecular markers facilitated investigations of QLT in maize and factors influencing yield and its component traits. *Crop Sci.* 27:638-648

40. Thornsberry, J.M., Goodman, M.M., Doebley J., Kresovich .S., Nielsen, D and Bucker, E.S. (2001). Dwarf polymorphisms Associate with variation in flowering. *Natural genetics* 28:286-289.

41. Thottappilly, G., Magonouna, H.D and Omitogun, O.G (2000). The useof DNA markers for rapid improvement of crops in Africa. *African Crop Science Journal*. Vol. 8, No. 1 pp 99- 108.

42. Torress A.M, Weeden NF, Martin A. (1993). Linkage among isozyme, RFLP and RAPD markers. *Plant physiol* 101:394-452.

43. Van de Wiel, C., Arens, P. Vosman, B (1999) Microsatellite retrieval in *lettus* (*Lactuca sativa* L.) genome 42:139-149

44. Wu, K.S., and Tanksley, S.D. (1993). Abudnace, Polymorphism and genetic mapping of microsatellites in rice. *Mol. Gen Genet* 241:225-235

45. Wu, K.S, Jones, R., Danneberger, L., Scolnik, P (1994) Detection of Microsatellite polymorphism without cloning. *Nucleic acids Res.* 22:3257-3258

46. Agarwal, M., Shrivastava, N. and Padh, H. (2008) Advances in Molecular marker techniques and their applications in plant science. *Plant cell rep* 27:617-613

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 5 Version 1.0 August 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975-5896

Surface Water Quality Status in the part of Bhadravathi Industrial Town, Shimoga District, Karnataka, India

By Basavaraja Simpi, Anantha Murthy K.S, Kns Murthy,
Chandrashekappa K.N

Kuvempu University, Shankaraghatta, Karnataka, India

Abstract - In order to know the surface water pollution in the part of Bhadravathi industrial town, Shimoga District, Karnataka state, the present study has been conducted around Mysore Paper Mill (MPM) solid waste dump site, which may be the source of pollution. Nine surface water samples were collected and analyzed for physico-chemical parameters and heavy metal concentrations. The results indicated that the concentration of Na is high in two samples and very high in three samples. The increase in the concentrations of Na and K in surface water samples may be probably due to the agricultural run-off and effluents discharged from the industries.

Keywords : Physico-chemical, Bhadravathi, Mysore Paper Mill

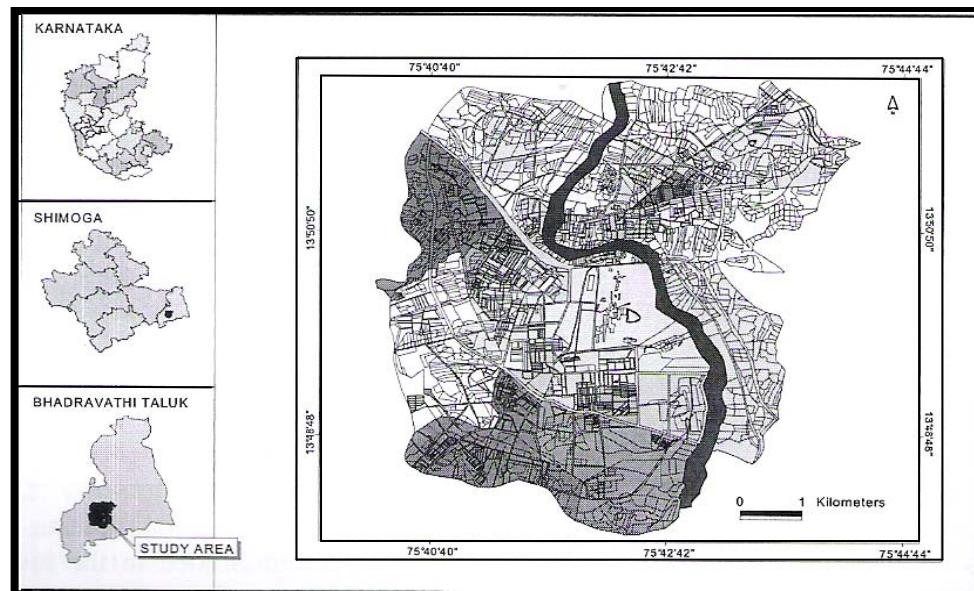
GJSFR Classification : FOR Code : 960506

Strictly as per the compliance and regulations of:

Surface Water Quality Status in the part of Bhadravathi Industrial Town, Shimoga District, Karnataka, India

Basavaraja Simpi^a, Anantha Murthy K.S^Ω, KNS Murthy^β, Chandrashekappa K.N^Ψ

Abstract - In order to know the surface water pollution in the part of Bhadravathi industrial town, Shimoga District, Karnataka state, the present study has been conducted around Mysore Paper Mill (MPM) solid waste dump site, which may be the source of pollution. Nine surface water samples were collected and analyzed for physico-chemical parameters and heavy metal concentrations. The results indicated that the concentration of Na is high in two samples and very high in three samples. The increase in the concentrations of Na and K in surface water samples may be probably due to the agricultural run-off and effluents discharged from the industries.


Keywords: *Physico-chemical, Bhadravathi, Mysore Paper Mill.*

I. INTRODUCTION

The environmental problems that arise due to industrial activities are water pollution, air pollution, generation of hazardous waste and noise pollution. The nature of emissions and effluents from industries are varied and industry specific. If the effluents discharged from the industries are left on the land for

natural evaporation or the solid wastes disposed as landfill or used for agriculture, the pollutants may reach the surface water bodies through runoff and later infiltrates to pollute the ground water. In this regard the present study is concentrated only on the surface water quality assessment in Bhadravathi industrial town of Karnataka, India.

Bhadravathi town is one of the major industrial areas in Karnataka, in which river Bhadra is passing through the heart of the city and receiving sewage and effluents from Mysore Paper Mill (MPM) and Visweswaraiah Iron and Steel (VISL) industries and domestic wastes. Considering these facts the study area has been chosen in a buffer zone of 4.5 Kms from MPM dumpsite ($13^{\circ} 48' 46''$ N – $13^{\circ} 50' 52''$ N and $75^{\circ} 44' 40''$ E – $75^{\circ} 44' 44''$ E).

Fig 1: Map showing the location of the study area

Author ^{aΩβψ} : Dept. of Applied Geology, Kuvempu University, Shankaraghatta, Shimoga District, Karnataka, India.

II. GEOLOGY & SOIL

Study area consists of ancient rock formation of Achaean age and these are mainly of Dharwar super group and the components of peninsular gneissic complex. The granitic gneisses occurring as scattered out crops, forms the principal exposures of the study area are with minor components of quartz-chlorite schist. These rocks are traversed by three set of joints i.e., N 35° W dipping 60° E, N 30° E dipping 60° W & N55°E dipping almost vertical, respectively for first, second and third set of joints and the major soil type is red loamy.

III. METHODOLOGY

The present work is based on nine surface water samples that are collected during the year 2006. Samples were collected were analyzed for pH by Digital pH meter, EC by Conductivity meter, TH, Cl, Mg, Ca by titrimetric method. BOD, COD by Winkler and Reflux condensation methods respectively. TS, TDS, TSS by Evaporation method, SO₄, NO₃, PO₄ by UT-Visible Spectrophotometer, Heavy metals by ICP-AES.

IV. RESULTS AND DISCUSSION

pH varies from 6.39 to 8.44 and are with in the permissible limits of 6.5 to 8.5 are prescribed by BIS (1991). The EC values ranges from 238 to 806 and this is within the desirable limit (1500) of BIS except in sample no 4. Concentrations of Cl and TH ranges from 4 to 221 mg/l and 69 to 220 mg/l respectively and these are also well within the permissible limits. Total alkalies expressed as HCO₃ and TDS concentrations of surface water samples of the present study are 120 to 220 mg/l and 155 to 524 mg/l respectively and these are within the permissible limits.

Concentrations of SO₄, NO₃ and PO₄ of the samples are in range of 2.61 to 17.84 mg/l, 3.16 to 23.73 mg/l and 0.93 to 1.94 mg/l respectively and are within the permissible limits. The value of Ca and Mg varies from 17 to 48 mg/l and 6 to 23 mg/l respectively and are well within the permissible limits.

Sodium is present in all natural water as sodium salts, which are high soluble in water. Except in two samples (samples no.3 & 7) concentration of Na is high in sample no 2 & 6 to very high in samples 1, 4 & 5. The concentration of K is within permissible limits excluding sample 4 & 5 in these two samples the levels of K is 45 and 13 respectively. The increase in concentrations of Na and K in the surface water sample no 4 & 5 is probably due to the agricultural run-off and effluents discharged from industries.

BOD of the samples are with in the permissible limits, except sample no 6 & 7, which is 12 and 8 mg/l respectively, this higher values in BOD may be due to

sewerage input, which was observed during the field visit.

COD has been found to be more scientific than BOD and it's not much influenced by pH value of water, type of micro-organism, presence of toxic materials, nitrification processes and residual mineral matter (Sharma and Kaur, 1994). The COD values in the study area are slightly higher than the permissible limit of WHO (10 mg/l), except sample no 5. All the above said values are tabulated in Table 1.

a) Status of Heavy metals in the samples

The results obtained indicate that the Al value ranges from 0.009 to 0.153 ppm, Fe varies from 0.025 to 0.204 ppm and Mn varies from 0.003 to 0.232 and are well within the permissible limits set by WHO (2005) and BIS (1991). In transitional trace elements Ni and V are detected in all the samples and are varies from 0.001 to 0.003 and 0.001 to 0.005 respectively and are within the permissible limits. Where as Cr and Co have detected in samples no. 1, 2, 5, 6 and sample no 4 respectively, these are within the permissible limits.

Concentrations of Cu, Pb, Zn and Ba in these samples vary from 0.002 to 0.017 ppm, 0.001 to 0.004 ppm, 0.004 to 0.082 ppm and 0.031 to 0.079 ppm respectively and are well within the permissible limits.

b) Agricultural suitability

Assessment of surface water samples for agricultural suitability, USSL technique is generally followed for the classification of water for irrigation based on conductivity and Sodium Absorption Ratio (SAR). Sample no 3 and 6 belongs to class 1 of USSL, water of this class are low salinity type and can be used to grow almost all type of crops in all variety of soils. Sample no 1,2 and 7 belongs to class 2 of USSL, water of this class are medium salinity type and can be used to grow plants of moderate salt tolerance. Sample no 4 and 5 belongs to class 3 of USSL, water of this class are high salinity type and can be used to grow salt tolerance plants with special management for salinity control.

Sample no.	pH	EC ($\mu\text{mhos}/\text{c}$)	Cl	TH	HCO_3	TDS	BOD	COD	SO_4	NO_3	PO_4	Ca	Mg	Na	K
1	7.05	566	33	140	200	368	6	20	7.76	23.73	1.94	35	13	35	3
2	7.70	434	21	101	152	282	6	20	4.47	3.16	0.93	25	9	24	5
3	7.13	238	4	69	120	115	5	16	5.80	4.66	Nil	17	6	12	2
4	8.05	3440	249	332	780	2236	6	20	9.53	10.41	Nil	52	48	282	45
5	7.68	806	221	220	200	524	3	8	2.61	12.70	Nil	48	23	113	13
6	8.44	396	5	75	128	257	12	40	4.48	3.71	Nil	19	6	22	8
7	6.93	290	24	90	160	189	8	28	17.84	7.11	Nil	24	7	11	3
8	7.91	306	42	228	101	183	2	16	6.84	4.19	ND	34	11	17	2.3
9	7.84	383	46	148	125	230	2.50	20	7.02	5.02	ND	38	12	21	3.4

Table 1: Physico-chemical parameters of surface water samples (All the values are in mg/l except pH & EC)

Sample no.	Sample location	Al	Fe	Mn	Cr	V	Co	Ni	Cu	Zn	Ba	Pb
1	Near coconut plantation south gate	32	94	15	2	2	BDL	2	5	82	56	1
2	Pond near the river course	39	36	5	2	2	BDL	3	3	13	35	1
3	Near water works	37	89	13	2	2	BDL	1	2	6	31	1
4	Kalingaeshwara temple	126	48	232	5	5	1	3	5	4	73	4
5	Thimmalapura North	39	27	9	2	2	BDL	2	17	5	79	2
6	Pond water near canal	153	111	12	1	1	BDL	2	5	6	63	1
7	Doddagoppenalli tank	9	204	3	1	1	BDL	1	3	6	36	2
8	Down stream of Gondi canal	ND	14	ND	ND	ND	ND	ND	16	20	ND	NIL
9	Up stream of Gondi canal	ND	16	ND	ND	ND	ND	ND	12	24	ND	NIL

Table 2: Heavy metal concentrations of surface water samples (values are in ppb)

Sample no.	SAR	Mg Hazard	KR	RSC	CR	%Na	EC ($\mu\text{mhos}/\text{cm}$)	USSL Class	Water type
1	1.28	37.2	0.54	0.006	0.63	44.59	250-750	2	CaHCO_3
2	1.06	36.4	0.53	0.004	0.50	46.16	250-750	2	Ca-HCO_3
3	0.006	37.1	0.40	0.003	0.55	39.16	0-250	1	Ca-HCO_3
4	6.77	60.3	1.87	6.07	0.57	76.55	750-2250	3	Na-HCO_3
5	3.33	44.5	1.13	0.00	1.68	63.79	750-2250	3	Na-Cl
6	1.44	33.4	0.66	0.00	0.42	54.05	0-250	1	Na-HCO_3
7	0.005	31.1	0.28	0.003	1.37	31.49	250-750	2	Ca-HCO_3
8	0.647	34.3	0.38	0.00	1.30	30.16	250-750	2	Ca-HCO_3
9	0.752	35.0	0.41	0.00	1.10	32.37	25-750	2	Ca-HCO_3

Table 3: Irrigation suitability factors in study area

Permissible limits of Sodium Adsorption ratio (SAR), Magnesium hazard (MG-Haz), Kelley's radio (KR), Residual sodium carbonate (RSC), Corrosivity ratio (CR) and Sodium percentage (% Na) are 18-26, <50%, <1, 1.5-2.5 meq/l, <1, 40-60% respectively (Sharma B.K., and Kaur.H 1994).

V. CONCLUSIONS

As such there is no significant impact on surface water quality due to disposal of solid waste by MPM as landfill. Na and K concentrations in surface water sample no. 4 & 5 are high and are classified as high salinity type water as per USSL classification, this is probably due to the input of agricultural run-off and effluents discharged from industries and quality of these wastes should be monitored regularly. BOD of 6 and 7 no of samples are higher than the permissible limits. The higher level of BOD in these samples is due to sewerage

input and the presence of weeds, which was observed during the field visit.

VI. ACKNOWLEDGEMENTS

The authors are grateful to University Grants Commission, UGC DRS (SAP) Project, New Delhi for providing necessary Research Facilities through co-ordinator Prof. K.S Anantha Murthy, Department of Applied Geology, Kuvempu University, Shankaraghatta, Karnataka, INDIA.

REFERENCES RÉFÉRENCES REFERENCIAS

- Lee, S.Y.Lee, M.H., (2001): Statistical evaluation of geochemical parameter distribution in a ground water system contaminated with petroleum hydrocarbons. Journal of Environmental Quality 30, 1548-1563.

2. **Reghunath, R., Murthy, T.R.S., Raghavan, B.R (2002):** The utility of Multivariate statistical techniques in hydro-geochemical studies: an example from Karnataka, India. *Water research*, 36, 2437-2442.
3. **Sharma B.K and Kaur.H (1994):** Environmental Chemistry, 656 pp, Second edition. Goel Publishing House, Merrut.
4. **Shrestha, S.Kazama F (2007):** Assessment of surface water quality using multivariate statistical techniques: A case study of Fuji river basin. Japan. *Environmental Modeling & software*, 22, 464-475.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 5 Version 1.0 August 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975-5896

On Fractional Calculus and Certain Results Involving K_2 -Function

By Kishan Sharma, V. S. Dhakar

Suresh Gyan Vihar University, Jaipur (Raj.), INDIA

Abstract - In the present paper a new function called K_2 - function, which is an extension of the function defined by Miller and Ross[20], is introduced and studied by the author in terms of some special functions and derived the relations that exists between the K_2 - function and the operators of Riemann-Liouville fractional integrals and derivatives.

Keywords and Phrases : fractional calculus, Riemann - Liouville fractional integrals and derivatives.

Mathematics Subject Classification : 26A33, 33C60

ON FRACTIONAL CALCULUS AND CERTAIN RESULTS INVOLVING K_2 -FUNCTION

Strictly as per the compliance and regulations of:

On Fractional Calculus and Certain Results Involving K_2 - Function

Kishan Sharma^a, V. S. Dhakar^Q

Abstract - In the present paper a new function called K_2 - function, which is an extension of the function defined by Miller and Ross[20], is introduced and studied by the author in terms of some special functions and derived the relations that exists between the K_2 - function and the operators of Riemann - Liouville fractional integrals and derivatives.

Keywords and Phrases : fractional calculus, Riemann - Liouville fractional integrals and derivatives.

I. INTRODUCTION AND DEFINITIONS

Fractional Calculus deals with derivatives and integrals of arbitrary orders. During the last three decades Fractional Calculus has been applied to almost every field of Mathematics like Special Functions etc., Science, Engineering and Technology. Many applications of Fractional Calculus can be found in Turbulence and Fluid Dynamics, Stochastic Dynamical System, Plasma Physics and Controlled Thermonuclear Fusion, Non-linear Control Theory, Image Processing, Non-linear Biological Systems and Astrophysics.

The Mittag-Leffler function has gained importance and popularity during the last one decade due mainly to its applications in the solution of fractional-order differential, integral and difference equations arising in certain problems of mathematical, physical, biological and engineering sciences. This function is introduced and studied by Mittag-Leffler[10,11] in terms of the power series

$$E_\alpha(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(\alpha n + 1)}, \quad (\alpha > 0) \quad (1.1)$$

A generalization of this series in the following form

$$E_{\alpha, \beta}(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(\alpha n + \beta)}, \quad (\alpha, \beta > 0) \quad (1.2)$$

has been studied by several authors notably by Mittag Leffler[10,11], Wiman[13], Agrawal[15], Humbert and Agrawal[8] and Dzrbashjan[1,2,3]. It is shown in [5] that the function defined by (1.1) and (1.2) are both entire functions of order $\rho = 1$ and type $\sigma = 1$. A detailed account of the basic properties of these two functions are given in the third volume of Bateman manuscript project[4] and an account of their various properties can be found in [2,12].

The multiindex Mittag-Leffler function is defined by Kiryakova[9] by means of the power series

$$E_{(\frac{1}{\rho_i}), (\mu_i)}(x) = \sum_{n=0}^{\infty} \varphi_n z^n = \sum_{n=0}^{\infty} \frac{x^n}{\prod_{j=1}^m \Gamma(\mu_j + \frac{n}{\rho_j})}$$

Where $m > 1$ is an integer, ρ_j and μ_j are arbitrary real numbers.

The multiindex Mittag-Leffler function is an entire function and also gives its asymptotic, estimate, order and type see Kiryakova[9].

An interesting generalization of (1.2) is recently introduced by Kilbas and Saigo[16] in terms of a special entire function of the form

$$E_{\alpha, m, l}(x) = \sum_{n=0}^{\infty} c_n x^n, \quad (1.4)$$

Author^a: Department of Mathematics, NRI Institute of Technology and Management, Baraghata, Next to S.G. Motors, Jhansi Road, Gwalior-474001, INDIA. Address : B-3, Krishna Puri, Taraganj, Lashkar, Gwalior(M.P.)-474001, INDIA. E-mail : drkishansharma2006@rediffmail.com

Author^Q: Research Scholar, Suresh Gyan Vihar University, Jaipur (Raj.), INDIA.

Where

$$c_n = \prod_{i=0}^{r-1} \frac{\Gamma[\alpha(im+l)+1]}{\Gamma[\alpha(im+l+1)+1]}, (n=0,1,2,\dots)$$

and an empty product is to be interpreted as unity. Certain properties of this function associated with fractional integrals and derivatives[12].

In 1993, Miller and Ross[20] introduced a function as the basis of the solution of fractional order initial value problem. It is defined as the ν th integral of the exponential function, that is,

$$E_x[\nu, a] = \frac{d^{-\nu}}{dx^{-\nu}} e^{ax} = x^\nu e^{ax} \gamma^*(\nu, ax) = \sum_{n=0}^{\infty} \frac{a^n x^{n+\nu}}{\Gamma(n+\nu+1)}, \nu \in C \quad (1.5)$$

where $\gamma^*(\nu, ax)$ is the incomplete gamma function.

18

The present paper is organized as follows; In section 2, we give the definition of the K_2 - function and its relations with another special functions, namely Miller-Ross's function, generalization of the Mittag-Leffler function[11] and its generalized form introduced by Prabhakar[20] etc. In section 3, relations that exists between K_2 - function and the operators of Riemann-Liouville fractional calculus are derived.

II. A NEW SPECIAL FUNCTION

The K_2 - function introduced by the first author is defined as follows:

$$K_2^{(p:q)}_{(\nu;a)}(a_1, \dots, a_p; b_1, \dots, b_q; x) = K_2^{(p:q)}_{(\nu;a)}(x) = \sum_{n=0}^{\infty} \frac{(a_1)_n \dots (a_p)_n}{(b_1)_n \dots (b_q)_n} \frac{a^n x^{n+\nu}}{\Gamma(n+\nu+1)} \quad (2.1)$$

where $\nu \in C$ and $(a_i)_n (i=1,2,\dots, p)$ and $(b_j)_n (j=1,2,\dots, q)$ are the Pochammer symbols.

The series (2.1) is defined when none of the parameters $b_j s, j=1,2,\dots, q$, is a negative integer or zero. If any numerator parameter a_{jr} is a negative integer or zero, then the series terminates to a polynomial in x. From the ratio test it is evident that the series is convergent for all x if $p > q + 1$. When $p = q + 1$ and $|x| = 1$, the series can converge in some cases. Let $\gamma = \sum_{j=1}^p a_j - \sum_{j=1}^q b_j$. It can be shown that when $p = q + 1$ the series is absolutely convergent for $|x| = 1$ if $R(\gamma) < 0$, conditionally convergent for $x = -1$ if $0 \leq R(\gamma) < 1$ and divergent for $|x| = 1$ if $1 \leq R(\gamma)$.

Special cases :

(i) When there is no upper and lower parameter, we get

$$K_2^{(0;0)}_{(\nu;a)}(-;-;x) = \sum_{n=0}^{\infty} \frac{a^n x^{n+\nu}}{\Gamma(n+\nu+1)} \quad (2.2)$$

Which reduces to the function of Miller and Ross[20].

(ii) If we put $a = 1, \nu = 0$ in (2.2), we get

$$K_2^{(0;0)}_{(1;1)}(-;-;x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(n+1)} \quad (2.3)$$

Which reduces to the Mittag-Leffler function [4] $E_1(x)$ or generalized Mittag - Leffler function [4] $E_{1,1}(x)$ or Exponential function[6] e^x

III. RELATIONS WITH RIEMANN - LIOUVILLE FRACTIONAL CALCULUS OPERATORS

In this section we derive relations between K_2 - function and the operators of Riemann-Liouville Fractional Calculus. The relations are presented in the form of two theorems as follows:

Theorem 3.1 Let $\alpha > 0, \nu \in C$ and I_x^α be the operator of Riemann-Liouville fractional integral then there holds the relation:

$$I_x^\alpha \underset{(\nu;a)}{K_2} (a_1, \dots, a_p; b_1, \dots, b_q; x) = \frac{x^{\alpha+\nu}}{\Gamma(\alpha+1)} \underset{(\nu;a)}{K_2} (a_1, \dots, a_p, 1; b_1, \dots, b_q, \alpha+1; x) \quad (3.1)$$

Proof : Following Section 2 of the book by Samko, Kilbas and Marichev[8], the fractional Riemann – Liouville (R-L) integral operator (For lower limit $a = 0$ w. r. t. variable x) is given by

$$I_x^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) dt \quad (3.2)$$

By virtue of (3.2) and (2.1), we obtain

$$I_x^\alpha \underset{(\nu;a)}{K_2} (a_1, \dots, a_p; b_1, \dots, b_q; x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} \sum_{n=0}^{\infty} \frac{(a_1)_n \dots (a_p)_n}{(b_1)_n \dots (b_q)_n} \frac{a^n t^{n+\nu}}{\Gamma(n+\nu+1)} dt \quad (3.3)$$

Interchanging the order of integration and evaluating the inner integral with the help of Beta function, it gives

$$\begin{aligned} I_x^\alpha \underset{(\nu;a)}{K_2} (a_1, \dots, a_p; b_1, \dots, b_q; x) &= \frac{x^{\alpha+\nu}}{\Gamma(\alpha+1)} \sum_{n=0}^{\infty} \frac{(a_1)_n \dots (a_p)_n (1)_n}{(b_1)_n \dots (b_q)_n (\alpha+1)_n} \frac{a^n x^{n+\nu}}{\Gamma(n+\nu+1)} \\ &= \frac{x^{\alpha+\nu}}{\Gamma(\alpha+1)} \underset{(\nu;a)}{K_2} (a_1, \dots, a_p, 1; b_1, \dots, b_q, \alpha+1; x) \end{aligned} \quad (3.4)$$

The interchange of the order of integration and summation is permissible under the conditions stated along with the theorem due to convergence of the integrals involved in this process.

This shows that a Riemann-Liouville fractional integral of the K_2 - function is again the K_2 – function with indices $p+1, q+1$.

This completes the proof of the theorem (3.1).

Theorem 3.2 Let $\alpha > 0, \nu \in C$ and D_x^α be the operator of Riemann - Liouville fractional derivative then there holds the relation:

$$D_x^\alpha \underset{(\nu;a)}{K_2} (a_1, \dots, a_p; b_1, \dots, b_q; x) = \frac{x^{-\alpha-\nu}}{\Gamma(1-\alpha)} \underset{(\nu;a)}{K_2} (a_1, \dots, a_p, 1; b_1, \dots, b_q, 1-\alpha; x) \quad (3.5)$$

Proof : Following Section 2 of the book by Samko, Kilbas and Marichev[8], the fractional Riemann- Liouville (R-L) integral operator (For lower limit $a = 0$ w. r. t. variable x) is given by

$$D_x^\alpha f(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_0^x (x-t)^{n-\alpha-1} f(t) dt \quad (3.6)$$

Where $n = [\alpha] + 1$.

From (2.1) and (3.6) it follows that

$$D_x^{\alpha} {}_{(v;a)}^{(p;q)} K_2(a_1, \dots, a_p; b_1, \dots, b_q; x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_0^x (x-t)^{n-\alpha-1} \sum_{n=0}^{\infty} \frac{(a_1)_n \dots (a_p)_n}{(b_1)_n \dots (b_q)_n} \frac{a^n t^{n+v}}{\Gamma(n+v+1)} dt \quad (3.7)$$

Interchanging the order of integration and evaluating the inner integral with the help of Beta function, it gives

$$\begin{aligned} D_x^{\alpha} {}_{(v;a)}^{(p;q)} K_2(a_1, \dots, a_p; b_1, \dots, b_q; x) &= \frac{x^{-\alpha-v}}{\Gamma(1-\alpha)} \sum_{n=0}^{\infty} \frac{(a_1)_n \dots (a_p)_n (1)_n}{(b_1)_n \dots (b_q)_n (1-\alpha)_n} \frac{a^n x^{n+v}}{\Gamma(n+v+1)} \\ &= \frac{x^{-\alpha-v}}{\Gamma(1-\alpha)} {}_{(v;a)}^{(p+1;q+1)} K_2(a_1, \dots, a_p, 1; b_1, \dots, b_q, 1-\alpha; x) \end{aligned} \quad (3.8)$$

This shows that a Riemann-Liouville fractional derivative of the K_2 - function is again the K_2 - function with indices $p+1, q+1$.

This completes the proof of the theorem(3.2).

IV. ACKNOWLEDGEMENTS

The author is very thankful to Prof. Renu Jain(Gwalior) and Prof. M. A. Pathan(Aligarh) for giving several valuable suggestions in the improvement of the paper.

V. CONCLUSION

It is expected that some of the results derived in this survey may find applications in the solution of certain fractional order differential and integral equations arising problems of physical sciences and engineering areas.

REFERENCES RÉFÉRENCES REFERENCIAS

1. M. M. Dzrbashjan, On the integral representation and uniqueness of some classes of entire functions(in Russian), Dokl. AN SSSR 85(1)(1952) 29-32.
2. M. M. Dzrbashjan, On the integral transformations generated by the generalized Mittag - Leffler function(in Russian) Izv. AN Arm. SSR 13(3)(1960) 21-63
3. M. M. Dzrbashjan, Integral transforms and Representations of Functions in the complex Domain(in Russian) Nauka, Moscow, 1966.
4. A. Erdelyi, W. Magnus, F.Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York-Toronto-London, 1955.
5. R. Gorenflo, A. A. Kilbas and S. V. Rosogin, On the generalized Mittag- Leffler type functions, Intehgral Transforms and Special Functions, Vol. 7, No. 3-4, 215-224.
6. R. Grenflo and F. Mainardi, The Mittag-Leffler type function in the Riemann- Liouville fractional calculus, In: Kilbas, A. A.(ed.) Boundary value problems, Special Functions and Fractional Calculus(Proc. Int. Conf. Minsk, 1996) Belarussian State University, Minsk., 1996, 215-225.
7. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, In: A. Carpinteri, F. Mainardi: (Eds.) Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997, pp.223-276.
8. P. Humbert and R. P. Agrawal, Sur la function de Mittag-Leffler et quelques unes de ses. Generalizations, Bull Sci. Math.(2) 77(1953), 180-185.
9. V. S. Kiryakova, Multiple(multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118(2000), 241-259.
10. G. M. Mittag-Leffler, Sur la nouvelle function Ea(x). C.R.Acad.Sci. Paris(2) 137(1903), 554-558.
11. G. M. Mittag-Leffler, Sur la representation analytique de'une branche uniforme une function monogene, Acta. Math. 29(1905), 101-181.
12. S.G. Samko, A. Kilbas O. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Sci. Publ., New York et alibi, 1990.
13. Adders Wiman, Uber die Nullsteliun der Fuctionen Ea(x), Acta Math. 29, 217-234.

14. E.D. Rainville, Special functions, Chelsea Publishing Company, Bronx, New York(1960).
15. R. P. Agrawal, A propos d'une Note M. Pierre Humbert, C. R. Acad. Sc. Paris 236(1953), 2031-2032.
16. A.A. Kilbas and M. Saigo, Fractional integrals and derivatives of Mittag- Leffler type function(Russian English summary). Doklady Akad. Nauk Belarusi 39(1995), No. 4, 22-26.
17. A. A. Kilbas, Fractional calculus of generalized Wright function. Frac. Calc. Appl. Anal.(2005); 8: 113-126.
18. A.M. Mathai, R.K.Saxena, The H-function with applications in Statistics and other disciplines. John Wiley and Sons, Inc., New York(1978).
19. M. Sharma, R. Jain, A note on a generalized M-series as a special function of fractional Calculus. Fract. Calc. Appl. Anal. **12** No. 4(2009).
20. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York etc.(1993).

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 5 Version 1.0 August 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975-5896

Determinant Post Harvest Losses among Tomato Farmers in Imeko-Afon Local Government Area of Ogun State, Nigeria

By Ayandiji, A. O. R., Adeniyi Omidiji, D.

Bowen University, Iwo, Osun state

Abstract - Food supply can be induced either by increase in production or reduction in loss. Many post harvest losses are direct result of factors such as high field temperatures on crops before harvesting, pests and diseases attack etc, hence increase in the losses after harvest. The study area is Imeko Afon Local Government Area of Ogun State. Purposive sampling technique was employed in selecting 88 respondents and administering the questionnaire, and 88 were used for analyzing the data. Results on socio-economic characteristics revealed that, majority of the farmers (69%) fell into the active workforce and they had farm sizes ranging from 1-5hectares. Larger percentage of the farmers had an education below secondary level (83%). Majority of the tomato farmers had household size greater than 33% and 68% of the farmers had less than 16 years experience in tomato production. About 72% make use of van/pick up in transporting their produce from the farm to the market. No storage facilities were used in the study area to preserve the fruits from rotten after harvesting as at the time of study. The average gross margin with post harvest losses (9,251.41) is less than the average gross margin when no damage occurred in the fruits (72,752.55), thus showing that post harvest losses reduce the mine of farmers in the study area. All the independent variables tested on the dependent variable (Quantity of fruit loss) tested were significant at 5%. The effects of post harvest losses in the study area leads to wastage of the products and tend to frustrate the efforts put into production and their income on the produce.

Keywords : Post - harvest, Income, Gross-Margin, Losses

GJSFR Classification : FOR Code : 820699

Strictly as per the compliance and regulations of:

Determinant Post Harvest Losses among Tomato Farmers in Imeko-Afon Local Government Area of Ogun State, Nigeria

Ayandiji, A^a, O. R., Adeniyi^Q Omidiji, D.^b

Abstract - Food supply can be induced either by increase in production or reduction in loss. Many post harvest losses are direct result of factors such as high field temperatures on crops before harvesting, pests and diseases attack etc, hence increase in the losses after harvest. The study area is Imeko Afon Local Government Area of Ogun State. Purposive sampling technique was employed in selecting 88 respondents and administering the questionnaire, and 88 were used for analyzing the data. Results on socio-economic characteristics revealed that, majority of the farmers (69%) fell into the active workforce and they had farm sizes ranging from 1-5hectares. Larger percentage of the farmers had an education below secondary level (83%). Majority of the tomato farmers had household size greater than 33% and 68% of the farmers had less than 16 years experience in tomato production. About 72% make use of van/pick up in transporting their produce from the farm to the market. No storage facilities were used in the study area to preserve the fruits from rotten after harvesting as at the time of study. The average gross margin with post harvest losses (9,251.41) is less than the average gross margin when no damage occurred in the fruits (72,752.55), thus showing that post harvest losses reduce the mine of farmers in the study area. All the independent variables tested on the dependent variable (Quantity of fruit loss) tested were significant at 5%. The effects of post harvest losses in the study area leads to wastage of the products and tend to frustrate the efforts put into production and their income on the produce.

Keywords: Post-harvest, Income, Gross-Margin, Losses.

I. INTRODUCTION

Fresh fruits and vegetables are very important sources of vitamins that are essential for healthy human diet. The quality and nutritional value of fresh produce is affected by post harvest handling and storage condition. {Sablani et al, 2006}. Vegetables are usually harvested when the plant is fresh and high in moisture and are thus distinguished from field crops, which are harvested at the mature stage for grains, pulses, oil seeds or fibre. This high moisture of vegetable makes their handling, transportation and marketing a special problem particularly in the tropics.

Tomato is a major vegetable crop that has achieved tremendous popularity over the last century. It is grown in practically every country of the world in

outdoor fields, greenhouses and net houses. Tomato belongs to the *solanaceae* family. This family also includes other well known species such as potato, tobacco, pepper and egg plant. Tomato has its origin in the South American Andes. {Naika et al, 2005}. The tomato plant is very versatile and the crop can be divided into two categories; fresh market tomatoes, which we are concerned with and processing tomatoes, which are grown only outdoors for the canning industry and mechanically harvested. World production and consumption have grown quite rapidly over the past 25 years. Tomato is one of the most important vegetables worldwide. World Tomato production in 2001 was about 105 million tons of fresh fruit from an estimated 3.9 million hectare. {Naika et al, 2005}. Tomato contributes to a healthy well balanced diet. They are rich in minerals, vitamins, essential amino acids, sugars and dietary fibres. Tomato contains much vitamin B and C, iron and phosphorus. Tomato fruits are consumed fresh in salads or cooked in sauces, soup and meat of fish dishes. They can be processed into purees, juice and ketchup. Canned and dried tomatoes are economically important processed products. Tomato has become an important cash and industrial crop in various parts of the world. One of the reasons for this increases is that tomato cultivation is now being moved to places and seasons that are originally unsuitable for its productivity thereby resulting in an increase in the economic importance of the crop.{Bodunde et al 1993}.

Tomato is cultivated almost throughout the country but the areas of high concentration lie in the northern and south-western parts of Nigeria. In southern Nigeria, tomato is cultivated in small holdings under rain fed conditions while in northern Nigeria; it is grown extensively under irrigation.

The deterioration of the product starts during the harvesting operations, because fresh fruits are inherently perishable. The more carefully a product is handled, the slower the deterioration process during subsequent handling operations. The causes of tomato losses included physical damage during handling, and transport, physiological decay, water loss, or sometimes simply because there is a surplus or glut in the market and no buyer can be found (FFCT, 1993). In developing countries like Nigeria, storage, packaging, transport and handling techniques are practically non-existent with

Author ^{a,Q,b}: Department of Agricultural Economics and Extension, Bowen University, Iwo, Osun state. E-mail : banji22aug@yahoo.com

perishable crops and so, this allows for considerable losses of produce. Thus as more fresh fruits are needed to supply the growing population areas and as more commodities are stored longer to obtain a year round supply, post harvest loss prevention technology measures become paramount. The losses of quality and freshness of the produce could also be due to improper temperature management, drying of the product, mechanical injury, attacks by bacteria and fungi. These losses can therefore lead to decrease in the returns of the farmers. The main objective is to determine the factors leading to post harvest losses among tomato farmers in Imeko-Afon Local Government Area. The specific objectives are:

- 1) To determine the socio economic characteristics of tomato farmers in the study area.
- 2) To ascertain the causes of the losses of tomato in the study area.
- 3) To determine the effect of the losses on the income of tomato farmers in the study area.
- 4) To examine the adopted preservative methods used by tomato farmers in the study area.

The study area is Imeko Afon Local Government Area of Ogun State. Dominant ethnic groups are the Yewas and the Ketus. Economic activities of the people are mainly farming and trading. Crops grown are maize, cassava, yam, tomatoes, pepper, cocoa, palm e.t.c with which tomato is mostly cultivated by almost every farmer because of its relative profitability compared to others vegetables in the area. Prominent among other occupations is cattle rearing due to the abundance of savannah vegetation in the local government area. Industrial activities in the local government are low and restricted to cottage industries, arts and crafts.

II. MATERIALS AND METHODS

Purposive sampling technique was employed in administering the questionnaire because the research is targeted at Tomato producers. 100 farmers were selected for the study, 25 farmers from each of the villages. The villages are Imeko, Araromi oluka afon, Owode Afon, Gbanla. However, out of the 100 questionnaires that were administered, 88 was retrieved and used in this analysis since some of the questionnaires were badly filled and did not contain information relevant for the work. Descriptive statistics and regression were used as analytical tools

III. RESULTS AND DISCUSSION

Majority of the respondents (51.1%) were male and 48.86% were females, showing that more males are involved in the production of tomato in the study area. This is consistent with the fact that agricultural activities are seen in the western part of Nigeria as labour intensive, and therefore male dominated. Majority of the

farmers are below 41 years of age (69.32%). This indicates a good supply of agile workforce in tomato production in the study area. The result of the marital status shows that majority of the farmers are married (86.4%) while 13.64% are either single or divorced. This could have an implication on post harvest losses in tomato production since; married farmers are likely to have access to more family labour especially for harvesting. The time taken to do the harvesting may be longer and in an attempt to rush the works fruits are badly handled due to poor skill in handling as compared with hired labourers. Table 1 also shows that 82.95% of farmers have no formal education, those with secondary education are 15.91% and for post secondary education 1.14% respondents. This statistics shows that majority of the farmers are illiterate. This could be a contributory factor to high post harvest losses in tomato production because only farmers with knowledge to read and write can appreciate and use most of the post harvest technologies available. The result below shows that majority (68.17%) of the farmers have below 16 years experience in tomato production. This could also have an effect on post harvest losses in tomato production. The low years of experience in tomato production might also be responsible for their lack of knowledge and the unavailability of technology of preservation among the farmers. 11.36% of the farmers are with only one person in the household, 30.68% with 2-6 persons in the household, 25% with 7-11 persons in the household and 32.95% household greater than 12 persons.

Table 1: Socio economic Characteristics of respondents

Gender	Frequency	Cumulative frequency	Percentage
Male	45	45	51.14
Female	43	88	48.86
Total	88		100
Age(Years)	Frequency	Cumulative frequency	Percentage
<30	35	35	39.77
31-40	26	61	29.55
41-50	14	75	15.91
>50	13	88	14.77
Total	88		100
Marital Status	Frequency	Cumulative frequency	Percentage
Single	12	12	13.64
Married	76	88	86.36
Total	88		100
Educational Status	Frequency	Cumulative frequency	Percentage
No formal	51	51	57.95
Primary	22	73	25.00
Secondary	14	87	15.91
Post secondary	1	88	1.14
Total	88		100
Household	Frequency	Cumulative	Percentage

size		frequency	
1	10	10	11.36
2-6	27	37	30.68
7-11	22	59	25
>12	29	88	32.95
Total	88		100

Source: field survey, 2010

Majority of the farmers cultivated between 1 and 5 hectares of land and 17.05% cultivated land area between 6 to 10 hectares, 15.9% cultivated between 16 to 20 hectares and 4.55% cultivated 26 to 30 hectares and this shows that small scale farmers prevail in the study area.

Table 2: Farm size distribution of Tomato Producers (farmers)

Farm size (ha)	Frequency	Cumulative frequency	Percentage
<1	9	9	10.23
1-5	45	54	51.14
6-10	15	69	17.05
11-15	1	70	1.14
16-20	14	84	15.91
21-25	0	84	0.00
26-30	4	88	4.55
Total	88		100

Source: field survey, 2010

Majority of the respondents (72.73%) make use of the van/pick up as a means of transportation, 4.55% respondents employed the use of bicycle, and 22.73% make use of the motorcycle. This may not necessarily affect post harvest losses because the use of van compared to motorcycle and bicycle will reduce the losses, likely to occur in case head loads were used for transportation

Table 3: Means of Transportation of tomato Producers (farmers)

Transport means	Mean Frequency	Cumulative frequency	Percentage
Head load	0	0	0
Bicycle	4	4	4.55
Motorcycle	20	24	22.73
Van/ Pick-up	64	88	72.73
Others	0	88	0
Total	88		100

Source: field survey, 2010

The use of post harvest technology is very minimal in the study area because only few of the farmers (5 out of 88) use the mini technology of storing such as drying and storing of the produce before taking it to the market to sell. The reason for their lack of preservation knowledge of adequate methods could be as a result of lack of awareness by the extension

workers themselves or the farmers on various ways by which they can go about preserving their produce. However, during the course of the study, there was an extension programme by the local government and Agriculture media resources and extension centre (AMREC) from the university of Agriculture for the farmers on ways by which they can preserve their produce to reduce the losses. The various ways as taught by ARMEC include:

- 1) Making the tomatoes into tomato paste, Tomato ketchup and also tomato juice.
- 2) Cutting the tomato into slices and drying them.
- 3) Boiling the tomatoes after which shells are peeled off and rinsed, put in bottles in which there is water and a teaspoon of preservative added to the water and covered.

There is also no method of storage in the area because of unavailability of storage facilities and lack of basic knowledge on the practices. The only way by which some of the farmers stored their produce is by covering it with grasses. However, this could only last for one day before they are taken to the market for sale; a period short enough to address issues involved in market delays

The regression analysis carried out to determine the influence of some factors on the quantity of fruit loss from harvesting to marketing stage, gave an empirical result which was subjected to F-test. The value of the F-statistics was found to be significant at 5%. This implies that all explanatory variables (independent) had a joint impact on the dependent variable. This result is presented in below and also increase in the distance from the farm to the market will increase the quantity of fruit loss this is because the longer the distance of the farm to the market, the longer the time it will take for the produce to get to the market and so, the losses will increase because of the congestion and packaging of the tomato together for a long time. Also increases losses was due to the more the days the fruit spent on the farm after maturity, the more the loss. Increase in the number of baskets harvested also results in increase in the losses because there is no effective method of storage hence the more the quality of harvested produce and the more the spoilage. Also, as the demand for the produce in the market is low during the on-season compared to the supply, the produce that is not sold in the market immediately in fresh form will be lost as a result of there is no storage facility on ground.

Pre harvest working days (PHWD) was not significant. The effect of all the independent variables (Pre harvest working days (man days), harvest working days (man days), Distance from the farm to the market (km), days fruit spent on the farm (days), Age of fruit at harvest (months), Area of land cultivated (hectare), Days fruit spent in the market before getting to the consumer

(days) and Number of basket that was harvested) on the dependent variable (Quantity of fruit loss) tested were significant at 5% level of probability with coefficient of determination (R^2) of 0.95.

Linear Function

$$Y = 3.95X_1 + 2.66X_2 + 4.34X_3 + 0.53X_4 + 2.69X_5 + 1.47X_6 + 0.69X_7 + 3.40X_8 - 140.39 + \{5.33\} \{45.28\} \{296.79\} \{12.35\} \{34.23\} \{150.93\} + \{41.23\} + \{32.36\}$$

$$R^2 = 0.72, F = 8.07$$

Semi-log Function

$$Y = 2.27 + 0.76X_1 + 0.19X_2 + 0.31X_3 + 0.02X_4 + 0.79X_5 + 0.81X_6 + 0.63X_7 + 0.11X_8 + \{0.26\} \{0.26\} \{1.47\} \{0.79\} \{0.63\} \{0.44\} \{0.32\} + \{0.34\}$$

$$R^2 = 0.87, F = 8.96$$

Double-log Function

$$Y = 2.25 + 0.12X_1 + 0.19X_2 + 0.21X_3 + 0.31X_4 + 0.22X_5 + 0.42X_6 + 0.19X_7 + 0.73X_8$$

$$S.E. = \{0.24\} \{0.08\} \{0.28\} \{0.49\} \{0.26\} \{0.14\} \{0.13\} \{0.33\}$$

$$R^2 = 0.91, F = 9.10$$

Exponential-log function

$$Y = 0.35 - 0.16X_1 + 0.05X_2 + 0.01X_3 + 0.17X_4 + 0.09X_5 + 0.12X_6 + 0.39X_7 + 0.47X_8$$

$$S.E. = \{0.02\} \{0.01\} \{0.22\} \{0.32\} \{0.36\} \{0.17\} \{0.12\} \{0.11\}$$

$$t = 0.92 \ 0.57 \ 0.36 \ 1.03 \ 1.23 \ 0.69 \ 1.23 \ 0.67$$

$$R^2 = 0.95, F = 9.32$$

Table 4 below shows the comparison between the gross margin with loss and the Gross margin without loss. The average Gross margin with loss (9,251.41) is less than the average Gross margin without loss (72,251.41). This shows that post harvest losses reduce the income of farmers in Imeko-Afon local Government Area of Ogun State. The percentage loss incurred by the farmers is 87.3%.

Table 4 : Gross Margin Analysis

	Total variable cost	Total revenue	Gross margin	Average gross margin
Without loss	1,163,026	7,565,250	6,402,224	72,752.55
With loss	1,163,026	1,977,150	814,124	9,251.41

Source: field survey, 2010

IV. CONCLUSION

This study has analyzed the determinants of post harvest losses in Tomato production in Imeko-Afon Local Government Area of Ogun state. The result indicates that all the identified factors have significant impact on post harvest losses. Therefore, there is a great need to reduce the losses in the study area. The impact of the losses was also noticeable in the income of the farmers with the use of the gross margin analysis. The gross margin with loss as compared with the gross margin without loss shows that losses reduce the income of the farmers considerably.

V. POLICY RECOMMENDATIONS

Based on the findings of this study, the following recommendations are made for policy actions to reduce the post harvest losses thereby increasing the standard of living of the tomato producers in Imeko – Afon Local Government Area of Ogun State.

1. There should be good storage facilities to store the produce that are harvested before they are being taken to the farm. This will help to produce the losses that will occur at the farm level.
2. Post harvest technology should be introduced to reduce the losses. However there was an extension Programme by Agriculture Media resources and Extension centre (AMREC) from University of Agriculture Abeokuta (UNAAB) on post harvest technology and preservation techniques and there should be a continuation of the extension programmes in order to encourage the farmers.
3. There should be ready market for the produce. The markets must be well organized and also the road network must be improved in order to aid easy transportation of their produce.
4. Extension services should be rendered to the farmers considering their years of experience in tomato production and also to educate them on the various ways that can be used in preserving their produce from losses.
5. Establishment of Tomato processing factories to add value to the fruits. For example processing tomato into Tomato Ketchup, Juice and Purees.
6. With the reduction of post harvest losses by 50%, food availability would be increased by 20% without cultivating an additional hectare of land for increasing crop yield.

REFERENCES RÉFÉRENCES REFERENCIAS

1. AWORH, O.C. (1994). "Exploration and exploitation of indigenous technology for growth of the food and beverage industry". An overview proceedings of the 17th Annual Conference of the Nigerian Institute of Food Science and Technology, University of Ibadan.

2. AWORH O.C and OLORUNDA A.O (1980). "Post harvest losses of perishable vegetables in Nigeria marketing system" Department of Food Technology, University of technology.
3. Bodunde, J.G, Erinle, I.D , Eruotor, P.G ,and Amans, E.B. (1993). "Recommendation for the release of four heat tolerant Tomato varieties". Paper approved by the Professional and Academic Board, IFRA, ABU, Zaria, Nigeria. Pp 165
4. F.F.T.C. Survey (1993). " Post harvest losses of fruits and vegetables in Asia" pp 1-5
5. Megbope, T.A. (2006)." Economics of post harvest losses in pineapple production: A case study of Ado Odo Local Government Area of Ogun State" A published B.sc project. Department of Agricultural And Industrial Technology, Babcock University.
6. Moretti C.L ., Calbo A.G. Henz G.P. (2000).:Post harvest physiology and handling". In: Silva, J.B.C and Giordano L.B.(eds) Processing Tomatoes. Brasilia, Embrapa/ "SCT. P 136- 143. (In Portuguese)
7. Moretti C. L. Baldwin E.A Sargent S.A and Huber D.H. (2002). Internal Bruising alters aroma volatile profiles in tomato fruit tissues". Journal of horticultural Science pp 37.
8. Naika S, Juede J, Goffau M, Hilmi M, Dam V, (2005). " Cultivation of Tomato" Production, processing and marketing, Agromisa/ CTA. Revised edition, 2005 Agrodok- series No 17.
9. Sablani S.S., Opara L.U. AL- Balushi K.(2006). "Influence of bruising and storage Temperature on Vitamin C content of Tomato". Journal of food, agriculture, and environment vol 4 p 54-56.
10. Vander vossel, H.A.M., Opena R.T. Wandlim R.N. and Messiaen C.M. (2004) In: Grubben G.J.H. and Denton O.A.(ed). Plant resources Of tropical Africa 2. Vegetables. PROTA foundation, Wageningen, Netherlands /backhuys publishers, Leiden Netherlands pp 373-379.

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 5 Version 1.0 August 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975-5896

On Some Transformations Involving Unit And Quarter Arguments

By Chaudhary Wali Mohd., M.I. Qureshi, Izharul H. Khan

Jamia Millia Islamia, New Delhi, India

Abstract - The main object of this paper is to obtain a general theorem on multiple series identity involving bounded sequences. The theorem, in turn, is expressed in terms of Srivastava-Daoust hypergeometric function of three variables. A known result of Joshi and Vyas is deduced as a special case of our reduction formula. Certain results involving unit and quarter arguments associated with hypergeometric polynomials ${}_4F_3$, ${}_5F_4$, ${}_6F_5$, ${}_7F_6$ are also obtained. Further many more known or new results can be obtained by specializing the parameters or the variables or both.

Keywords and Phrases : *Multiple bounded sequences, Hypergeometric transformations and polynomials, Saalschütz summation theorem for terminating series ${}_3F_2$, Srivastava - Daoust multiple hypergeometric function.*

2010 AMS Subject Classification : 33 - Special Functions

Strictly as per the compliance and regulations of:

On Some Transformations Involving Unit And Quarter Arguments

Chaudhary Wali Mohd.^a, M.I. Qureshi ^a, Izharul H. Khan^Q

Abstract - The main object of this paper is to obtain a general theorem on multiple series identity involving bounded sequences. The theorem, in turn, is expressed in terms of Srivastava- Daoust hypergeometric function of three variables. A known result of Joshi and Vyas is deduced as a special case of our reduction formula. Certain results involving unit and quarter arguments associated with hypergeometric polynomials ${}_4F_3, {}_5F_4, {}_6F_5, {}_7F_6$ are also obtained. Further many more known or new results can be obtained by specializing the parameters or the variables or both.

Keywords and Phrases : Multiple bounded sequences, Hypergeometric transformations and polynomials, Saalschütz summation theorem for terminating series ${}_3F_2$, Srivastava - Daoust multiple hypergeometric function.

I. INTRODUCTION

The summation theorem concerned with single Gaussian hypergeometric functions play an important role in the study of transformation and reduction formulae of multiple hypergeometric functions.

In 1836, Kummer [6] gave a list of quadratic transformations for ${}_2F_1$. Making use of Gauss evaluation of ${}_2F_1$, he was able to calculate some ${}_2F_1$ whose arguments were not unity. In 1881, Goursat [3] used the same technique for the third, fourth and sixth degree transformations of certain ${}_2F_1$.

In the monumental work of Prudnikov et al. [7], we find more information concerning reducible cases of hypergeometric functions. In fact, a number of results of interest do exists and in particular this is true for Clausen's ${}_3F_2$ with argument $\frac{1}{4}$.

In the literature of special functions, many hypergeometric transformations for terminating or infinite series of the type ${}_{q+1}F_q$ involving $+1, -1$, and $\frac{1}{2}$ arguments with appropriate parametric restrictions, are available. Some evaluation of ${}_3F_2(\frac{1}{4})$ and ${}_3F_2(\frac{3}{4})$ have already been derived by Karlsson [5;176 - 177, p.178(Table 1)] and Prudnikov et al. [7; p.551].

The results and definitions which we need in our subsequent work are as follows:

In the usual notations, the Pochhammer's symbol $(a)_n$ is defined by

$$(a)_n = \begin{cases} \frac{\Gamma(a+n)}{\Gamma(a)} & ; \quad a \neq 0, -1, -2, \dots \\ 1 & ; \quad n = 0 \\ a(a+1)(a+2)\dots(a+n-1) & ; \quad n = 1, 2, 3 \dots \end{cases} \quad (1.1)$$

If m is either a positive integer or zero, then

$$\frac{(c+1)_m}{(c)_m} = 1 + \frac{m}{c} \quad (1.2)$$

$$\begin{aligned} \frac{(c+2)_m}{(c)_m} &= \frac{(c+1+m)(c+m)}{c(c+1)} \\ &= \frac{c(c+1) + (2c+2)m + m(m-1)}{c(c+1)} \\ &= 1 + \frac{2}{c}m + \frac{m(m-1)}{c(c+1)} \end{aligned} \quad (1.3)$$

Author ^a: Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, INDIA. E-mail : chaudhary.walimohd@gmail.com

Author ^Q: Amity Institute of Biotechnology, Amity University, Sector-125, Express Highway, Noida - 201301, INDIA. E-mails : miqueshi_delhi@yahoo.co.in, izhargkp@rediffmail.com

$$\begin{aligned}
{}_3F_2 \left[\begin{matrix} a, b, c+1 \\ d, c \end{matrix} ; 1 \right] &= \sum_{m=0}^{\infty} \frac{(a)_m (b)_m}{(d)_m m!} \left[1 + \frac{m}{c} \right] \\
&= {}_2F_1 \left[\begin{matrix} a, b \\ d \end{matrix} ; 1 \right] + \frac{ab}{cd} {}_2F_1 \left[\begin{matrix} a+1, b+1 \\ d+1 \end{matrix} ; 1 \right] \\
&= \frac{\Gamma(d) \Gamma(d-a-b)}{\Gamma(d-a) \Gamma(d-b)} + \frac{ab}{c} \frac{\Gamma(d) \Gamma(d-a-b-1)}{\Gamma(d-a) \Gamma(d-b)} \tag{1.4}
\end{aligned}$$

Where $\operatorname{Re}(d-a-b) > 1$.

and

$$\begin{aligned}
{}_3F_2 \left[\begin{matrix} a, b, c+2 \\ d, c \end{matrix} ; 1 \right] &= {}_2F_1 \left[\begin{matrix} a, b \\ d \end{matrix} ; 1 \right] + \frac{2ab}{cd} {}_2F_1 \left[\begin{matrix} a+1, b+1 \\ d+1 \end{matrix} ; 1 \right] \\
&\quad + \frac{a(a+1)b(b+1)}{c(c+1)d(d+1)} {}_2F_1 \left[\begin{matrix} a+2, b+2 \\ d+2 \end{matrix} ; 1 \right] \\
&= \frac{\Gamma(d) \Gamma(d-a-b)}{\Gamma(d-a) \Gamma(d-b)} + \frac{2ab \Gamma(d) \Gamma(d-a-b-1)}{c \Gamma(d-a) \Gamma(d-b)} + \frac{a(a+1)b(b+1)\Gamma(d)\Gamma(d-a-b-2)}{c(c+1)\Gamma(d-a)\Gamma(d-b)} \tag{1.5}
\end{aligned}$$

Where $\operatorname{Re}(d-a-b) > 2$.

Further, in our study, we shall be using the following identity:

$$\sum_{m,n,p=0}^{\infty} A(m, n, p) = \sum_{n,p=0}^{\infty} \sum_{m=0}^p A(m, n, p-m) \tag{1.6}$$

Srivastava and Daoust Function: Srivastava and Daoust function [9; p.454, see also 11; p.37(21,22,23) and 12; pp.64-65(18,19,20)] is defined as follows:

$$\begin{aligned}
F_{C:D';D''; \dots; D^{(n)}}^{A:B';B'', \dots; B^{(n)}} &\left(\begin{array}{l} [(a_A) : \theta', \dots, \theta^{(n)}] : [(b'_{B'}) : \phi'] ; \dots ; [(b^{(n)}_{B^{(n)}}) : \phi^{(n)}] ; \\ [(c_C) : \psi', \dots, \psi^{(n)}] : [(d'_{D'}) : \delta'] ; \dots ; [(d^{(n)}_{D^{(n)}}) : \delta^{(n)}] ; \end{array} z_1, z_2, \dots, z_n \right) \\
&= \sum_{m_1, \dots, m_n=0}^{\infty} \Omega(m_1, \dots, m_n) \frac{z_1^{m_1} z_2^{m_2} \dots z_n^{m_n}}{m_1! m_2! \dots m_n!} \tag{1.7}
\end{aligned}$$

Where for convenience,

$$\Omega(m_1, \dots, m_n) = \frac{\prod_{j=1}^A (a_j)_{m_1 \theta'_j + \dots + m_n \theta_j^{(n)}} \prod_{j=1}^{B'} (b'_j)_{m_1 \phi'_j} \dots \prod_{j=1}^{B^{(n)}} (b^{(n)}_j)_{m_n \phi_j^{(n)}}}{\prod_{j=1}^C (c_j)_{m_1 \psi'_j + \dots + m_n \psi_j^{(n)}} \prod_{j=1}^{D'} (d'_j)_{m_1 \delta'_j} \dots \prod_{j=1}^{D^{(n)}} (d^{(n)}_j)_{m_n \delta_j^{(n)}}} \tag{1.8}$$

The coefficients

$$\begin{cases} \theta_j^{(k)}, \quad j = 1, \dots, A; \quad \phi_j^{(k)}, \quad j = 1, \dots, B^{(k)}; \quad \psi_j^{(k)}, \quad j = 1, \dots, C \\ \delta_j^k, \quad j = 1, \dots, D^{(k)}; \quad \text{for all } k \in \{1, 2, 3, \dots, n\} \end{cases}$$

are real and positive, and (a_A) abbreviates the array of A parameters a_1, a_2, \dots, a_A , $(b_j^{(k)})$, $j = 1, \dots, B^{(k)}$; for all $k \in \{1, 2, \dots, n\}$, with similar interpretations for (c_C) and $(d_{D^{(k)}}^k)$, $k = 1, \dots, n$ et cetera.

The convergence conditions of the multiple series occurring in (1.7) is given by Srivastava and Daoust [8 and 10; see also 2].

In present paper, we establish a multiple series identity (2.1). The investigation of this identity is, infact, immediately connected with the transformations of hypergeometric series of two and three variables, which are obtained in Section 3. Further our main result allows a variety of hypergeometric transformation formulas involving unit and quarter arguments which are not available in the literature. For this reason our results (3.4) to (3.9) seem to be of interest.

II. MULTIPLE SERIES IDENTITY

Theorem : If $\{S_1(\phi n + \theta p)\}$, $\{S_2(\gamma p)\}$ and $\{S_3(\delta n)\}$ are the bounded sequences of real or complex numbers; $m, n, p \in \{0, 1, 2, \dots\}$; $\alpha, \beta, \theta, \phi, \gamma$ and δ are real constants; the values of a and b are adjusted in such a way that the parameters $\frac{6a+2b+1}{2}$, $2b$, $3a-b+1$ and $b-3a$ are neither zero nor negative integers,

then

$$\begin{aligned} & \sum_{m,n,p=0}^{\infty} \frac{(6a)_{3m+\alpha n+p}}{4^m \left(\frac{6a+2b+1}{2}\right)_{m+(\frac{\alpha+\beta}{2})n} (3a-b+1)_{m+(\frac{\alpha-\beta}{2})n}} S_1(\theta m + \phi n + \theta p) S_2(\gamma m + \gamma p) S_3(\delta n) \\ & \times \frac{(-1)^m x^{m+p} y^n}{m! n! p!} = \sum_{n,p=0}^{\infty} \frac{(6a)_{\alpha n+p} (2b)_{\beta n+p} (b-3a)_{(\frac{\beta-\alpha}{2})n-p}}{(2b)_{\beta n-p} \left(\frac{6a+2b+1}{2}\right)_{(\frac{\alpha+\beta}{2})n+p} (3a-b+1)_{(\frac{\alpha-\beta}{2})n}} \\ & \times S_1(\phi n + \theta p) S_2(\gamma p) S_3(\delta n) \frac{y^n \left(\frac{x}{4}\right)^p}{(b-3a)_{(\frac{\beta-\alpha}{2})n} n! p!} \end{aligned} \quad (2.1)$$

Provided that each of the multiple series involved converges absolutely.

Proof. Let the left hand side of the Theorem 2.1 is denoted by T , then

$$\begin{aligned} T &= \sum_{m,n,p=0}^{\infty} S_1(\theta m + \phi n + \theta p) S_2(\gamma m + \gamma p) S_3(\delta n) \\ & \times \frac{(-1)^m (6a)_{3m+\alpha n+p} x^{m+p} y^n}{4^m \left(\frac{6a+2b+1}{2}\right)_{m+(\frac{\alpha+\beta}{2})n} (3a-b+1)_{m+(\frac{\alpha-\beta}{2})n} m! n! p!}. \end{aligned}$$

Replacing p by $p-m$, we get

$$T = \sum_{p=0}^{\infty} \sum_{m=0}^p \sum_{n=0}^{\infty} (-p)_m S_1(\phi n + \theta p) S_2(\gamma p) S_3(\delta n)$$

$$\begin{aligned}
& \times \frac{(6a)_{2m+\alpha n+p} x^p y^n}{(1)_p 4^m \left(\frac{6a+2b+1}{2}\right)_{m+\left(\frac{\alpha+\beta}{2}\right)n} (3a-b+1)_{m+\left(\frac{\alpha-\beta}{2}\right)n} m! n!} \\
& = \sum_{p,n=0}^{\infty} \frac{S_1(\phi n + \theta p) S_2(\gamma p) S_3(\delta n) (6a)_{\alpha n+p} x^p y^n}{p! \left(\frac{6a+2b+1}{2}\right)_{\left(\frac{\alpha+\beta}{2}\right)n} (3a-b+1)_{\left(\frac{\alpha-\beta}{2}\right)n} n!} \\
& \quad \times \sum_{m=0}^p \frac{(-p)_m \left(\frac{6a+\alpha n+p}{2}\right)_m \left(\frac{6a+\alpha n+p+1}{2}\right)_m}{\left(\frac{6a+2b+1+\alpha n+\beta n}{2}\right)_m (3a-b+1+\frac{\alpha n-\beta n}{2})_m m!} \\
& = \sum_{p,n=0}^{\infty} \frac{S_1(\phi n + \theta p) S_2(\gamma p) S_3(\delta n) (6a)_{\alpha n+p} x^p y^n}{\left(\frac{6a+2b+1}{2}\right)_{\left(\frac{\alpha+\beta}{2}\right)n} (3a-b+1)_{\left(\frac{\alpha-\beta}{2}\right)n} p! n!} \\
& \quad \times {}_3F_2 \left[\begin{matrix} -p, \frac{6a+\alpha n+p}{2}, \frac{6a+\alpha n+p+1}{2} \\ \frac{6a+2b+1+\alpha n+\beta n}{2}, \frac{6a-2b+2+\alpha n-\beta n}{2} \end{matrix} ; 1 \right]. \tag{2.2}
\end{aligned}$$

Now using terminating Saalschütz's summation theorem [1; p.9(2.2.1)]:

$${}_3F_2 \left[\begin{matrix} -p, A, B \\ C, 1+A+B-C-p \end{matrix} ; 1 \right] = \frac{(C-A)_p (C-B)_p}{(C)_p (C-A-B)_p} \tag{2.3}$$

Where p is a non-negative integer, we get

$$\begin{aligned}
T &= \sum_{p,n=0}^{\infty} \frac{S_1(\phi n + \theta p) S_2(\gamma p) S_3(\delta n) (6a)_{\alpha n+p} x^p y^n}{\left(\frac{6a+2b+1}{2}\right)_{\left(\frac{\alpha+\beta}{2}\right)n} (3a-b+1)_{\left(\frac{\alpha-\beta}{2}\right)n} p! n!} \\
& \quad \times \frac{\left(\frac{2b+\beta n-p}{2}\right)_p \left(\frac{2b+\beta n-p+1}{2}\right)_p}{\left(\frac{6a+2b+1+\alpha n+\beta n}{2}\right)_p \left(b-3a-p+\frac{\beta n-\alpha n}{2}\right)_p} \\
&= \sum_{p,n=0}^{\infty} \frac{S_1(\phi n + \theta p) S_2(\gamma p) S_3(\delta n) (6a)_{\alpha n+p} x^p y^n}{\left(\frac{6a+2b+1}{2}\right)_{\left(\frac{\alpha+\beta}{2}\right)n} (3a-b+1)_{\left(\frac{\alpha-\beta}{2}\right)n} p! n!} \\
& \quad \times \frac{(2b+\beta n-p)_{2p} \left(\frac{6a+2b+1}{2}\right)_{\frac{\alpha n+\beta n}{2}} (b-3a)_{\frac{\beta n-\alpha n-2p}{2}}}{2^{2p} \left(\frac{6a+2b+1}{2}\right)_{\frac{2p+\alpha n+\beta n}{2}} (b-3a)_{\frac{\beta n-\alpha n}{2}}} \\
&= \sum_{p,n=0}^{\infty} \frac{S_1(\phi n + \theta p) S_2(\gamma p) S_3(\delta n) (6a)_{\alpha n+p} x^p y^n}{\left(\frac{6a+2b+1}{2}\right)_{\left(\frac{\alpha+\beta}{2}\right)n} (3a-b+1)_{\left(\frac{\alpha-\beta}{2}\right)n} p! n!}
\end{aligned}$$

$$\begin{aligned}
& \times \frac{(2b)_{\beta n+p} \left(\frac{6a+2b+1}{2}\right)_{\frac{\alpha n+\beta n}{2}} (b-3a)_{\frac{\beta n-\alpha n-2p}{2}}}{2^{2p} (2b)_{\beta n-p} \left(\frac{6a+2b+1}{2}\right)_{\frac{2p+\alpha n+\beta n}{2}} (b-3a)_{\frac{\beta n-\alpha n}{2}}} \\
= & \sum_{p,n=0}^{\infty} \frac{S_1(\phi n + \theta p) S_2(\gamma p) S_3(\delta n) (6a)_{\alpha n+p} x^p y^n}{(3a-b+1)_{\frac{\alpha n-\beta n}{2}} p! n!} \\
& \times \frac{(2b)_{\beta n+p} (b-3a)_{\frac{\beta n-\alpha n-2p}{2}}}{2^{2p} (2b)_{\beta n-p} \left(\frac{6a+2b+1}{2}\right)_{\frac{\alpha n+\beta n+2p}{2}} (b-3a)_{\frac{\beta n-\alpha n}{2}}} \quad (2.4) \\
= & \sum_{n,p=0}^{\infty} S_1(\phi n + \theta p) S_2(\gamma p) S_3(\delta n) \frac{(6a)_{\alpha n+p} y^n \left(\frac{x}{4}\right)^p}{(3a-b+1)_{\frac{\alpha n-\beta n}{2}} n! p!} \\
& \times \frac{(2b)_{\beta n+p} (b-3a)_{\left(\frac{\beta-\alpha}{2}\right)n-p}}{(2b)_{\beta n-p} \left(\frac{6a+2b+1}{2}\right)_{\left(\frac{\alpha+\beta}{2}\right)n+p} (b-3a)_{\left(\frac{\beta-\alpha}{2}\right)n}}
\end{aligned}$$

Which is the right hand side of the (2.1).

III. APPLICATIONS

Suppose the notation (a_A) denotes the sequence of A parameters a_1, a_2, \dots, a_A and $[(a_A)]_m$ stands for the continued product of “ A ” Pochhammer's symbols given by $[(a_A)]_m = \prod_{i=1}^A (a_i)_m$, with similar interpretation for others.

In Theorem 2.1, setting $\theta = \phi = \gamma = \delta = 1$, $S_1(q) = \frac{[(d_D)]_q}{[(e_E)]_q}$, $S_2(q) = \frac{[(g_G)]_q}{[(h_H)]_q}$ and

$S_3(q) = \frac{[(k_K)]_q}{[(r_R)]_q}$, We get

$$\begin{aligned}
& \sum_{m,n,p=0}^{\infty} \frac{[(d_D)]_{m+n+p} [(g_G)]_{m+p} [(k_K)]_n}{[(e_E)]_{m+n+p} [(h_H)]_{m+p} [(r_R)]_n} \frac{(6a)_{3m+\alpha n+p} \left(\frac{-x}{4}\right)^m y^n x^p}{\left(\frac{6a+2b+1}{2}\right)_{m+\left(\frac{\alpha+\beta}{2}\right)n} (3a-b+1)_{m+\left(\frac{\alpha-\beta}{2}\right)n} m! n! p!} \\
= & \sum_{n,p=0}^{\infty} \frac{[(d_D)]_{n+p} [(k_K)]_n [(g_G)]_p}{[(e_E)]_{n+p} [(r_R)]_n [(h_H)]_p} \\
& \times \frac{(6a)_{\alpha n+p} (2b)_{\beta n+p} (b-3a)_{\left(\frac{\beta-\alpha}{2}\right)n-p} y^n \left(\frac{x}{4}\right)^p}{(2b)_{\beta n-p} \left(\frac{6a+2b+1}{2}\right)_{\left(\frac{\alpha+\beta}{2}\right)n+p} (3a-b+1)_{\left(\frac{\alpha-\beta}{2}\right)n} (b-3a)_{\left(\frac{\beta-\alpha}{2}\right)n} n! p!}
\end{aligned}$$

Which can be interpreted in the form of Srivastava and Daoust function as follows:

$$F_{E+H+2:0;R;0}^{D+G+1:0;K;0} \left(\begin{array}{l} [(d_D) : 1, 1, 1], [(g_G) : 1, 0, 1], [6a : 3, \alpha, 1] \\ [(e_E) : 1, 1, 1], [(h_H) : 1, 0, 1], \left[\frac{6a+2b+1}{2} : 1, \frac{\alpha+\beta}{2}, 0 \right], \left[3a-b+1 : 1, \frac{\alpha-\beta}{2}, 0 \right] \end{array} \right) :$$

$$\begin{aligned}
& \left. \begin{array}{c} \dots; [(k_K) : 1]; \dots; \\ \dots; [(r_R) : 1]; \dots; \end{array} \right\} \\
& = \mathcal{F}_{E+2:R+2;H}^{D+3:K;G} \left(\begin{array}{c} [(d_D) : 1, 1], [6a : \alpha, 1], [2b : \beta, 1], \left[b - 3a : \frac{\beta-\alpha}{2}, -1 \right] : \\ [(e_E) : 1, 1], [2b : \beta, -1], \left[\frac{6a+2b+1}{2} : \frac{\alpha+\beta}{2}, 1 \right] : \\ [(k_K) : 1] ; [(g_G) : 1] ; ; \\ [(r_R) : 1], \left[3a - b + 1 : \frac{\alpha-\beta}{2} \right], \left[b - 3a : \frac{\beta-\alpha}{2} \right] ; [(h_H) : 1] ; ; \\ - \frac{x}{4}, y, x \end{array} \right) \quad (3.1)
\end{aligned}$$

In (3.1), setting $D = E = G = H = 0$ and using binomial theorem, we get a transformation formula:

$$\begin{aligned}
& (1-x)^{-6a} \, F_{2:0;R}^{1:0;K} \left(\begin{array}{c} [6a:3, \alpha] \\ \left[\frac{6a+2b+1}{2}:1, \frac{\alpha+\beta}{2} \right], \left[3a-b+1:1, \frac{\alpha-\beta}{2} \right] \end{array} ; \underline{\underline{;}} \right. \\
& \quad \left. \begin{array}{c} [(k_K):1] \quad ; \\ \frac{-x}{4(1-x)^3}, \frac{y}{(1-x)^\alpha} \\ [(r_R):1] \quad ; \end{array} \right) \\
& = F_{2:R+2;0}^{3:K;0} \left(\begin{array}{c} [6a:\alpha, 1], [2b:\beta, 1], [b-3a:\frac{\beta-\alpha}{2}, -1] \quad : \\ [2b:\beta, -1], \left[\frac{6a+2b+1}{2} : \frac{\alpha+\beta}{2}, 1 \right] \end{array} ; \underline{\underline{;}} \right. \\
& \quad \left. \begin{array}{c} [(k_K):1] \quad ; \underline{\underline{;}} \quad ; \\ y, \frac{x}{4} \\ [(r_R):1], [3a-b+1:\frac{\alpha-\beta}{2}], [b-3a:\frac{\beta-\alpha}{2}] \quad ; \underline{\underline{;}} \end{array} \right) \quad (3.2)
\end{aligned}$$

In (3.1), put $y = 0$ and $D = E = 0$, we get

$$\begin{aligned}
& \sum_{m=0}^{\infty} \frac{[(g_G)]_m (6a)_{3m} \left(-\frac{x}{4}\right)^m}{[(h_H)]_m \left(\frac{6a+2b+1}{2}\right)_m (3a-b+1)_m m!} {}_{G+1}F_H \left[\begin{array}{c} (g_G) + m, 6a + 3m \\ (h_H) + m \end{array} ; x \right] \\
& = {}_{G+3}F_{H+2} \left[\begin{array}{c} 6a, 2b, 1-2b, (g_G) \\ 3a+b+\frac{1}{2}, 3a-b+1, (h_H) \end{array} ; \frac{x}{4} \right]. \tag{3.3}
\end{aligned}$$

In (3.3), setting $G = H = 1$, $h_1 = h$, $g_1 = -k$ (where k is a non-negative integer) and $x = 1$, we get

$$\sum_{m=0}^k \frac{(-k)_m (6a)_{3m} \left(-\frac{1}{4}\right)^m}{(h)_m \left(\frac{6a+2b+1}{2}\right)_m (3a-b+1)_m m!} {}_2F_1 \left[\begin{matrix} -k+m, 6a+3m \\ h+m \end{matrix} ; 1 \right]$$

$$= {}_4F_3 \left[\begin{matrix} -k, 6a, 2b, 1-2b \\ 3a+b+\frac{1}{2}, 3a-b+1, h \end{matrix} ; \frac{1}{4} \right] \quad (3.4)$$

Where $\operatorname{Re}(h-6a) > 2k$.

Now on using Gauss first summation theorem [1; p.2(1.3.1)], we get

$$\sum_{m=0}^k \frac{(-k)_m (6a)_{3m}}{\left(\frac{6a+2b+1}{2}\right)_m (3a-b+1)_m m!} \frac{(h-6a)_k \left(\frac{1-h+6a}{2}\right)_m \left(\frac{2-h+6a}{2}\right)_m}{(27)^m (h)_k \left(\frac{1-h-k+6a}{3}\right)_m \left(\frac{2-h-k+6a}{3}\right)_m \left(\frac{3-h-k+6a}{3}\right)_m} \\ = {}_4F_3 \left[\begin{matrix} -k, 6a, 2b, 1-2b \\ 3a+b+\frac{1}{2}, 3a-b+1, h \end{matrix} ; \frac{1}{4} \right]$$

Which on little simplification gives the known transformation of Joshi and Vyas [4; p.1915(4.1)] in the form:

$${}_6F_5 \left[\begin{matrix} -k, \Delta(3; 6a), \Delta(2; 1-h+6a) \\ 3a+b+\frac{1}{2}, 3a-b+1, \Delta(3; 1-h-k+6a) \end{matrix} ; 1 \right] \\ = \frac{(h)_k}{(h-6a)_k} {}_4F_3 \left[\begin{matrix} -k, 6a, 2b, 1-2b \\ 3a+b+\frac{1}{2}, 3a-b+1, h \end{matrix} ; \frac{1}{4} \right] \quad (3.5)$$

Where k is a non-negative integer and $\operatorname{Re}(h-6a) > 2k$. Also the notation $\Delta(M; b)$ denotes the M parameters

$$\frac{b}{M}, \frac{b+1}{M}, \frac{b+2}{M}, \dots, \frac{b+M-1}{M}; M = 1, 2, 3, \dots$$

In (3.3), setting $G = H = 2$, $g_1 = -k$, $g_2 = c+1$, $h_1 = d$, $h_2 = c$ and $x = 1$, we get

$$\sum_{m=0}^k \frac{(-k)_m (c+1)_m (6a)_{3m} (-1)^m}{(d)_m (c)_m \left(\frac{6a+2b+1}{2}\right)_m (3a-b+1)_m 4^m m!} {}_3F_2 \left[\begin{matrix} 6a+3m, -k+m, c+m+1 \\ d+m, c+m \end{matrix} ; 1 \right] \\ = {}_5F_4 \left[\begin{matrix} -k, 6a, 2b, 1-2b, c+1 \\ 3a+b+\frac{1}{2}, 3a-b+1, c, d \end{matrix} ; \frac{1}{4} \right] \quad (3.6)$$

Where $\operatorname{Re}(d-1-6a) > 2k$ and k is a non-negative integer.

Now using summation theorem (1.4) for ${}_3F_2$ in (3.6), we get

$${}_5F_4 \left[\begin{matrix} -k, 6a, 2b, 1-2b, c+1 \\ 3a+b+\frac{1}{2}, 3a-b+1, c, d \end{matrix} ; \frac{1}{4} \right]$$

$$\begin{aligned}
&= \sum_{m=0}^k \frac{(-k)_m (c+1)_m (6a)_{3m} (-1)^m \Gamma(d+m) \Gamma(d-6a+k-3m)}{(d)_m (c)_m \left(\frac{6a+2b+1}{2}\right)_m (3a-b+1)_m 4^m m! \Gamma(d+k) \Gamma(d-6a-2m)} \\
&+ \sum_{m=0}^k \frac{(-k)_m (c+1)_m (6a)_{3m} (-1)^m (6a+3m) (-k+m) \Gamma(d+m) \Gamma(d-6a+k-1-3m)}{(d)_m (c)_m \left(\frac{6a+2b+1}{2}\right)_m (3a-b+1)_m 4^m m! (c+m) \Gamma(d+k) \Gamma(d-6a-2m)}.
\end{aligned}$$

Further on using algebraic properties of Pochammer's symbols and making little simplification, we get a new hypergeometric transformation formula:

$$\begin{aligned}
&{}_5F_4 \left[\begin{matrix} -k, 6a, 2b, 1-2b, c+1 \\ 3a+b+\frac{1}{2}, 3a-b+1, c, d \end{matrix} ; \frac{1}{4} \right] \\
&= \frac{(d-6a)_k}{(d)_k} {}_7F_6 \left[\begin{matrix} -k, c+1, \Delta(3; 6a), \Delta(2; 1-d+6a) \\ c, 3a+b+\frac{1}{2}, 3a-b+1, \Delta(3; 1-d+6a-k) \end{matrix} ; 1 \right] \\
&\quad - \frac{6ak(d-6a)_{k-1}}{c(d)_k} {}_6F_5 \left[\begin{matrix} -k+1, \Delta(3; 6a+1), \Delta(2; 1-d+6a) \\ 3a+b+\frac{1}{2}, 3a-b+1, \Delta(3; 2-d+6a-k) \end{matrix} ; 1 \right] \quad (3.7)
\end{aligned}$$

Where $\operatorname{Re}(d-1-6a) > 2k$.

In (3.3), setting $G = H = 2$, $g_1 = -k$, $g_2 = c+2$, $h_1 = d$, $h_2 = c$ and $x = 1$, we get

$$\begin{aligned}
&\sum_{m=0}^k \frac{(-k)_m (c+2)_m (6a)_{3m} (-1)^m}{(d)_m (c)_m \left(\frac{6a+2b+1}{2}\right)_m (3a-b+1)_m 4^m m!} {}_3F_2 \left[\begin{matrix} 6a+3m, -k+m, c+m+2 \\ d+m, c+m \end{matrix} ; 1 \right] \\
&= {}_5F_4 \left[\begin{matrix} -k, 6a, 2b, 1-2b, c+2 \\ 3a+b+\frac{1}{2}, 3a-b+1, c, d \end{matrix} ; \frac{1}{4} \right] \quad (3.8)
\end{aligned}$$

Where $\operatorname{Re}(d-2-6a) > 2k$ and k is a non-negative integer.

Again on making use of summation theorem (1.5) for ${}_3F_2$ in (3.8), we get

$$\begin{aligned}
&{}_5F_4 \left[\begin{matrix} -k, 6a, 2b, 1-2b, c+2 \\ 3a+b+\frac{1}{2}, 3a-b+1, c, d \end{matrix} ; \frac{1}{4} \right] = \sum_{m=0}^k \frac{(-k)_m (c+2)_m (6a)_{3m} (-1)^m}{(d)_m (c)_m \left(\frac{6a+2b+1}{2}\right)_m (3a-b+1)_m 4^m m!} \\
&\times \left\{ \frac{\Gamma(d+m) \Gamma(d-6a-3m+k)}{\Gamma(d-6a-2m) \Gamma(d+k)} + \frac{2(6a+3m) (-k+m) \Gamma(d+m) \Gamma(d-6a-3m+k-1)}{(c+m) \Gamma(d-6a-2m) \Gamma(d+k)} \right. \\
&+ \left. \frac{(6a+3m) (6a+3m+1) (-k+m) (-k+m+1) \Gamma(d+m) \Gamma(d-6a-3m+k-2)}{(c+m) (c+m+1) \Gamma(d-6a-2m) \Gamma(d+k)} \right\}
\end{aligned}$$

Which on simplification gives:

$$\begin{aligned}
 & {}_5F_4 \left[\begin{matrix} -k, 6a, 2b, 1-2b, c+2 \\ 3a+b+\frac{1}{2}, 3a-b+1, c, d \end{matrix} ; \frac{1}{4} \right] \\
 &= \frac{(d-6a)_k}{(d)_k} {}_7F_6 \left[\begin{matrix} -k, c+2, \Delta(3; 6a), \Delta(2; 1-d+6a) \\ c, 3a+b+\frac{1}{2}, 3a-b+1, \Delta(3; 1-d+6a-k) \end{matrix} ; 1 \right] \\
 & - \frac{12ak(d-6a)_{k-1}}{c(d)_k} {}_7F_6 \left[\begin{matrix} -k+1, c+2, \Delta(3; 6a+1), \Delta(2; 1-d+6a) \\ c+1, 3a+b+\frac{1}{2}, 3a-b+1, \Delta(3; 2-d+6a-k) \end{matrix} ; 1 \right] \\
 & + \frac{k(k-1)(6a)(6a+1)(d-6a)_{k-2}}{c(c+1)(d)_k} \\
 & \times {}_6F_5 \left[\begin{matrix} -k+2, \Delta(3; 6a+2), \Delta(2; 1-d+6a) \\ 3a+b+\frac{1}{2}, 3a-b+1, \Delta(3; 3-d+6a-k) \end{matrix} ; 1 \right] \tag{3.9}
 \end{aligned}$$

Where $\operatorname{Re}(d-2-6a) > 2k$ and k is a non-negative integer.

REFERENCES RÉFÉRENCES REFERENCIAS

1. W.N. Bailey, *Generalized Hypergeometric Series*, Cambridge University Press, London, (1935).
2. H. Exton, *Multiple Hypergeometric Functions and Applications*, John Wiley and Sons, Halsted Press (Ellis Harwood, Chichester), New York, (1976).
3. É. Goursat, *Sur l'équation différentielle linéaire qui admet pour intégrale la série hypergéométrique*, Ann. Sci. Ecole. Norm. Sup. (2)10(1881), S3 - S142.
4. C.M. Joshi and Y. Vyas, *Extensions of Bailey's transform and applications*, International J. of Maths and Mathematical Sciences 12(2005), 1909 -1923.
5. P.W. Karlsson, *Clausen's hypergeometric series with variable $\frac{1}{4}$* , J. Math. Anal.Appl. 196(1995), 172 - 180.
6. E. Kümmer, *Über die hypergeometrische reihe* $1 + \frac{\alpha.\beta}{1.\gamma} x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{1.2.\gamma(\gamma+1)} x^2 + \frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1.2.3.\gamma(\gamma+1)(\gamma+2)} x^3 + \dots$, J. Für die Reine und Angewandte Math. 15(1836), pp. 39-83 and pp. 127 - 172.
7. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, *Integrals and Series Vol. 3: More Special Functions*. Nauka, Moscow, 1986. Translated from the Russian by G. G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, (1990).
8. H.M. Srivastava and M.C. Daoust, *On Eulerian integrals associated with Kampé de Fériet's function*, Publ. Inst. Math. (Beograd) (N.S.), 9(23)(1969), 199-202.
9. H.M. Srivastava and M.C. Daoust, *Certain generalized Neumann expansions associated with the Kampé de Fériet's function*, Nederal. Akad. Wetensch. Proc. Ser. A 72=Indag. Math. 31(1969), 449 - 457.
10. H.M. Srivastava and M.C. Daoust, *A note on the convergence of Kampé de Fériet's double hypergeometric series*, Math. Nachr. 53 (1972), 151 - 157.
11. H.M. Srivastava and P.W. Karlsson, *Multiple Gaussian Hypergeometric Series*, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, (1985).
12. H.M. Srivastava and H.L. Manocha, *A Treatise On Generating Functions*, (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, (1984).

This page is intentionally left blank

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 5 Version 1.0 August 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975-5896

Creation of a Summation Formula Connected To Contiguous Relation and Hypergeometric Function

By Salahuddin

P.D.M College of Engineering, Bahadurgarh, Haryana, India

Abstract - The main aim of present paper is the creation of a summation formula related to Contiguous relation[1] and Hypergeometric function.

Keywords : *Contiguous relation, Recurrence relation, Gauss second summation theorem.*

Classification 2000 MSC NO : 33C05, 33C20, 33C45, 33C60, 33C70

Strictly as per the compliance and regulations of:

Creation of a Summation Formula Connected To Contiguous Relation and Hypergeometric Function

Salahuddin

Abstract - The main aim of present paper is the creation of a summation formula related to Contiguous relation [1] and Hypergeometric function.

Keywords : Contiguous relation, Recurrence relation, Gauss second summation theorem.

August 2011

39

Generalized Gaussian Hypergeometric function of one variable :
Volume XI Issue V Version I

$${}_A F_B \left[\begin{matrix} a_1, a_2, \dots, a_A & ; \\ b_1, b_2, \dots, b_B & ; \end{matrix} z \right] = \sum_{k=0}^{\infty} \frac{(a_1)_k (a_2)_k \dots (a_A)_k z^k}{(b_1)_k (b_2)_k \dots (b_B)_k k!} \quad (1)$$

Or

$${}_A F_B \left[\begin{matrix} (a_A) & ; \\ (b_B) & ; \end{matrix} z \right] \equiv {}_A F_B \left[\begin{matrix} (a_j)_{j=1}^A & ; \\ (b_j)_{j=1}^B & ; \end{matrix} z \right] = \sum_{k=0}^{\infty} \frac{((a_A))_k z^k}{((b_B))_k k!} \quad (2)$$

Where the parameters b_1, b_2, \dots, b_B are neither zero nor negative integers and A, B are non - negative integers.

Contiguous Relations :

[Andrews p.367(8), E. D. p.52(19), H.T. F. I p.103(38)]

$$c(1-z) {}_2 F_1 \left[\begin{matrix} a, b & ; \\ c & ; \end{matrix} z \right] = c {}_2 F_1 \left[\begin{matrix} a-1, b & ; \\ c & ; \end{matrix} z \right] - (c-b) z {}_2 F_1 \left[\begin{matrix} a, b & ; \\ c+1 & ; \end{matrix} z \right] \quad (3)$$

[Abramowitz p.558(15.2.19)]

$$(a-b)(1-z) {}_2 F_1 \left[\begin{matrix} a, b & ; \\ c & ; \end{matrix} z \right] = (c-b) {}_2 F_1 \left[\begin{matrix} a, b-1 & ; \\ c & ; \end{matrix} z \right] + (a-c) {}_2 F_1 \left[\begin{matrix} a-1, b & ; \\ c & ; \end{matrix} z \right] \quad (4)$$

Recurrence relation :

$$\Gamma(z+1) = z \Gamma(z) \quad (5)$$

Gauss second summation theorem [Prud.,p. 491(7.3.7.5)]

$${}_2 F_1 \left[\begin{matrix} a, b & ; \\ \frac{a+b+1}{2} & ; \end{matrix} \frac{1}{2} \right] = \frac{\Gamma(\frac{a+b+1}{2}) \Gamma(\frac{1}{2})}{\Gamma(\frac{a+1}{2}) \Gamma(\frac{b+1}{2})} \quad (6)$$

$$= \frac{2^{(b-1)} \Gamma(\frac{b}{2}) \Gamma(\frac{a+b+1}{2})}{\Gamma(b) \Gamma(\frac{a+1}{2})} \quad (7)$$

A new summation formula [Ref.[2], p.337(10)]

$${}_2F_1 \left[\begin{matrix} a, & b \\ \frac{a+b-1}{2} & \end{matrix} ; \quad \frac{1}{2} \right] = \frac{2^{(b-1)} \Gamma(\frac{a+b-1}{2})}{\Gamma(b)} \left[\frac{\Gamma(\frac{b}{2})}{\Gamma(\frac{a-1}{2})} \left\{ \frac{(b+a-1)}{(a-1)} \right\} + \frac{2 \Gamma(\frac{b+1}{2})}{\Gamma(\frac{a}{2})} \right] \quad (8)$$

II. MAIN SUMMATION FORMULA

For the main formula $a \neq b$

For $a < 1$ and $a > 29$

$$\begin{aligned} {}_2F_1 \left[\begin{matrix} a, & b \\ \frac{a+b-29}{2} & \end{matrix} ; \quad \frac{1}{2} \right] = & \frac{2^{(b-1)} \Gamma(\frac{a+b-29}{2})}{(a-b)\Gamma(b)} \left[\frac{\Gamma(\frac{b}{2})}{\Gamma(\frac{a-29}{2})} \left\{ \frac{(-6190283353629375a)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \right. \right. + \\ & \left. \left. + \frac{(14459713484342175a^2 - 13121113142970855a^3 + 6520139954328519a^4)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \right. \right. + \\ & \left. \left. + \frac{(-2046225352864875a^5 + 437602985498315a^6 - 66696220706115a^7 + 7442156684963a^8)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \right. \right. + \\ & \left. \left. + \frac{(-617014151325a^9 + 38205040445a^{10} - 1759562805a^{11} + 59394517a^{12} - 1426425a^{13})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \right. \right. + \\ & \left. \left. + \frac{(23065a^{14} - 225a^{15} + a^{16} + 6190283353629375b - 20224606881433995a^2b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \right. \right. + \\ & \left. \left. + \frac{(24414112451554866a^3b - 12588514259366505a^4b + 4384293790660180a^5b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \right. \right. + \\ & \left. \left. + \frac{(-882351615046635a^6b + 148574697339502a^7b - 14777453889915a^8b + 1383157455640a^9b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \right. \right. + \\ & \left. \left. + \frac{(-71906369145a^{10}b + 3885833198a^{11}b - 100340955a^{12}b + 3024980a^{13}b - 30225a^{14}b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \right. \right. + \\ & \left. \left. + \frac{(434a^{15}b - 14459713484342175b^2 + 20224606881433995ab^2 - 11735766636113070a^3b^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \right. \right. \end{aligned}$$

$$\begin{aligned}
& + \frac{(9090326128591095a^4b^2 - 2896776266543295a^5b^2 + 757314109245930a^6b^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-98832454416660a^7b^2 + 13445576481135a^8b^2 - 847258652835a^9b^2 + 66766662300a^{10}b^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-1993919070a^{11}b^2 + 92736345a^{12}b^2 - 1038345a^{13}b^2 + 26970a^{14}b^2 + 13121113142970855b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-24414112451554866ab^3 + 11735766636113070a^2b^3 - 2149637822784855a^4b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(1183582613062230a^5b^3 - 237762013535100a^6b^3 + 48732039707280a^7b^3 - 3991249561815a^8b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(447929438010a^9b^3 - 16234996050a^{10}b^3 + 1085488560a^{11}b^3 - 14199705a^{12}b^3 + 566370a^{13}b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-6520139954328519b^4 + 12588514259366505ab^4 - 9090326128591095a^2b^4)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(2149637822784855a^3b^4 - 154818398535750a^5b^4 + 64459961486850a^6b^4 - 7958826637650a^7b^4)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(1318930698825a^8b^4 - 61618021875a^9b^4 + 5799965925a^{10}b^4 - 92035125a^{11}b^4 + 5259150a^{12}b^4)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(2046225352864875b^5 - 4384293790660180ab^5 + 2896776266543295a^2b^5)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-1183582613062230a^3b^5 + 154818398535750a^4b^5 - 4765553285850a^6b^5)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(1564770434220a^7b^5 - 108515480625a^8b^5 + 14881236900a^9b^5 - 302401125a^{10}b^5)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}}
\end{aligned}$$

$$\begin{aligned}
& + \frac{(24192090a^{11}b^5 - 437602985498315b^6 + 882351615046635ab^6 - 757314109245930a^2b^6)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(237762013535100a^3b^6 - 64459961486850a^4b^6 + 4765553285850a^5b^6 - 61354862100a^7b^6)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(16380836325a^8b^6 - 488494125a^9b^6 + 56448210a^10b^6 + 66696220706115b^7)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-148574697339502ab^7 + 98832454416660a^2b^7 - 48732039707280a^3b^7 + 7958826637650a^4b^7)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-1564770434220a^5b^7 + 61354862100a^6b^7 - 265182525a^8b^7 + 58929450a^9b^7)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-7442156684963b^8 + 14777453889915ab^8 - 13445576481135a^2b^8 + 3991249561815a^3b^8)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-1318930698825a^4b^8 + 108515480625a^5b^8 - 16380836325a^6b^8 + 265182525a^7b^8)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(617014151325b^9 - 1383157455640ab^9 + 847258652835a^2b^9 - 447929438010a^3b^9)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(61618021875a^4b^9 - 14881236900a^5b^9 + 488494125a^6b^9 - 58929450a^7b^9 - 38205040445b^{10})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(71906369145ab^{10} - 66766662300a^2b^{10} + 16234996050a^3b^{10} - 5799965925a^4b^{10})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(302401125a^5b^{10} - 56448210a^6b^{10} + 1759562805b^{11} - 3885833198ab^{11} + 1993919070a^2b^{11})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-1085488560a^3b^{11} + 92035125a^4b^{11} - 24192090a^5b^{11} - 59394517b^{12} + 100340955ab^{12})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-92736345a^2b^{12} + 14199705a^3b^{12} - 5259150a^4b^{12} + 1426425b^{13} - 3024980ab^{13})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{(1038345a^2b^{13} - 566370a^3b^{13} - 23065b^{14} + 30225ab^{14} - 26970a^2b^{14} + 225b^{15})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-434ab^{15} - b^{16})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \left\{ \frac{\Gamma(\frac{b+1}{2})}{\Gamma(\frac{a-28}{2})} \right\} \left\{ \frac{(9929789119274850a - 15491642259222720a^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \right. \\
& + \frac{(11638964717574354a^3 - 4301343369552768a^4 + 1253747784215818a^5 - 201126858232640a^6)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(30546110939162a^7 - 2485955985664a^8 + 217757164134a^9 - 9269332800a^{10} + 478875254a^{11})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-9962368a^{12} + 289198a^{13} - 2240a^{14} + 30a^{15} - 9929789119274850b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(15555346969469706a^2b - 12813960443208960a^3b + 6481731067775438a^4b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-1515408978736896a^5b + 337720529526218a^6b - 35628106560000a^7b + 4390411998314a^8b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-229181664768a^9b + 16800248686a^{10}b - 416282880a^{11}b + 18201898a^{12}b - 166656a^{13}b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(4030a^{14}b + 15491642259222720b^2 - 15555346969469706ab^2 + 5635201740688740a^3b^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-2741640041773120a^4b^2 + 1013554930920866a^5b^2 - 151523346853376a^6b^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(26800290613336a^7b^2 - 1790230626240a^8b^2 + 182599613658a^9b^2 - 5522995712a^{10}b^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(342148612a^{11}b^2 - 3739840a^{12}b^2 + 138446a^{13}b^2 - 11638964717574354b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}}
\end{aligned}$$

$$\begin{aligned}
& + \frac{(12813960443208960ab^3 - 5635201740688740a^2b^3 + 723609777250674a^4b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-215556136143360a^5b^3 + 61365006725256a^6b^3 - 5693437596672a^7b^3 + 821169360882a^8b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-31480247040a^9b^3 + 2698715292a^{10}b^3 - 35902464a^{11}b^3 + 1893294a^{12}b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(4301343369552768b^4 - 6481731067775438ab^4 + 2741640041773120a^2b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-723609777250674a^3b^4 + 39086251409460a^5b^4 - 7016427169920a^6b^4 + 1595208776220a^7b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-83706249600a^8b^4 + 10049696250a^9b^4 - 168292800a^{10}b^4 + 12271350a^{11}b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-1253747784215818b^5 + 1515408978736896ab^5 - 1013554930920866a^2b^5)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(215556136143360a^3b^5 - 39086251409460a^4b^5 + 943874861580a^6b^5 - 93850421760a^7b^5)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(17505768510a^8b^5 - 396998400a^9b^5 + 40320150a^{10}b^5 + 201126858232640b^6)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-337720529526218ab^6 + 151523346853376a^2b^6 - 61365006725256a^3b^6 + 7016427169920a^4b^6)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-943874861580a^5b^6 + 9848041560a^7b^6 - 416848320a^8b^6 + 65132550a^9b^6)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-30546110939162b^7 + 35628106560000ab^7 - 26800290613336a^2b^7 + 5693437596672a^3b^7)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}}
\end{aligned}$$

$$\begin{aligned}
& + \frac{(-1595208776220a^4b^7 + 93850421760a^5b^7 - 9848041560a^6b^7 + 35357670a^8b^7)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(2485955985664b^8 - 4390411998314ab^8 + 1790230626240a^2b^8 - 821169360882a^3b^8)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(83706249600a^4b^8 - 17505768510a^5b^8 + 416848320a^6b^8 - 35357670a^7b^8 - 217757164134b^9)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(229181664768ab^9 - 182599613658a^2b^9 + 31480247040a^3b^9 - 10049696250a^4b^9)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(396998400a^5b^9 - 65132550a^6b^9 + 9269332800b^{10} - 16800248686ab^{10} + 5522995712a^2b^{10})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-2698715292a^3b^{10} + 168292800a^4b^{10} - 40320150a^5b^{10} - 478875254b^{11} + 416282880ab^{11})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-342148612a^2b^{11} + 35902464a^3b^{11} - 12271350a^4b^{11} + 9962368b^{12} - 18201898ab^{12})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(3739840a^2b^{12} - 1893294a^3b^{12} - 289198b^{13} + 166656ab^{13} - 138446a^2b^{13} + 2240b^{14})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-4030ab^{14} - 30b^{15})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} \Big\} \quad (9)
\end{aligned}$$

III. DERIVATION OF MAIN SUMMATION FORMULA :

Substituting $c = \frac{a+b-29}{2}$ and $z = \frac{1}{2}$ in equation (4), we get

$$(a-b) {}_2F_1 \left[\begin{matrix} a, b \\ \frac{a+b-29}{2} \end{matrix} ; \frac{1}{2} \right] = (a-b-29) {}_2F_1 \left[\begin{matrix} a, b-1 \\ \frac{a+b-29}{2} \end{matrix} ; \frac{1}{2} \right] + (a-b+29) {}_2F_1 \left[\begin{matrix} a-1, b \\ \frac{a+b-29}{2} \end{matrix} ; \frac{1}{2} \right]$$

Now involving (8), we get

$$\begin{aligned}
L.H.S = & \frac{2^{(b-1)} \Gamma(\frac{a+b-29}{2})}{\Gamma(b)} \left[\frac{(a-b-29)(b-1)}{(a-b+1)} \frac{\Gamma(\frac{b}{2})}{\Gamma(\frac{a-29}{2})} \left\{ \frac{(6190283353629375)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \right. \right. \\
& \left. \left. \right\} \right]
\end{aligned}$$

$$\begin{aligned}
& + \frac{(-8055972084035925a - 1616392482200145a^2 + 6545235516842331a^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-4248216825020805a^4 + 1462132132021015a^5 - 320488415412165a^6 + 48202739351767a^7)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-5162979107715a^8 + 400775348545a^9 - 22625638035a^{10} + 919973873a^{11} - 26244855a^{12})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& \quad 46 \quad + \frac{(498365a^{13} - 5655a^{14} + 29a^{15} - 14459713484342175b + 24912724982942250ab)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& \quad + \frac{(-10303006262294205a^2b - 2596215568394844a^3b + 3745061321133657a^4b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& \quad + \frac{(-1500877287187498a^5b + 352103134363795a^6b - 53414874649352a^7b + 5770777441211a^8b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& \quad + \frac{(-432319504074a^9b + 23960048385a^{10}b - 894640604a^{11}b + 24237707a^{12}b - 370678a^{13}b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& \quad + \frac{(3625a^{14}b + 13121113142970855b^2 - 25090282486282455ab^2 + 15211233519617970a^2b^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& \quad + \frac{(-2788293602201802a^3b^2 - 805278615559779a^4b^2 + 592074582718251a^5b^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& \quad + \frac{(-152005752412020a^6b^2 + 25039023203844a^7b^2 - 2577581061327a^8b^2 + 199541321583a^9b^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& \quad + \frac{(-9686890590a^{10}b^2 + 369359718a^{11}b^2 - 7237269a^{12}b^2 + 115101a^{13}b^2 - 6520139954328519b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& \quad + \frac{(13108577078985156ab^3 - 9036235922107038a^2b^3 + 2763679802745492a^3b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}}
\end{aligned}$$

$$\begin{aligned}
& + \frac{(-236996129977305a^4b^3 - 81510903588600a^5b^3 + 35627232576540a^6b^3 - 5812690315320a^7b^3) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(681267356055a^8b^3 - 44069719500a^9b^3 + 2398342050a^{10}b^3 - 59377500a^{11}b^3 + 1442025a^{12}b^3) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(2046225352864875b^4 - 4230153389033277ab^4 + 3078613199870661a^2b^4) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(-1090412569469739a^3b^4 + 191734678251150a^4b^4 - 6491930042850a^5b^4) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(-3207292744950a^6b^4 + 904579763850a^7b^4 - 87179618025a^8b^4 + 7262379375a^9b^4) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(-230865375a^10b^4 + 8454225a^11b^4 - 437602985498315b^5 + 909977737682870ab^5) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(-690244478052695a^2b^5 + 254775008026440a^3b^5 - 53044457970150a^4b^5) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(5586729768900a^5b^5 - 11357015670a^6b^5 - 49912543800a^7b^5 + 9518807025a^8b^5) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(-422311050a^9b^5 + 24582285a^{10}b^5 + 66696220706115b^6 - 140635945873815ab^6) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(104089464902220a^2b^6 - 41041143055500a^3b^6 + 8538331086810a^4b^6 - 1105546036770a^5b^6) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(67259653020a^6b^6 + 1325342340a^7b^6 - 251495685a^8b^6 + 33266625a^9b^6 - 7442156684963b^7) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(15316877775928ab^7 - 11901188994484a^2b^7 + 4270299001416a^3b^7 - 1002318344370a^4b^7) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \\
& + \frac{(116087214600a^5b^7 - 9443799540a^6b^7 + 269174520a^7b^7 + 9694845a^8b^7 + 617014151325b^8) + }{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}}
\end{aligned}$$

$$\begin{aligned}
 & + \frac{(-1295202140631ab^8 + 901837698633a^2b^8 - 364964664267a^3b^8 + 66788562375a^4b^8)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
 & + \frac{(-9924009525a^5b^8 + 520009875a^6b^8 - 25662825a^7b^8 - 38205040445b^9 + 75064195830ab^9)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
 & + \frac{(-58140440475a^2b^9 + 17676240660a^3b^9 - 4270231875a^4b^9 + 331665750a^5b^9 - 31865925a^6b^9)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
 & + \frac{(1759562805b^{10} - 3613820925ab^{10} + 2150426850a^2b^{10} - 869003850a^3b^{10} + 102327225a^4b^{10})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
 & + \frac{(-15737865a^5b^{10} - 59394517b^{11} + 105400516ab^{11} - 80080078a^2b^{11} + 15757092a^3b^{11})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
 & + \frac{(-3817125a^4b^{11} + 1426425b^{12} - 2806167ab^{12} + 1132131a^2b^{12} - 451269a^3b^{12} - 23065b^{13})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
 & + \frac{(31850ab^{13} - 23345a^2b^{13} + 225b^{14} - 405ab^{14} - b^{15})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \Big\} + \frac{(a - b - 29)}{(a - b + 1)} \frac{\Gamma(\frac{b+1}{2})}{\Gamma(\frac{a-28}{2})} \times \\
 & \times \left\{ \frac{(9716331072597975 - 5938876097374545a - 5008529359741041a^2 + 6487628849502951a^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \right. \\
 & + \frac{(-3119276152843517a^4 + 859410426286395a^5 - 158335532807893a^6 + 20043813222499a^7)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
 & + \frac{(-1854935290971a^8 + 121930780205a^9 - 5964037651a^{10} + 200533749a^{11} - 4855487a^{12})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
 & + \frac{(69545a^{13} - 615a^{14} + a^{15} - 25699223519326395b + 25171279942688730ab)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
 & + \frac{(-2416223309724297a^2b - 6479001690355356a^3b + 3943894121896461a^4b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
 & + \frac{(-1188391890161850a^5b + 222399378231639a^6b - 28728676894728a^7b + 2588486627943a^8b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}}
 \end{aligned}$$

$$\begin{aligned}
& + \frac{(-169894944570a^9b + 7802522013a^{10}b - 256988316a^{11}b + 5440071a^{12}b - 72870a^{13}b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(405a^{14}b + 27186344648597079b^2 - 32032729028145123ab^2 + 11386302357850434a^2b^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(733537341812478a^3b^2 - 1752277497289123a^4b^2 + 633533549962775a^5b^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-125659728215252a^6b^2 + 16438837192564a^7b^2 - 1464979112799a^8b^2 + 93031157115a^9b^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-4033380494a^{10}b^2 + 122243758a^{11}b^2 - 2182453a^{12}b^2 + 23345a^{13}b^2 - 15714610310684283b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(20322778632253764ab^3 - 9399215529829782a^2b^3 + 1589873109506676a^3b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(240339705407979a^4b^3 - 160880872128120a^5b^3 + 37894714290636a^6b^3 - 4928138731512a^7b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(453967376427a^8b^3 - 25961358540a^9b^3 + 1124193642a^{10}b^3 - 25610364a^{11}b^3 + 451269a^{12}b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(5701581389114131b^4 - 7726030369046057ab^4 + 4013955046526517a^2b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-970795132030695a^3b^4 + 83600202729150a^4b^4 + 18789810760710a^5b^4 - 5875790236470a^6b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(942471670770a^7b^4 - 74963930625a^8b^4 + 4806325875a^9b^4 - 139028175a^{10}b^4 + 3817125a^{11}b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-1404456293068423b^5 + 1937418830448486ab^5 - 1064214040307691a^2b^5)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(294859652506440a^3b^5 - 41070362418750a^4b^5 + 1727406831780a^5b^5 + 557686323810a^6b^5)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}}
\end{aligned}$$

$$\begin{aligned}
& + \frac{(-86130323640a^7b^5 + 9585440325a^8b^5 - 365482650a^9b^5 + 15737865a^{10}b^5)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(242724293841187b^6 - 344271976774739ab^6 + 188443424215404a^2b^6 - 56118973904220a^3b^6)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(9036668576250a^4b^6 - 737047079370a^5b^6 + 12336525180a^6b^6 + 6606541620a^7b^6)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-412856325a^8b^6 + 31865925a^9b^6 - 31369903498903b^7 + 42658610567352ab^7)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-24652678843332a^2b^7 + 6928245511560a^3b^7 - 1245809493450a^4b^7 + 114419821320a^5b^7)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-5157657540a^6b^7 + 13686840a^7b^7 + 25662825a^8b^7 + 2881746912133b^8 - 4152466324811ab^8)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(2134795301001a^2b^8 - 672611134455a^3b^8 + 100119984975a^4b^8 - 11324029185a^5b^8)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(483031395a^6b^8 - 9694845a^7b^8 - 213206657329b^9 + 267836243718ab^9 - 157524817743a^2b^9)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(37508092500a^3b^9 - 7194345375a^4b^9 + 468534150a^5b^9 - 33266625a^6b^9 + 10528402469b^{10})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-15257042593ab^{10} + 6517769778a^2b^{10} - 2097043650a^3b^{10} + 200950425a^4b^{10})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-24582285a^5b^{10} - 457114385b^{11} + 481584324ab^{11} - 285864774a^2b^{11} + 42864900a^3b^{11})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-8454225a^4b^{11} + 11156561b^{12} - 16245307ab^{12} + 4407507a^2b^{12} - 1442025a^3b^{12})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-274253b^{13} + 191)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} \Big\} + \frac{2^{(b-1)} \Gamma(\frac{a+1-29}{2})}{\Gamma(b)} \frac{(a-b+29)}{(a-b-1)} \frac{\Gamma(\frac{b+1}{2})}{\Gamma(\frac{a-28}{2})} \times
\end{aligned}$$

$$\begin{aligned}
& \times \left\{ \frac{(-9716331072597975 + 25699223519326395a - 27186344648597079a^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \right. \\
& + \frac{(15714610310684283a^3 - 5701581389114131a^4 + 1404456293068423a^5 - 242724293841187a^6)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(31369903498903a^7 - 2881746912133a^8 + 213206657329a^9 - 10528402469a^{10})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(457114385a^{11} - 11156561a^{12} + 274253a^{13} - 2465a^{14} + 29a^{15} + 5938876097374545b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-25171279942688730ab + 32032729028145123a^2b - 20322778632253764a^3b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(7726030369046057a^4b - 1937418830448486a^5b + 344271976774739a^6b - 42658610567352a^7b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(4152466324811a^8b - 267836243718a^9b + 15257042593a^{10}b - 481584324a^{11}b + 16245307a^{12}b)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-191226a^{13}b + 3625a^{14}b + 5008529359741041b^2 + 2416223309724297ab^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-11386302357850434a^2b^2 + 9399215529829782a^3b^2 - 4013955046526517a^4b^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(1064214040307691a^5b^2 - 188443424215404a^6b^2 + 24652678843332a^7b^2 - 2134795301001a^8b^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(157524817743a^9b^2 - 6517769778a^{10}b^2 + 285864774a^{11}b^2 - 4407507a^{12}b^2 + 115101a^{13}b^2)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-6487628849502951b^3 + 6479001690355356ab^3 - 733537341812478a^2b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-1589873109506676a^3b^3 + 970795132030695a^4b^3 - 294859652506440a^5b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}}
\end{aligned}$$

$$\begin{aligned}
& + \frac{(56118973904220a^6b^3 - 6928245511560a^7b^3 + 672611134455a^8b^3 - 37508092500a^9b^3)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(2097043650a^{10}b^3 - 42864900a^{11}b^3 + 1442025a^{12}b^3 + 3119276152843517b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-3943894121896461ab^4 + 1752277497289123a^2b^4 - 240339705407979a^3b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-83600202729150a^4b^4 + 41070362418750a^5b^4 - 9036668576250a^6b^4 + 1245809493450a^7b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-100119984975a^8b^4 + 7194345375a^9b^4 - 200950425a^{10}b^4 + 8454225a^{11}b^4)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-859410426286395b^5 + 1188391890161850ab^5 - 633533549962775a^2b^5)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(160880872128120a^3b^5 - 18789810760710a^4b^5 - 1727406831780a^5b^5 + 737047079370a^6b^5)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-114419821320a^7b^5 + 11324029185a^8b^5 - 468534150a^9b^5 + 24582285a^{10}b^5)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(158335532807893b^6 - 222399378231639ab^6 + 125659728215252a^2b^6 - 37894714290636a^3b^6)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(5875790236470a^4b^6 - 557686323810a^5b^6 - 12336525180a^6b^6 + 5157657540a^7b^6)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-483031395a^8b^6 + 33266625a^9b^6 - 20043813222499b^7 + 28728676894728ab^7)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-16438837192564a^2b^7 + 4928138731512a^3b^7 - 942471670770a^4b^7 + 86130323640a^5b^7)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-6606541620a^6b^7 - 13686840a^7b^7 + 9694845a^8b^7 + 1854935290971b^8 - 2588486627943ab^8)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}}
\end{aligned}$$

$$\begin{aligned}
& + \frac{(1464979112799a^2b^8 - 453967376427a^3b^8 + 74963930625a^4b^8 - 9585440325a^5b^8)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(412856325a^6b^8 - 25662825a^7b^8 - 121930780205b^9 + 169894944570ab^9 - 93031157115a^2b^9)}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(25961358540a^3b^9 - 4806325875a^4b^9 + 365482650a^5b^9 - 31865925a^6b^9 + 5964037651b^{10})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-7802522013ab^{10} + 4033380494a^2b^{10} - 1124193642a^3b^{10} + 139028175a^4b^{10})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-15737865a^5b^{10} - 200533749b^{11} + 256988316ab^{11} - 122243758a^2b^{11} + 25610364a^3b^{11})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(-3817125a^4b^{11} + 4855487b^{12} - 5440071ab^{12} + 2182453a^2b^{12} - 451269a^3b^{12} - 69545b^{13})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} + \\
& + \frac{(72870ab^{13} - 23345a^2b^{13} + 615b^{14} - 405ab^{14} - b^{15})}{\prod_{\Omega=1}^{14} \{a - 2\Omega\}} \Big\} + \frac{(a - b + 29)}{(a - b - 1)} \frac{\Gamma(\frac{b}{2})}{\Gamma(\frac{a-29}{2})} \times \\
& \times \left\{ \frac{(-6190283353629375 + 14459713484342175a - 13121113142970855a^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \right. \\
& + \frac{(6520139954328519a^3 - 2046225352864875a^4 + 437602985498315a^5 - 66696220706115a^6)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(7442156684963a^7 - 617014151325a^8 + 38205040445a^9 - 1759562805a^{10} + 59394517a^{11})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-1426425a^{12} + 23065a^{13} - 225a^{14} + a^{15} + 8055972084035925b - 24912724982942250ab)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(25090282486282455a^2b - 13108577078985156a^3b + 4230153389033277a^4b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-909977737682870a^5b + 140635945873815a^6b - 15316877775928a^7b + 1295202140631a^8b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}}
\end{aligned}$$

$$\begin{aligned}
& + \frac{(-75064195830a^9b + 3613820925a^{10}b - 105400516a^{11}b + 2806167a^{12}b - 31850a^{13}b)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(405a^{14}b + 1616392482200145b^2 + 10303006262294205ab^2 - 15211233519617970a^2b^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(9036235922107038a^3b^2 - 3078613199870661a^4b^2 + 690244478052695a^5b^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-104089464902220a^6b^2 + 11901188994484a^7b^2 - 901837698633a^8b^2 + 58140440475a^9b^2)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-2150426850a^{10}b^2 + 80080078a^{11}b^2 - 1132131a^{12}b^2 + 23345a^{13}b^2 - 6545235516842331b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(2596215568394844ab^3 + 2788293602201802a^2b^3 - 2763679802745492a^3b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(1090412569469739a^4b^3 - 254775008026440a^5b^3 + 41041143055500a^6b^3 - 4270299001416a^7b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(364964664267a^8b^3 - 17676240660a^9b^3 + 869003850a^{10}b^3 - 15757092a^{11}b^3 + 451269a^{12}b^3)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(4248216825020805b^4 - 3745061321133657ab^4 + 805278615559779a^2b^4)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(236996129977305a^3b^4 - 191734678251150a^4b^4 + 53044457970150a^5b^4 - 8538331086810a^6b^4)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(1002318344370a^7b^4 - 66788562375a^8b^4 + 4270231875a^9b^4 - 102327225a^{10}b^4 + 3817125a^{11}b^4)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-1462132132021015b^5 + 1500877287187498ab^5 - 592074582718251a^2b^5)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}}
\end{aligned}$$

$$\begin{aligned}
& + \frac{(81510903588600a^3b^5 + 6491930042850a^4b^5 - 5586729768900a^5b^5 + 1105546036770a^6b^5)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-116087214600a^7b^5 + 9924009525a^8b^5 - 331665750a^9b^5 + 15737865a^{10}b^5)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(320488415412165b^6 - 352103134363795ab^6 + 152005752412020a^2b^6 - 35627232576540a^3b^6)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(3207292744950a^4b^6 + 11357015670a^5b^6 - 67259653020a^6b^6 + 9443799540a^7b^6)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-520009875a^8b^6 + 31865925a^9b^6 - 48202739351767b^7 + 53414874649352ab^7)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-25039023203844a^2b^7 + 5812690315320a^3b^7 - 904579763850a^4b^7 + 49912543800a^5b^7)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-1325342340a^6b^7 - 269174520a^7b^7 + 25662825a^8b^7 + 5162979107715b^8 - 5770777441211ab^8)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(2577581061327a^2b^8 - 681267356055a^3b^8 + 87179618025a^4b^8 - 9518807025a^5b^8)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(251495685a^6b^8 - 9694845a^7b^8 - 400775348545b^9 + 432319504074ab^9 - 199541321583a^2b^9)}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(44069719500a^3b^9 - 7262379375a^4b^9 + 422311050a^5b^9 - 33266625a^6b^9 + 22625638035b^{10})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-23960048385ab^{10} + 9686890590a^2b^{10} - 2398342050a^3b^{10} + 230865375a^4b^{10})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
& + \frac{(-24582285a^5b^{10} - 919973873b^{11} + 894640604ab^{11} - 369359718a^2b^{11} + 59377500a^3b^{11})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}}
\end{aligned}$$

$$\begin{aligned}
 & + \frac{(-8454225a^4b^{11} + 26244855b^{12} - 24237707ab^{12} + 7237269a^2b^{12} - 1442025a^3b^{12} - 498365b^{13})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} + \\
 & + \frac{(370678ab^{13} - 115101a^2b^{13} + 5655b^{14} - 3625ab^{14} - 29b^{15})}{\prod_{\Phi=1}^{15} \{a - (2\Phi - 1)\}} \Big]
 \end{aligned}$$

On simplification, we get the main formula.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Abramowitz, Milton.,A and Stegun, Irene; *Handbook of Mathematical Functions with Formulas, Graphs , and Mathematical Tables*. National Bureau of Standards, 1970.
2. Arora, Asish, Singh, Rahul, Salahuddin. ; Development of a family of summation formulae of half argument using Gauss and Bailey theorems, *Journal of Rajasthan Academy of Physical Sciences.*, 7(2008), 335-342.
3. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; *Integrals and Series Vol. 3: More Special Functions*. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
4. Salahuddin. ; Evaluation of a Summation Formula Involving Recurrence Relation, *Gen. Math. Notes.*, 2(2010), 42-59.
5. Salahuddin. ; Two Summation Formulae Based On Half Argument Associated To Hypergeometric function , *Global Journal of Science Frontier Research.*, 10(2010), 08-19.
6. Salahuddin. ; Evaluation of Certain Summation Formulae Involving Gauss Theorem , *Global Journal of Mathematical Sciences: Theory and Practical.*, 10(2010), 309-316.
7. Salahuddin. ; A Summation Formula Related To Bailey Theorem, *Global Journal of Science Frontier Research.*, 11(2011), 53-67.
8. Salahuddin. ; On Certain Summation Formulae based on half argument associated to hypergeometric function , *International Journal of Mathematical Archieve.*, 2(2011), 255-257.

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH

Volume 11 Issue 5 Version 1.0 August 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

ISSN: 0975-5896

Development of a Summation Formula Related To Hypergeometric Functions

By Salahuddin, M.P.Chaudhary

P.D.M College of Engineering, Bahadurgarh, Haryana, India

Abstract - The aim of the present paper is to obtain a summation formula based on half argument related to hypergeometric functions. The result is general in nature and is believed to be new.

Keywords: Contiguous relation, Gauss second summation theorem.

AMS Subject Classifications (2010) : 33C05, 33C20, 33C70

Strictly as per the compliance and regulations of:

Development of a Summation Formula Related To Hypergeometric Functions

Salahuddin^a, M.P.Chaudhary^Q

Abstract - The aim of the present paper is to obtain a summation formula based on half argument related to hypergeometric functions. The result is general in nature and is believed to be new.

Keywords : Contiguous relation, Gauss second summation theorem.

I. INTRODUCTION

Generalized Gaussian Hypergeometric function of one variable is defined by

$${}_A F_B \left[\begin{matrix} a_1, a_2, \dots, a_A & ; \\ b_1, b_2, \dots, b_B & ; \end{matrix} \middle| z \right] = \sum_{k=0}^{\infty} \frac{(a_1)_k (a_2)_k \dots (a_A)_k z^k}{(b_1)_k (b_2)_k \dots (b_B)_k k!}$$

or

$${}_A F_B \left[\begin{matrix} (a_A) & ; \\ (b_B) & ; \end{matrix} \middle| z \right] \equiv {}_A F_B \left[\begin{matrix} (a_j)_{j=1}^A & ; \\ (b_j)_{j=1}^B & ; \end{matrix} \middle| z \right] = \sum_{k=0}^{\infty} \frac{((a_A))_k z^k}{((b_B))_k k!} \quad (1)$$

Where the parameters b_1, b_2, \dots, b_B are neither zero nor negative integers and A, B are non-negative integers.

Contiguous Relation is defined by [Andrews p.363(9.16), E.D.P.51(10), H.T.F.I p.103(32)]

$$(a-b) {}_2 F_1 \left[\begin{matrix} a, b & ; \\ c & ; \end{matrix} \middle| z \right] = a {}_2 F_1 \left[\begin{matrix} a+1, b & ; \\ c & ; \end{matrix} \middle| z \right] - b {}_2 F_1 \left[\begin{matrix} a, b+1 & ; \\ c & ; \end{matrix} \middle| z \right] \quad (2)$$

Gauss second summation theorem is defined by [Prud., 491(7.3.7.5)]

$${}_2 F_1 \left[\begin{matrix} a, b & ; \\ \frac{a+b+1}{2} & ; \end{matrix} \middle| \frac{1}{2} \right] = \frac{\Gamma(\frac{a+b+1}{2}) \Gamma(\frac{1}{2})}{\Gamma(\frac{a+1}{2}) \Gamma(\frac{b+1}{2})} \quad (3)$$

$$= \frac{2^{(b-1)} \Gamma(\frac{b}{2}) \Gamma(\frac{a+b+1}{2})}{\Gamma(b) \Gamma(\frac{a+1}{2})} \quad (4)$$

In a monograph of Prudnikov et al., a summation theorem is given in the form [Prud., p.491(7.3.7.3)]

$${}_2 F_1 \left[\begin{matrix} a, b & ; \\ \frac{a+b-1}{2} & ; \end{matrix} \middle| \frac{1}{2} \right] = \sqrt{\pi} \left[\frac{\Gamma(\frac{a+b+1}{2})}{\Gamma(\frac{a+1}{2}) \Gamma(\frac{b+1}{2})} + \frac{2 \Gamma(\frac{a+b-1}{2})}{\Gamma(a) \Gamma(b)} \right] \quad (5)$$

Now using Legendre's duplication formula and Recurrence relation for Gamma function, the above theorem can be written in the form,

$${}_2 F_1 \left[\begin{matrix} a, b & ; \\ \frac{a+b-1}{2} & ; \end{matrix} \middle| \frac{1}{2} \right] = \frac{2^{(b-1)} \Gamma(\frac{a+b-1}{2})}{\Gamma(b)} \left[\frac{\Gamma(\frac{b}{2})}{\Gamma(\frac{a-1}{2})} + \frac{2^{(a-b+1)} \Gamma(\frac{a}{2}) \Gamma(\frac{a+1}{2})}{\{\Gamma(a)\}^2} + \frac{\Gamma(\frac{b+2}{2})}{\Gamma(\frac{a+1}{2})} \right] \quad (6)$$

Author ^a: P.D.M College of Engineering, Bahadurgarh, Haryana, India. E-mail : sludn@yahoo.com

Author ^Q: International Scientific Research and Welfare Organization, New Delhi-110018, India. E-mail : mpchaudhary_2000@yahoo.com

II. MAIN SUMMATION FORMULAE

$$\begin{aligned}
& {}_2F_1 \left[\begin{matrix} a, & b \\ \frac{a+b+26}{2} & \end{matrix} ; \quad \frac{1}{2} \right] = \frac{2^b \Gamma(\frac{a+b+26}{2})}{(a-b) \Gamma(b)} \times \\
& \times \left[\frac{\Gamma(\frac{b}{2})}{\Gamma(\frac{a}{2})} \left\{ \frac{4096(-81749606400a + 123436892160a^2 - 77270003712a^3 + 26946067456a^4)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \right. \right. \\
& + \frac{4096(-5887453440a^5 + 853730240a^6 - 84401856a^7 + 5718768a^8 - 261360a^9 + 7700a^{10})}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(-132a^{11} + a^{12} + 81749606400b + 367298150400ab - 118779801600a^2b)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(242509385728a^3b - 38595539712a^4b + 16452876672a^5b - 1303280832a^6b)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(217911936a^7b - 8342928a^8b + 621368a^9b - 9108a^{10}b + 276a^{11}b + 123436892160b^2)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(118779801600ab^2 + 464899287040a^2b^2 - 37227551232a^3b^2 + 76928096320a^4b^2)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(-4716831168a^5b^2 + 2038636096a^6b^2 - 67277760a^7b^2 + 11193732a^8b^2 - 148764a^9b^2)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(10626a^{10}b^2 + 77270003712b^3 + 242509385728ab^3 + 37227551232a^2b^3)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(125264532736a^3b^3 - 3669038016a^4b^3 + 7098446208a^5b^3 - 181484352a^6b^3)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(74296992a^7b^3 - 865260a^8b^3 + 134596a^9b^3 + 26946067456b^4 + 38595539712ab^4)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(76928096320a^2b^4 + 3669038016a^3b^4 + 10621924768a^4b^4 - 124807200a^5b^4)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)}
\end{aligned}$$

$$\begin{aligned}
& + \frac{4096(219244648a^6b^4 - 1961256a^7b^4 + 735471a^8b^4 + 5887453440b^5 + 16452876672ab^5)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(4716831168a^2b^5 + 7098446208a^3b^5 + 124807200a^4b^5 + 312018000a^5b^5 - 1248072a^6b^5)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(1961256a^7b^5 + 853730240b^6 + 1303280832ab^6 + 2038636096a^2b^6 + 181484352a^3b^6)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(219244648a^4b^6 + 1248072a^5b^6 + 2704156a^6b^6 + 84401856b^7 + 217911936ab^7)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(67277760a^2b^7 + 74296992a^3b^7 + 1961256a^4b^7 + 1961256a^5b^7 + 5718768b^8)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(8342928ab^8 + 11193732a^2b^8 + 865260a^3b^8 + 735471a^4b^8 + 261360b^9 + 621368ab^9)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(148764a^2b^9 + 134596a^3b^9 + 7700b^{10} + 9108ab^{10} + 10626a^2b^{10} + 132b^{11})}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{4096(+276ab^{11} + b^{12})}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{32768b(38385745920a + 8277098496a^2 + 11938545664a^3 + 1293154816a^4 + 518927616a^5)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)} + \\
& + \frac{32768b(29747424a^6 + 4842288a^7 + 138864a^8 + 9944a^9 + 110a^{10} + 3a^{11} + 38385745920b)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)} + \\
& + \frac{32768b(50799591424a^2b + 4130196480a^3b + 5067819264a^4b + 257208448a^5b)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)} + \\
& + \frac{32768b(92965264a^6b + 2517856a^7b + 370392a^8b + 4048a^9b + 253a^{10}b - 8277098496b^2)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)}
\end{aligned}$$

$$\begin{aligned}
& + \frac{32768b(50799591424ab^2 + 14021624320a^3b^2 + 502850656a^4b^2 + 529633328a^5b^2)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{32768b(12452384a^6b^2 + 3991328a^7b^2 + 40986a^8b^2 + 5313a^9b^2 + 11938545664b^3)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{32768b(-4130196480ab^3 + 14021624320a^2b^3 + 1206518544a^4b^3 + 19283936a^5b^3)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{32768b(17521952a^6b^3 + 153824a^7b^3 + 43263a^8b^3 - 1293154816b^4 + 5067819264ab^4)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{32768b(-502850656a^2b^4 + 1206518544a^3b^4 + 35778064a^5b^4 + 208012a^6b^4 + 163438a^7b^4)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{32768b(518927616b^5 - 257208448ab^5 + 529633328a^2b^5 - 19283936a^3b^5 + 35778064a^4b^5)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{32768b(312018a^6b^5 - 29747424b^6 + 92965264ab^6 - 12452384a^2b^6 + 17521952a^3b^6)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{32768b(-208012a^4b^6 + 312018a^5b^6 + 4842288b^7 - 2517856ab^7 + 3991328a^2b^7)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{32768b(-153824a^3b^7 + 163438a^4b^7 - 138864b^8 + 370392ab^8 - 40986a^2b^8 + 43263a^3b^8)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{32768b(9944b^9 - 4048ab^9 + 5313a^2b^9 - 110b^{10} + 253ab^{10} + 3b^{11})}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} \Big\} - \\
& - \frac{\Gamma(\frac{b+1}{2})}{\Gamma(\frac{a+1}{2})} \Bigg\{ \frac{32768a(38385745920a - 8277098496a^2 + 11938545664a^3 - 1293154816a^4)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(518927616a^5 - 29747424a^6 + 4842288a^7 - 138864a^8 + 9944a^9 - 110a^{10} + 3a^{11})}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)}
\end{aligned}$$

$$\begin{aligned}
& + \frac{32768a(38385745920b + 50799591424a^2b - 4130196480a^3b + 5067819264a^4b)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(-257208448a^5b + 92965264a^6b - 2517856a^7b + 370392a^8b - 4048a^9b)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(253a^{10}b + 8277098496b^2 + 50799591424ab^2 + 14021624320a^3b^2 - 502850656a^4b^2)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(529633328a^5b^2 - 12452384a^6b^2 + 3991328a^7b^2 - 40986a^8b^2 + 5313a^9b^2)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(11938545664b^3 + 4130196480ab^3 + 14021624320a^2b^3 + 1206518544a^4b^3)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(-19283936a^5b^3 + 17521952a^6b^3 - 153824a^7b^3 + 43263a^8b^3 + 1293154816b^4)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(5067819264ab^4 + 502850656a^2b^4 + 1206518544a^3b^4 + 35778064a^5b^4)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(-208012a^6b^4 + 163438a^7b^4 + 518927616b^5 + 257208448ab^5 + 529633328a^2b^5)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(19283936a^3b^5 + 35778064a^4b^5 + 312018a^6b^5 + 29747424b^6 + 92965264ab^6)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(12452384a^2b^6 + 17521952a^3b^6 + 208012a^4b^6 + 312018a^5b^6 + 4842288b^7)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(2517856ab^7 + 3991328a^2b^7 + 153824a^3b^7 + 163438a^4b^7 + 138864b^8 + 370392ab^8)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768a(40986a^2b^8 + 43263a^3b^8 + 9944b^9 + 4048ab^9 + 5313a^2b^9 + 110b^{10} + 253ab^{10} + 3b^{11})}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)}
\end{aligned}$$

$$\begin{aligned}
& + \frac{4096(81749606400a + 123436892160a^2 + 77270003712a^3 + 26946067456a^4)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(5887453440a^5 + 853730240a^6 + 84401856a^7 + 5718768a^8 + 261360a^9 + 7700a^{10})}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(132a^{11} + a^{12} - 81749606400b + 367298150400ab + 118779801600a^2b)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(242509385728a^3b + 38595539712a^4b + 16452876672a^5b + 1303280832a^6b)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(217911936a^7b + 8342928a^8b + 621368a^9b + 9108a^{10}b + 276a^{11}b + 123436892160b^2)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(-118779801600ab^2 + 464899287040a^2b^2 + 37227551232a^3b^2 + 76928096320a^4b^2)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(4716831168a^5b^2 + 2038636096a^6b^2 + 67277760a^7b^2 + 11193732a^8b^2 + 148764a^9b^2)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(10626a^{10}b^2 - 77270003712b^3 + 242509385728ab^3 - 37227551232a^2b^3)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(125264532736a^3b^3 + 3669038016a^4b^3 + 7098446208a^5b^3 + 181484352a^6b^3)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(74296992a^7b^3 + 865260a^8b^3 + 134596a^9b^3 + 26946067456b^4 - 38595539712ab^4)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(76928096320a^2b^4 - 3669038016a^3b^4 + 10621924768a^4b^4 + 124807200a^5b^4)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(219244648a^6b^4 + 1961256a^7b^4 + 735471a^8b^4 - 5887453440b^5 + 16452876672ab^5)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{4096(-4716831168a^2b^5 + 7098446208a^3b^5 - 124807200a^4b^5 + 312018000a^5b^5)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)}
\end{aligned}$$

$$\begin{aligned}
& + \frac{4096(1248072a^6b^5 + 1961256a^7b^5 + 853730240b^6 - 1303280832ab^6 + 2038636096a^2b^6)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{4096(-181484352a^3b^6 + 219244648a^4b^6 - 1248072a^5b^6 + 2704156a^6b^6 - 84401856b^7)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{4096(217911936ab^7 - 67277760a^2b^7 + 74296992a^3b^7 - 1961256a^4b^7 + 1961256a^5b^7)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{4096(5718768b^8 - 8342928ab^8 + 11193732a^2b^8 - 865260a^3b^8 + 735471a^4b^8 - 261360b^9)}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{4096(621368ab^9 - 148764a^2b^9 + 134596a^3b^9 + 7700b^{10} - 9108ab^{10} + 10626a^2b^{10})}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} + \\
& + \frac{4096(-132b^{11} + 276ab^{11} + b^{12})}{\left(\prod_{\nu=0}^{12}\{a-b-2\nu\}\right)\left(\prod_{\mu=1}^{11}\{a-b+2\mu\}\right)} \Big\} \quad (7)
\end{aligned}$$

III. DERIVATION OF SUMMATION FORMULAE (7)

Substituting $c = \frac{a+b+26}{2}$ and $z = \frac{1}{2}$ in equation (2), we get

$$(a-b) {}_2F_1 \left[\begin{matrix} a, b \\ \frac{a+b+26}{2} \end{matrix} ; \frac{1}{2} \right] = a {}_2F_1 \left[\begin{matrix} a+1, b \\ \frac{a+b+26}{2} \end{matrix} ; \frac{1}{2} \right] - b {}_2F_1 \left[\begin{matrix} a, b+1 \\ \frac{a+b+26}{2} \end{matrix} ; \frac{1}{2} \right]$$

Now using Gauss second summation theorem, we get

$$\begin{aligned}
L.H.S & = a \frac{2^b \Gamma(\frac{a+b+26}{2})}{\Gamma(b)} \left[\frac{\Gamma(\frac{b}{2})}{\Gamma(\frac{a+2}{2})} \left\{ \frac{2048(-81749606400a + 123436892160a^2)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \right. \right. \\
& + \frac{2048(-77270003712a^3 + 26946067456a^4 - 5887453440a^5 + 853730240a^6 - 84401856a^7)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{2048(5718768a^8 - 261360a^9 + 7700a^{10} - 132a^{11} + a^{12} + 81749606400b)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{2048(367298150400ab - 118779801600a^2b) + 242509385728a^3b - 38595539712a^4b)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} +
\end{aligned}$$

$$\begin{aligned}
& + \frac{2048(16452876672a^5b - 1303280832a^6b + 217911936a^7b - 8342928a^8b + 621368a^9b)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(-9108a^{10}b + 276a^{11}b + 123436892160b^2 + 118779801600ab^2 + 464899287040a^2b^2)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(-37227551232a^3b^2 + 76928096320a^4b^2 - 4716831168a^5b^2 + 2038636096a^6b^2)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(-67277760a^7b^2 + 11193732a^8b^2 - 148764a^9b^2 + 10626a^{10}b^2 + 77270003712b^3)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(242509385728ab^3 + 37227551232a^2b^3 + 125264532736a^3b^3 - 3669038016a^4b^3)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(7098446208a^5b^3 - 181484352a^6b^3 + 74296992a^7b^3 - 865260a^8b^3 + 134596a^9b^3)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(26946067456b^4 + 38595539712ab^4 + 76928096320a^2b^4 + 3669038016a^3b^4)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(10621924768a^4b^4 - 124807200a^5b^4 + 219244648a^6b^4 - 1961256a^7b^4 + 735471a^8b^4)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(5887453440b^5 + 16452876672ab^5 + 4716831168a^2b^5 + 7098446208a^3b^5)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(124807200a^4b^5 + 312018000a^5b^5 - 1248072a^6b^5 + 1961256a^7b^5 + 853730240b^6)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(1303280832ab^6 + 2038636096a^2b^6 + 181484352a^3b^6 + 219244648a^4b^6 + 1248072a^5b^6)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)} + \\
& + \frac{2048(2704156a^6b^6 + 84401856b^7 + 217911936ab^7 + 67277760a^2b^7 + 74296992a^3b^7)}{\left(\prod_{\zeta=0}^{11} \{a - b - 2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a - b + 2\eta\} \right)}
\end{aligned}$$

$$\begin{aligned}
& + \frac{2048(1961256a^4b^7 + 1961256a^5b^7 + 5718768b^8 + 8342928ab^8 + 11193732a^2b^8)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{2048(865260a^3b^8 + 735471a^4b^8 + 261360b^9 + 621368ab^9 + 148764a^2b^9 + 134596a^3b^9)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{2048(7700b^{10} + 9108ab^{10} + 10626a^2b^{10} + 132b^{11} + 276ab^{11} + b^{12})}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} \Big\} - \\
& - \frac{\Gamma(\frac{b+1}{2})}{\Gamma(\frac{a+1}{2})} \left\{ \frac{32768(38385745920a - 8277098496a^2 + 11938545664a^3 - 1293154816a^4)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \right. \\
& + \frac{32768(518927616a^5 - 29747424a^6 + 4842288a^7 - 138864a^8 + 9944a^9 - 110a^{10} + 3a^{11})}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768(38385745920b + 50799591424a^2b - 4130196480a^3b + 5067819264a^4b)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768(-257208448a^5b + 92965264a^6b - 2517856a^7b + 370392a^8b - 4048a^9b)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768(253a^{10}b + 8277098496b^2 + 50799591424ab^2 + 14021624320a^3b^2 - 502850656a^4b^2)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768(529633328a^5b^2 - 12452384a^6b^2 + 3991328a^7b^2 - 40986a^8b^2 + 5313a^9b^2)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768(11938545664b^3 + 4130196480ab^3 + 14021624320a^2b^3 + 1206518544a^4b^3)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768(-19283936a^5b^3 + 17521952a^6b^3 - 153824a^7b^3 + 43263a^8b^3 + 1293154816b^4)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)} + \\
& + \frac{32768(5067819264ab^4 + 502850656a^2b^4 + 1206518544a^3b^4 + 35778064a^5b^4 - 208012a^6b^4)}{\left(\prod_{\zeta=0}^{11}\{a-b-2\zeta\}\right)\left(\prod_{\eta=1}^{12}\{a-b+2\eta\}\right)}
\end{aligned}$$

$$\begin{aligned}
& + \frac{32768(163438a^7b^4 + 518927616b^5 + 257208448ab^5 + 529633328a^2b^5 + 19283936a^3b^5)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{32768(35778064a^4b^5 + 312018a^6b^5 + 29747424b^6 + 92965264ab^6 + 12452384a^2b^6)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{32768(17521952a^3b^6 + 208012a^4b^6 + 312018a^5b^6 + 4842288b^7 + 2517856ab^7)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{32768(3991328a^2b^7 + 153824a^3b^7 + 163438a^4b^7 + 138864b^8 + 370392ab^8 + 40986a^2b^8)}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} + \\
& + \frac{32768(43263a^3b^8 + 9944b^9 + 4048ab^9 + 5313a^2b^9 + 110b^{10} + 253ab^{10} + 3b^{11})}{\left(\prod_{\zeta=0}^{11} \{a-b-2\zeta\} \right) \left(\prod_{\eta=1}^{12} \{a-b+2\eta\} \right)} \Big\} - \\
& - b \frac{2^{b+1} \Gamma(\frac{a+b+26}{2})}{\Gamma(b+1)} \left[\frac{\Gamma(\frac{b+1}{2})}{\Gamma(\frac{a+1}{2})} \left\{ \frac{2048(81749606400a + 123436892160a^2 + 77270003712a^3)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)} + \right. \right. \\
& + \frac{2048(26946067456a^4 + 5887453440a^5 + 853730240a^6 + 84401856a^7 + 5718768a^8)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)} + \\
& + \frac{2048(261360a^9 + 7700a^{10} + 132a^{11} + a^{12} - 81749606400b + 367298150400ab)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)} + \\
& + \frac{2048(118779801600a^2b + 242509385728a^3b + 38595539712a^4b + 16452876672a^5b)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)} + \\
& + \frac{2048(1303280832a^6b + 217911936a^7b + 8342928a^8b + 621368a^9b + 9108a^{10}b + 276a^{11}b)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)} + \\
& + \frac{2048(123436892160b^2 - 118779801600ab^2 + 464899287040a^2b^2 + 37227551232a^3b^2)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)} + \\
& + \frac{2048(76928096320a^4b^2 + 4716831168a^5b^2 + 2038636096a^6b^2 + 67277760a^7b^2)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\} \right)}
\end{aligned}$$

$$\begin{aligned}
& + \frac{2048(11193732a^8b^2 + 148764a^9b^2 + 10626a^{10}b^2 - 77270003712b^3 + 242509385728ab^3)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(-37227551232a^2b^3 + 125264532736a^3b^3 + 3669038016a^4b^3 + 7098446208a^5b^3)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(181484352a^6b^3 + 74296992a^7b^3 + 865260a^8b^3 + 134596a^9b^3 + 26946067456b^4)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(-38595539712ab^4 + 76928096320a^2b^4 - 3669038016a^3b^4 + 10621924768a^4b^4)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(124807200a^5b^4 + 219244648a^6b^4 + 1961256a^7b^4 + 735471a^8b^4 - 5887453440b^5)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(16452876672ab^5 - 4716831168a^2b^5 + 7098446208a^3b^5 - 124807200a^4b^5)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(312018000a^5b^5 + 1248072a^6b^5 + 1961256a^7b^5 + 853730240b^6 - 1303280832ab^6)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(2038636096a^2b^6 - 181484352a^3b^6 + 219244648a^4b^6 - 1248072a^5b^6 + 2704156a^6b^6)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(-84401856b^7 + 217911936ab^7 - 67277760a^2b^7 + 74296992a^3b^7 - 1961256a^4b^7)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(1961256a^5b^7 + 5718768b^8 - 8342928ab^8 + 11193732a^2b^8 - 865260a^3b^8 + 735471a^4b^8)}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(-261360b^9 + 621368ab^9 - 148764a^2b^9 + 134596a^3b^9 + 7700b^{10} - 9108ab^{10})}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} + \\
& + \frac{2048(10626a^2b^{10} - 132b^{11} + 276ab^{11} + b^{12})}{\left(\prod_{\nu=0}^{12} \{a-b-2\nu\}\right) \left(\prod_{\mu=1}^{11} \{a-b+2\mu\}\right)} \Big\} -
\end{aligned}$$

$$\begin{aligned}
& -\frac{\Gamma(\frac{b+2}{2})}{\Gamma(\frac{a}{2})} \left\{ \frac{32768(38385745920a + 8277098496a^2 + 11938545664a^3 + 1293154816a^4)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \right. \\
& + \frac{32768(518927616a^5 + 29747424a^6 + 4842288a^7 + 138864a^8 + 9944a^9 + 110a^{10} + 3a^{11})}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& + \frac{32768(38385745920b + 50799591424a^2b + 4130196480a^3b + 5067819264a^4b)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& + \frac{32768(257208448a^5b + 92965264a^6b + 2517856a^7b + 370392a^8b + 4048a^9b + 253a^{10}b)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& + \frac{32768(-8277098496b^2 + 50799591424ab^2 + 14021624320a^3b^2 + 502850656a^4b^2)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& + \frac{32768(529633328a^5b^2 + 12452384a^6b^2 + 3991328a^7b^2 + 40986a^8b^2 + 5313a^9b^2)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& + \frac{32768(11938545664b^3 - 4130196480ab^3 + 14021624320a^2b^3 + 1206518544a^4b^3)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& + \frac{32768(19283936a^5b^3 + 17521952a^6b^3 + 153824a^7b^3 + 43263a^8b^3 - 1293154816b^4)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& + \frac{32768(35778064a^4b^5 + 312018a^6b^5 - 29747424b^6 + 92965264ab^6 - 12452384a^2b^6)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& + \frac{32768(+17521952a^3b^6 - 208012a^4b^6 + 312018a^5b^6 + 4842288b^7 - 2517856ab^7)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& + \frac{32768(3991328a^2b^7 - 153824a^3b^7 + 163438a^4b^7 - 138864b^8 + 370392ab^8 - 40986a^2b^8)}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} + \\
& \left. + \frac{32768(43263a^3b^8 + 9944b^9 - 4048ab^9 + 5313a^2b^9 - 110b^{10} + 253ab^{10} + 3b^{11})}{\left(\prod_{\nu=0}^{12} \{a - b - 2\nu\} \right) \left(\prod_{\mu=1}^{11} \{a - b + 2\mu\} \right)} \right\}
\end{aligned}$$

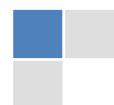
On simplification we get the result (7).

REFERENCES RÉFÉRENCES REFERENCIAS

1. Arora, Asish, Singh, Rahul , Salahuddin. ; Development of a family of summation formulae of half argument using Gauss and Bailey theorems *Journal of Rajasthan Academy of Physical Sciences.*, 7(2008), 335-342.
2. Lavoie, J. L.; Some summation formulae for the series ${}_3F_2$, *Math. Comput.*, 49(1987), 269-274.
3. Lavoie, J. L., Grondin, F. and Rathie, A.K.; Generalizations of Watson's theorem on the sum of a ${}_3F_2$, *Indian J. Math.*, 34(1992), 23-32.
4. Lavoie, J. L., Grondin, F. and Rathie, A.K.; Generalizations of Whipple's theorem on the sum of a ${}_3F_2$, *J. Comput. Appl. Math.*, 72(1996), 293-300.
5. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; *Integrals and Series Vol. 3: More Special Functions*. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
6. Rainville, E. D.; The contiguous function relations for ${}_pF_q$ with applications to Bateman's $J_n^{u,v}$ and Rice's $H_n(\zeta, p, \nu)$, *Bull. Amer. Math. Soc.*, 51(1945), 714-723.
7. Salahuddin, Chaudhary, M.P ; Development of some summation formulae using Hypergeometric function, *Global journal of Science Frontier Research*, 10(2010),36 - 48.
8. Salahuddin, Chaudhary, M.P ; Certain summation formulae associated to Gauss second summation theorem, *Global journal of Science Frontier Research*, 10(2010), 30-35.

GLOBAL JOURNALS INC. (US) GUIDELINES HANDBOOK 2011

WWW.GLOBALJOURNALS.ORG


FELLOWS

FELLOW OF INTERNATIONAL CONGRESS OF SCIENCE FRONTIER RESEARCH (FICSFR)

- 'FICSFR' title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'FICSFR' can be added to name in the following manner:
e.g. Dr. Andrew Knoll, Ph.D.,FICSFR
- FICSFR can submit two papers every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free unlimited Web-space will be allotted to 'FICSFR 'along with subDomain to contribute and partake in our activities.
- A professional email address will be allotted free with unlimited email space.
- FICSFR will be authorized to receive e-Journals-GJFS for the Lifetime.
- FICSFR will be exempted from the registration fees of Seminar/Symposium/Conference/Workshop conducted internationally of GJFS (FREE of Charge).
- FICSFR will be an Honorable Guest of any gathering held.

ASSOCIATE OF INTERNATIONAL CONGRESS OF SCIENCE FRONTIER RESEARCH (AICSFR)

- AICSFR title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'AICSFR' can be added to name in the following manner:
eg. Dr. Thomas Knoll, Ph.D., AICSFR
- AICSFR can submit one paper every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free 2GB Web-space will be allotted to 'AICSFR' along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted with free 1GB email space.
- AICSFR will be authorized to receive e-Journal GJFS for lifetime.

AUXILIARY MEMBERSHIPS

ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJSFR for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.

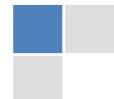
PROCESS OF SUBMISSION OF RESEARCH PAPER

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC, *.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:

(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.


(II) Choose corresponding Journal.

(III) Click 'Submit Manuscript'. Fill required information and Upload the paper.

(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.

(C) If these two are not convenient, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.

PREFERRED AUTHOR GUIDELINES

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: 8.27" X 11"

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of .2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt.
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R&D authorship, criteria must be based on:

- 1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
- 2) Drafting the paper and revising it critically regarding important academic content.
- 3) Final approval of the version of the paper to be published.

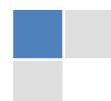
All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.


If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:

Original research paper: Such papers are reports of high-level significant original research work.

Review papers: These are concise, significant but helpful and decisive topics for young researchers.

Research articles: These are handled with small investigation and applications

Research letters: The letters are small and concise comments on previously published matters.

5. STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:

- (a) Title should be relevant and commensurate with the theme of the paper.
- (b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
- (c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
- (d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
- (e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
- (f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
- (g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
- (h) Brief Acknowledgements.
- (i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve brevity.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min, except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 l rather than 1.4×10^{-3} m³, or 4 mm somewhat than 4×10^{-3} m. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

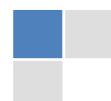
All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the e-mail address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.


Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art. A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: *Please make these as concise as possible.*

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: *Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.*

Figures: *Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.*

Preparation of Electronic Figures for Publication

Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: >650 dpi.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: *Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.*

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded

(Free of charge) from the following website:

www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

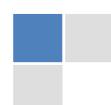
Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.

As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services


Online production tracking is available for your article through Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy & electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.

2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.

3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.

4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.

6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.

7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.

8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.

9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.

10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.

11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.

12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.

13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.

14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.

15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.

16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.

17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.

18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.

19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.

20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.

21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.

22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.

23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.

24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.

25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.

26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.

28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.

29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.

30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.

31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be

sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grown readers. Amplification is a billion times of inferior quality than sarcasm.

32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put forward earth-shaking thoughts. Give a detailed literary review.

33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.

34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

· Adhere to recommended page limits

Mistakes to evade

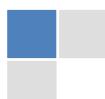
- Insertion a title at the foot of a page with the subsequent text on the next page

- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:


Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to

shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The **Introduction** should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic

principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently. You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

Content

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form.

What to stay away from

- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.

- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

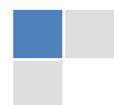
Discussion:

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.


ADMINISTRATION RULES LISTED BEFORE SUBMITTING YOUR RESEARCH PAPER TO GLOBAL JOURNALS INC. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The **major constraint** is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- **Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)**
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

CRITERION FOR GRADING A RESEARCH PAPER (COMPILED)
BY GLOBAL JOURNALS INC. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
	A-B	C-D	E-F
<i>Abstract</i>	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form Above 200 words	No specific data with ambiguous information Above 250 words
	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
<i>Introduction</i>	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
<i>Methods and Procedures</i>	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
<i>Result</i>	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
<i>Discussion</i>	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring
<i>References</i>			

INDEX

A

algebra · 1, 2, 4
amplification · 9, 10, 12, 13
analyzed · 7, 8, 11, 15, 16, 30
approximate · 1, 4
arvest · 27

B

bacteria · 28
Boolean · 1, 2, 4, 6

C

calculus · 19, 20, 24, 25
chemical · 15, 17
comparison · 14, 30
Concentrations · 16
Contiguous · 47, 65

D

degree · 1, 2, 4, 10, 12, 33
derivative · 22, 24

F

fractional · 19, 20, 22, 24, 25
Fragment · 8, 9

G

generalization · 19, 20

H

harvesting · 27, 28, 29
homomorphisms · 1, 4
Hypergeometric · 33, 44, 47, 64, 65, 66, 67, 68, 69

I

integral · 19, 20, 22, 24

L

literature · 33, 35
Losses · 27, 28, 29, 30, 31, 32

M

Margin · 27, 30
measure · 1, 2, 4, 11
metric · 1, 2, 4
microsatellites · 10, 14

P

percentage · 17, 27, 30
Physico · 15, 17
polygenic · 8, 11
polymorphic · 8, 9, 10, 14
polynomials · 33
probability · 1, 2, 4, 30
propositional · 1, 4

R

Recurrence · 47, 64, 65
restriction · 4, 7, 9, 13

S

sequence · 2, 7, 8, 9, 10, 38
summation · 22, 33, 36, 41, 42, 47, 48, 64, 65

T

theorem · 4, 22, 24, 33, 36, 40, 41, 42, 47, 65,

save our planet

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org
or email us at helpdesk@globaljournals.org

ISSN 9755896

© 2011 by Global Journals