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Case Study in Combining Physical and 
Computer Experiments 

T. Burr α  & Michael S. Hamada σ

Abstract - Estimation of computer model parameters using 
field data is sometimes attempted while simultaneously 
allowing for model bias. One paper reports that simultaneous 
estimation of a bias vector and a scalar calibration parameter, 
which results in a “calibrated computer model,” can be 
sensitive to assumptions made prior to data collection. Other 
papers show that “calibrated computer models” can lead to 
improved response prediction, as measured by the root mean 
squared prediction error (RMSE). This paper uses a simulated 
case study to show that the RMSE from a purely empirical 
prediction option (local kernel smoothing) can be smaller than 
the RMSE from a “calibrated computer model” option. 
Therefore, although we endorse “calibrated computer 
models,” we point out that purely empirical models can 
provide competitive predictions in some cases. 

  

omputer models (CM)
 
are often used to evaluate 

potential measurement systems. For example, a 
simple chemical reaction observed over time 

allows us to estimate a reaction rate parameter in a very 
simple “computer model” in Section 3 below. Even the 
most elaborate model is a simplification of a complex 
system so a key question is whether a particular CM

 
is 

sufficiently accurate to adequately predict system 
performance. In our Section 3 example, 1.5 units remain 
unreacted in the real experiment, which is a feature of 
the true system that is not captured by the simple 
model.

 

Model bias can be an important component of 
CM

 
uncertainty. Allowing for model bias while 

simultaneously calibrating computer model parameters 
has been shown to reduce the RMSE

 
when predicting a 

response (Higdon et al., 2008; Unal et al., 2011; Vanli et 
al., 2010). Two related issues are examined in Burr and 
Hamada (2012): (1) to what extent does simultaneous 
calibration and bias fitting lead to “better” model 
parameter estimation, and (2) to what extent does the 
choice of basis functions for the bias fitting impact 
parameter estimates. Burr and Hamada (2012) show 
that simultaneous estimation of computer model 
parameters and model bias does not necessarily 
improve model parameter estimation, and that standard 
model choice methods such as the Bayesian 
information criterion cannot always reliably indicate the 
best basis functions or the number of basis functions.  

 
 
 

Author : Statistical Sciences Group, Los Alamos National Laboratory.
 

This paper examines whether simultaneous CM 

calibration and bias estimation leads to better response 
prediction, where response prediction is measured in 
one of the most common ways, using the root mean 
squared prediction error (RMSE).  

The following sections include background for 
CMs and measurement system error modeling, one 
example, and discussion.                
 

 

We assume the true value of a response
 ( )Ty x

 
is

 
modeled with a model value

 
( , )My x θ and 

that the
 
model has a bias term

 
( )b xθ satisfying

 
( ) ( , ) ( ).              (1)T My x y x b xθθ= +

 
The model parameters are divided into a “user-

controlled” group

 

x

 

and calibration parameters θ
following Bayarri et al. (2007), Higdon et al. (2008), and 
Wang et al. (2009). Examples

 

of user-controlled 
parameters are physical dimensions of a nuclear 
measurements experimental setup that might include 
radiation source terms, attenuation terms, and detection 
system (including geometry) properties. Calibration 
parameters often include fundamental constants such 
as nuclear cross sections that define nuclear interaction 
probabilities. Such cross sections are often well 
measured but still have non-negligible measurement 
error in some contexts such as in estimating the neutron 
multiplication coefficient (Kawano et al., 2006).

 
Also assume

 

the field (measured) data varies 

around ( )Ty x

 

with random errors R

 

satisfying

 ( ) ( , ) .                (2)F Ty x y x Rθ= +

 
In practice, any bias in the measurement 

method will be confounded with model bias so to avoid 
indeterminacy, assume the measurement R

 

errors have 

mean 0 (zero bias) and variance 2.Rσ

 
Equations (1) and (2) capture the notion that 

comparisons of measurement data to model predictions 
can be used to estimate model bias

 

( )b xθ and 
simultaneously to find good values of calibration 
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parameters θ . Code accuracy is defined by the 
magnitude of ( ).b xθ After comparing model 

I. Introduction

              
II. Model validation in the presence of 

model bias



   

predictions to measured values, bias-adjustment 
together with estimation of

 

θ

 

(“calibration”) can lead to 
more accurate predictions at new x

 

values. These more 
accurate predictions should have higher accuracy as a 
result of such bias-adjustment and calibration. 

 

Another goal for code validation is to predict 
accuracy prior to data collection by using “similar” 
problems that have been “validated.” That is, a truly 
predictive science requires predicting ( )b xθ

 

prior to 

observing new data, by appealing to an archived 
collection of “similar” problems, which is beyond our 
scope here (Oden et al., 2010). Our scope is to use field 
data and corresponding code output at various values 
of θ as

 

in Eqs. (1) and

 

(2) to simultaneously estimate 
( )b xθ andθ . Burr and

 

Hamada

 

(2012) assessed 

whether the estimate

 

θ̂ of θ

 

has smaller

 

RMSE than an 
estimate of

 

θ that does not

 

simultaneously estimate

( )b xθ . Wang et al.

 

(2009)

 

took a somewhat different 

view and interpreted model validation as meaning that 
confidence bands around

 

the estimate of ( )b xθ provide 

high confidence that a pre-specified tolerance threshold 
(the maximum allowable model bias) is not exceeded.

 

Our goal here is to assess whether the estimate

 

ŷ of

 

y

 

that arises from simultaneously estimating ( )b xθ
andθ has smaller RMSE than an estimate of y

 

that does 

not simultaneously estimate ( )b xθ

 

and .θ

 

  
  

( ) 3.5 exp(-1.7t) + 1.5 + ( )y t R t=

 

A simple example with a nonlinear regression 
model substituting for a CM is given in Bayarri et al. 
(2007). Consider a nonlinear regression model

 

( ) ( ) ( ),y t t R tµ= + where

 

( )tµ

 

is the mean and

 

( )R t
is the error at time

 

t.  Let the hypothesized (and wrong) 
“computer” model for

 

( )tµ be ( ) 5 exp(- )t tµ θ= with

 

θ unknown. This models a chemical reaction process 
with initial chemical concentration 5  and reaction rate

 

θ , 
both in arbitrary units, so

 

5 exp(- )tθ is a standard 
model for the amount of chemical remaining at time

 

t 
and

 

( )y t are the measured values, measured with 

measurement errors

 

( )R t .

 

Let the

 

true model

 

be 

 
 

( ) 3.5 exp(-1.7t) + 1.5 + ( ),y t R t=

                                 

(3)

 
 

Which

 

captures the fact that 1.5 units remain 
unreacted in the real experiment. Figure 1 plots data 
simulated from this model for values of

 

t equally spaced 
from

 

0.11 to 3.01 with residual variance

 

2 20.3Rσ =

 

and 
fits from several models to be described. The estimated

 

θ

 

is

 

θ̂ = 0.62 with an estimated error variance

 

2ˆ 0.31Rσ =

 

and the solid line is the fitted values

 

5 exp(-0.62 ).t

 

Notice

 

the tendency for the estimate

 

θ̂

 

to be wrong in a way to attempt to compensate for the 
model bias.

 

Notice however that the fit still exhibits a 
bias

 

and that

 

2ˆ 0.31Rσ = is much larger than the true 

value

 

0.32

 

= 0.09.  The bias is also evident in the bottom 
plot, which plots the residuals and a linear fit to the 
residuals. All simulations and analyses are performed in

 

R

 

(R

 

Core Development Team, 2004). For example,

 

θ̂

 

was estimated using nls to implement nonlinear 
constrained   least   squares    using    the   function   call

 

nls (yvals~5*exp(θ*tvals),

 

data=dataframe1,

 

start=

 

list

 

(a=1)) in R

 

where the data (3 reps at each of 10 time 
values) is in the data frame named dataframe1.

 

Now allow for the bias

 

( , )b tθ

 

as in Eq.

 

(1) and

 

fit the 
wrong model

 

( ) 5 exp(-1.7t) + b( ,t) + ( )y t R tθ=
                    

            (4)

 

to estimate θ and

 

2
Rσ assuming

 

( ) 5 exp(- )t tµ θ= .  

The bias ( , )b tθ was fit in this example by using nls 
(yvals ~ 5*exp (-a*tvals) + s(tvals),

 

data=dataframe1,

 

start=

 

list(θ =1)) which allows for a smooth bias term 
by using the default spline fit available in nls via s(tvals). 
Alternatively, in the 6-step procedure below, user-
supplied basis functions to

 

fit ( , )b tθ are described.

 

When fitting ( , )b tθ as just described, in 1000 

simulations the average θ̂ is 1.69 which is within the 
replication error associated with 1000 simulations of the 
true value (1.70).  However, the average (over 1000 

simulations) estimated 2
Rσ

 

is 0.64, which is considerably 
larger than the true value of

 

0.32

 

= 0.09. Also, Figure 2 
(top plot) shows that a bias adjustment to the fitted 
value does not adequately remove the bias. Similarly, 
the bottom plot of Figure 2 shows that the estimated 
bias ( , )b tθ

 

does not estimate the true bias very well.

 

Although Bayarri et al. (2007) use a prior 
distribution for model parameters including the bias 
function ( , )b tθ and also report good performance of

 

ˆ,θ

 

it appears to be difficult to simultaneously find good 
estimates of

 

( , )b tθ and

 

.θ

 

In fact, Bayarri et al. (2007) 
state and we concur that in general one cannot expect 
to always get good estimates of true model parameters 
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such as θ using a “wrong” model and a bias 
adjustment.  For example, if the coefficient of 5 in the 
fitted model ( ) 5 exp(- t) + b( ,t) + ( )y t tθ θ ε= where

θ = 1.7 is changed to θ = 2.5, then the average of θ̂ is 2.5 
in 1000 simulations. Also, if the true  coefficient is 
changed from 5 to 4.1 and the true constant is changed 
from 1.5 to 0.5, then the average of θ̂ is 3.03 in the 

model with ( , )b tθ and the average of θ̂ is 1.69 (very 
close to the true value) in the model without ( , ).b tθ
Because all models are “wrong” in the sense that they 

III. Example :  simulated data from the 
model



 

  

    
 

  

 

   

 

are an intentional

 

simplification of a complex reality, 
such findings call into question whether it is generally 
possible to find estimates of ( , )b tθ and

 

θ that are 
simultaneously close to their true values. 

 

     

 

So it appears that the numerical example 
presented in Bayarri et al. (2007) is a case of getting 
lucky regarding estimation of

 

θ

 

when a bias term

 

( , )b tθ is accommodated. Although estimation of

 

fundamental constants

 

θ

 

in Eq. (1) is sometimes a goal 
for CMs

 

and associated experiments, adding a bias 
term does not always improve estimation of

 

θ , as this 
example illustrates. Nevertheless, adding the bias 
adjustment essentially combines

 

a reasonable physical 
model (the CM

 

or in this example an exponential term 
with a wrong coefficient) with a reasonable empirical 
model (the fitted bias). Combining two models is likely to 
improve interpolation and possibly extrapolation in 
selected circumstances outside the range of the inputs 
used to calibrate the model. For example, the 
experimenter could probably reliably create other initial 
concentrations and use a calibrated (but wrong) model 
to estimate how the initial concentration will change with

 

time. Interpolation and extrapolation are common goals 
for CM.

 

This example can also illustrate Bayesian 
modeling, which is heavily used in CM

 

evaluation. First, 
the model parameter

 

θ

 

in

 

( ) 5 exp(- )t tµ θ=

 

is

 

known 
to be nonnegative and possibly also less than some 
reasonable upper limit. Such constraints are easily 
handled by using a prior probability distribution

 

forθ

 

that puts all of its probability on positive values, perhaps 
favoring a particular range of values. Second, the bias 
function

 

( , )b tθ

 

can be constrained to be a smoothly 
varying function of

 

t

 

or not.  One effective way to impose 
a smoothness constraint is to assume

 

that

 

( , )b tθ

 

is 
well-modeled by a Gaussian process, which typically

 

forces

 

( , )b tθ to be smooth by assuming nearby

 

t 
values have highly positively correlated (very similar)

 

( , )b tθ values. By varying prior assumptions regarding

 

( , )b tθ , it is possible to also model nonsmooth

 

functions

 

( , ).b tθ

 

However, more field data is required 
to model nonsmooth functions. In most applications, 
CM

 

output is a “black box,” with unknown functional 
form, so Bayarri et al. (2007) and Higdon et al. (2008) 
describe using basis functions to fit the response/output 
from CM

 

evaluations at multiple input settings. The bias 
term

 

( ) b xθ can also be fit using basis functions.  

 

 

a)

 

Simultaneous estimation of CM

 

parameters and 
model bias

 

Following  Bayarri et al. (2007) and Myers et al. 
(2008),

 

we use principal components (PCs)

 

as a basis 
for the CM

 

output and Gaussian kernels as a basis for 
( ),b xθ and reanalyze the example. The inference steps 

are:

 

1)

 

Evaluate the

 

model output

 

( , )My x θ at

 

N

 

values of

 

θ. 
In the example,

 

x

 

is time (one dimensional) and

 

θ

 

is 
the reaction rate (a scalar).

 

2)

 

Usethe values  1 2( , ), ( , ),..., ( , )M M M
Ny x y x y xθ θ θ

 

to calculate PCs, denoted PCY. Mean-centering and 
scaling prior to PC calculation is always an option. Fit 

each

 

( , )M
iy x θ to

 

PCY

 

to choose a good dimension 
(usually 2

 

or 3 PCs

 

are required for a

 

good fit).  In the 

example,

 

( , ) 5exp( )My t tθ θ= − so time

 

t

 

is used as 
the predictor which is often

 

denoted as

 

x, depending 
on context. Use a range of

 

θ

 

values that is broad 
enough for

 

1 2( , ), ( , ),..., ( , )M M M
Ny x y x y xθ θ θ to 

span the

 

observed

 

( )Fy x values.

 

3)

 

Choose a basis

 

ZB

 

to fit the bias term. We used 10 
equally-spaced Gaussian kernels across the range of

 

x

 

(t

 

in the example), and then used the Bayesian 
information criterion (BIC, see below) to select a 
subset of 2

 

to 7

 

from the 10

 

available kernels.

 

4)

 

Fit the experimental data ( )Fy x

 

simultaneously to 
PCY

 

and ZB.

 

In the example, there are three repeats 
for each value of

 

t, so the error variance 2
εσ

 

should 
be fairly well estimated unless the prior probability 
density is strongly concentrated away from the true 
value of 0.32.

 

5)

 

Partition the fit from (4) into

 

fitPCY

 

due to

 

PCY

 

and

 

fitZB

 

due to

 

ZB. Use

 

fitPCY

 

to estimate

 

θ.

 

[Note: alternatively 
and more simply, we could use the known functional 

form for the computer model,

 

( ) 5 exp(- )t tµ θ= , to 
estimate

 

θ. But in practice, one rarely knows the 
functional form of the computer model.]  Intuitively, if 
model run

 

( , )M
ky x θ

 

is closest in some distance 
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measure to fitPCY, then ˆ
kθ θ= . We implemented this 

intuitive approach using Euclidean or Manhattan 
distance (the sum of absolute values of individual 
component differences, see the distfunction in R), 
and also implemented a similar approach involving
fits of θ to PCY.

6) The results of the fit are 2ˆRσ ,θ̂ , fitZB , and fitPCY. 

To implement this Bayesian approach that 
follows Bayarri et al. (2007) and Higdon et al. (2008), we 
use Markov Chain Monte Carlo (MCMC) as 
implemented in the metrop function in the mcmc 
package for R (Geyer, 2009). All MCMC results 
throughout this paper were obtained using metrop. The 
main Bayesian feature required is to constrain 
coefficients of PCY and ZB to reasonable values. For the 
coefficients of PCY, reasonable values are determined 
from the range of coefficient values in Step 2. For the 
coefficients of ZB, reasonable values are determined by 



  

 
   

    

 
 

  

    
 

 

requiring the fitted values to be within a range 
determined by the experimental data ( )Fy x .  

 

For this example, we fixed the CM

 

output basis 
to be

 

PCY

 

as described, and fixed the

 

( ) b xθ basis to 

be

 

ZB

 

(Gaussian kernels spread across the range of

 

x) 
as

 

described. We then tried 0

 

to 7

 

components for

 

PCY

 

and for

 

ZB

 

and

 

evaluated whether the BIC

 

(a well-known 
option for model selection, see Aitken (2010), defined as 
BIC= -

 

2log(maximum likelihood) + p

 

log(n)

 

where p

 

is the 
number of fitted parameters and n

 

is the sample size), 
appeared to be effective in the sense of choosing 
models  that  gave  better  estimates  of ( ) b xθ and of θ. 
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Figure 1 : Simulated data from the example using the true model ( ) 3.5 exp(-1.7t) + 1.5 + R( )y t t= to generate 

data and ( ) 5 exp(-1.7t) y t = as the CM. The predicted values without fitting a bias term and with fitting a bias 
term for 2, 4, or 6 basis functions are shown.

b) Root mean squared error of prediction (RMSE) in a 
simulation study

All RMSE results in this subsection are based 
on 104 simulations, are repeatable to 0.005± , and 

0.1Rσ = and 0.3Rσ = were used. The RMSE for

simultaneous estimation (SE) of CM parameters and 
model bias and for local kernel smoothing (KS) (using 
lokerns) are given. The boldface entries below indicate 
options for which the RMSE for SE was smaller than the 
RMSE for KS.

First, consider predictions at the 10 times when the 
response is observed.

For σR = 0.1, the RMSE is 0.10 for SE and 0.08 for KS.
For σR = 0.3, the RMSE is 0.17 for SE and 0.22 for KS.

Because in this example there are 3 repeated 
measurements at each of the 10 values of x, each 
method can compare its estimate of 2

εσ to the sample 

variance.  We found θ̂ to be sensitive to both the prior 
probability distribution for εσ and sensitive to the 
dimension of PCY and ZB. See Burr and Hamada (2012) 
for more detail, but briefly, in each of 100 simulations we 
used a gamma prior distribution with mean equal to the 
true value 0.3 and differing standard deviations (0.01,
0.1, 10, 100) for Rσ   and two PCs to fit the CM output

and 0, 1, 2, 3, or 5 Gaussian kernels to fit the model bias
( ) b xθ (0 kernels means that we did not allow for model 

bias). The resulting θ̂ values (where θ̂ is the posterior 
mean as estimated from the MCMC observations) 
varied wildly from near 0 to near 100. Average θ̂ values 
were given in Burr and Hamada (2012).

As an aside, we also used the constrained 
nonlinear least squares function nls as previously 
described, using the same type of constraints, but had 
convergence problems for about 20% of the realizations 
so we do not report nls results. In some applications 
however, simple application of nls is adequate for 
parameter estimation. Because MCMC is straight
forward and easily provides posterior credible intervals 
for parameters, we prefer MCMC. Of course ensuring 
MCMC realizations have converged is time consuming, 
and on the basis of a several auxiliary realizations we 
chose proposal step sizes to get approximately a 20% 
acceptance rate (Geyer, 2009).
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Figure 2 : The 10 times at which the response is observed, and 9 additional times where the response will also be 
predicted.

Next, consider predictions at the 9 new times in 
Figure 2, and there are several options for this type of 
prediction.

Option 1: Linearly interpolate the values at original 10 
times to the 9 new times.

For σR = 0.1, the RMSE is 0.11 for SE and 0.08 for KS.
For σR = 0.3, the RMSE is 0.15 for SE and 0.18 for KS. 

Option 2 : Linearly interpolate the basis functions from 
the original 10 times to the 9 new times.

For σR = 0.1, the RMSE is 0.11 for SE and 0.08 for KS.
For σR = 0.3, the RMSE is 0.15 for SE and 0.17 for KS. 

Option 3 : Assume the true bias is known exactly, so 
exactly interpolate the true values at the original 10 times 
and then interpolate to the 9 new times. This option is 
not available in practice but serves as a basis for 
comparison in the unrealistic case that the true values 
could be known exactly at the original 10 times. The 0.03 
RMSE for SE does not depend on σR in option 3, 
because the true values at the original 10 times are 
simply interpolated to estimate the true values at the 9
new times.
   For σR = 0.1, the RMSE is 0.03 for SE and 0.08 for KS.
   For σR = 0.3, the RMSE is 0.03 for SE and 0.18 for KS. 

Option 4 : Similar to option 3, but use the observed data 
to estimate bias, so exactly interpolate the mean of the 3 
observations at each of the 10 original times. This option 
is available in practice.

   For σR = 0.1, the RMSE is 0.10 for SE and 0.08 for KS.
   For σR = 0.3, the RMSE is 0.27 for SE and 0.17 for KS. 

Option 5 : Use the estimateθ̂ of θ in the assumed 
known functional form ˆ5 exp(- )tθ where θ̂ depends on 
the realization of the random noise.

   For σR = 0.1, the RMSE is 0.80 for SE and 0.08 for KS.
   For σR = 0.3, the RMSE is 1.56 for SE and 0.17 for KS.

Option 6 : The same as option 5, but use = 1.7, the true 
value of θ.
   For σR = 0.1, the RMSE is 1.05 for SE and 0.08 for KS.
   For σR = 0.1, the RMSE is 1.52 for SE and 0.17 for KS.

Figure 3 : The true response at each of the 10 times, 
and the predicted response using simultaneous 

estimation of CM parameters and CM bias and using 
local kernel smoothing, lokerns.

c) Example summary 
Summary points 1-3 are found in Burr and 

Hamada (2012). Point 4 is the focus of this paper.



 

 
 

 

     
     

 
 

     
     

  
 

 

 
   

 

 
 

     
      

  

 

     
     

     

  
 

     
    
  

  
    
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  

  

 

1)

 

One can degrade performance by simulating from 
the same true model as assumed in the fitting,

 

( ) 5 exp(- ),t tµ θ=

 

letting ( ) ( ) ( )y t t R tµ= + , and

 

allowing for a bias term in the fit. That is, allowing for 
CM bias when none exists will change the inference 
on

 

θ.  

 

2)

 

As reported in Bayarri et al. (2007), fitting a bias term 

does impact θ̂ , but the bias term does not 

necessarily make θ̂ closer to

 

θ.
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3) The basis choices and the dimensions of the basis 
matter (for example, the value of θ̂ varies as the 
bases and dimensions of the bases change) so 
some sort of model selection should be considered. 
However, the Bayesian Information Criterion (BIC) for 
model selection did not perform very well. Residual 
diagnostics to detect patterns in residuals can be 
automated and appears to have more potential to 
guide model selection.

4) As shown above, simultaneous estimation of θ and b
does not necessarily reduce the RMSE in predicting 
y.

Summary points 1-4 combine to suggest that 
simultaneous estimation of θ and b requires 
considerable attention to detail and careful analysis. It is 
is still “part art” to do a good job in simultaneous fitting 
of θ and b.  Also, because the functional output in this 
example was a one-dimensional function of time, local 
kernel smoothing can be very competitive as a purely 
empirical prediction option. In higher dimensions, kernel 
smoothing is not as effective, although recent research 
suggests that nonparametric smoothing with an iterative 
bias correction can be effective even in high dimensions 
as a purely empirical smoothing and interpolation option 
for prediction (Cornillon et al., 2011; Burr et al.,  2010 
and 2011).

Most model validation efforts include 
comparison of real data to corresponding code 
predictions. There will be iterative improvement to the 
models and ultimately we need apriori (prior to the next 
data collection) “error bars” for bias between field data 
and CM prediction to have defensible predictive science 
in this context, including in the simple reaction-rate 
example provided here.

Simultaneous fitting of model parameters and 
model bias leads to an underdetermined problem, so 
prior information regarding bias shape can be crucial. 
Even with good agreement between prior assumptions 
and the true state of nature, our example suggests that 
simultaneous estimation of model bias and model 
parameters does not necessarily give better estimates 
of model parameters nor good estimates of model bias, 
nor reduce the RMSE for predicting the response y. 
However, it can as advertized lead to better “combined 

However, it can as advertized lead to better “combined 
model” predictions, where the combined model is the 
CM with fitted parameters and fitted bias. A follow-on 
study to investigate the effects of varying the relative 
sizes of error variance 2

Rσ and model bias ( , )b tθ would 
be valuable.
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