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[.  INTRODUCTION
In this paper we investigate the Cauchy problem
ur — (A +m)u = MulP"tu, te€0,00),z€R", (1.1)
u(0,2) =up(z), =e€R", (1.2)

where n > 2 is fixed, A = 92 +---+ 092, Am € R, p > 1, uo(z) € C*(R"), |ug(z)| < P,
|(uo)z, (x)] < P for every i = 1,2,...,n and for every € R", P > 0 is given constant. Here we
propose new approach for invetsigating of this problem which gives new results.

The Cauchy problem for the equation (1.1) is investigated by many authors. For instance see
[1] and references therein. Obviously the problem for existence of solutions to the Cauchy problem
(1.1), (1.2) is connected with the Fujita’s exponent, which depends of the dimension n and the values
of the parameter p. Here we propose new conception about this problem. Our thesis is that this
problem depends only of the integral representation for the solutions which is used. In this work
we propose new integral representation. Our conception tell us that there are cases in which there
is a global existence of solutions under specific set and local existence and blow up under another
specific set. We will illustrate our new conception with the following example.

Example. Let A = —1, p =3, m = 0. Then
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(t,2) 1 1
u(t,x) = —
V2VEF1
is a solution to the problem
ug — Au = —|u*u, te0,00), ze€R",
(1.3)
_ 1 n
u(0,z) = -, z€R"™
Really, for u(t,z) = % t1+1 we have
__ 1
e = 2V2(t41)3
u — Au = —|uPu =

1 1 1
B 2\/§(t+1)% T20t+D) VavirTs
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This example and our main result we can consider as counter - example of the well known theory.
Our new nice result is due to our new integral representation.
This approach is used for hyperbolic equations in [2].
Our main result is

Theorem 1.1. Let n > 2 be fized, p > 1 be fized, P > 0 be fived, \,m € R be fived, uo(x) € C*(R"),
lug(x)| < P, |(u0)z;(z)] < P for every i = 1,2,...,n and for every x € R™ . Then the Cauchy
problem (1.1), (1.2) has a solution u € C1([0, 00),C?(R™)).

II.  PROOF OF THEOREM 1.1

Let € is fixed so that 1 > e > 0. For fixed P > 0 we choose the constants A;, i =1,2,...,n, so that
|>\|(A1A2 e An)2Pp_1 + (3 + |m|)(A1A2 L. An)2

+(A1A2 e An_l)z + (A1A2 [N An_2An)2 —+ -+ (A2A3 e An)Q S (1 - 6),
(|>\\(A1A2 s AjaAjpr s AP PP 4 (4 Im) (A Az - Aji Agy - Ap)? (2.1)

+(A1A2-~-Aj_1Aj+1-~-An_1)2+-~-+(A2-~-Aj_1Aj+1-~-An)2)Ajg(l—e)

Vi=1,2,....n
where Ag = A,,11 = 1. There exist such constants Ay, As, ..., A,, for which the inequalities (2.1)
are possible. For instance when 1 > A; > 0 are enough small, i =1,2,...,n.

With B; we will denote the set
Blz{xeR":OSxiSAi, z‘:1,2,...,n}.
Firstly we will prove that the Cauchy problem
—(A+m)u= AulP"tu, tel0,1],x € By, (2.2)
u(0,2) = uo(x), « € By, (2.3)

has a solution u for which u € C1([0, 1],C?(By)). For this purpose we will use fixed point arguments.
Therefore we have a need to define an operator whose fixed points satisfy the above Cauchy problem.

Our observation is

Lemma 2.1. Ifu e C'([0,1],C*(B1)) satisfies the integral equation
)‘fo f f |u|P~ ludsdzdy—i—mfo f f u(y, s)dsdzdy + > 1f0 f f Y, 8;)ds;dz;dy

ff f tsdsderf f up(s)dsdz = 0,t € [0,1],z € By,

then u is a solution to the Cauchy problem (2.2), (2.3).

Here

gi = (817 .. '7Si—175i+17' . '7STL)3 S; = (817 .. '7Si—17xi75i+17' . '7871)3
A A A A oAy Ailq A A,
fm — Jx “.fznn’ fii _le leil frqj_l f:cnn '
Proof. We differentiate in ¢ the equality (2.4) and obtain

)\f f |ulP~ 1udsdz+mf f u(t, s)dsdz + Y1 1f f (t,8;)ds;dz;
- fo fZA u(t, s)dsdz = 0.
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Now we differentiate twice in x1, after which twice in x5 and etc. twice in x,, and we obtain
— (A +m)u = NulP " u.

We put ¢t = 0 in (2.4) and we obtain

A A A A
—/ / u(O,s)dsdz+/ / ug(s)dsdz = 0.

After we differentiate the last equality twice in x1, after which twice in x5 and etc. twice in z,, we
obtain

uo(x) = u(0, x).
Consequently u(t, x) is a solution to the Cauchy problem (2.2), (2.3).

The above lemma motivate us to define the integral operator

Lu(u) = u(t,e) +m fy [ [y, s)dsdzdy + A 3 [ [2 [ulp~ udsdz=dy

X Jy oty sodsidzidy — [ 2 (ults) < uo(s) )dsdz, € [0,1], @€ B,

Our aim is to prove that the operator Lq; has a fixed point. We will use the following fixed point
theorem.

Theorem 2.2. (see [3], Corrolary 2.4, pp. 3231) Let X be a nonempty closed convex subset of a
Banach space Y. Suppose that T and S map X into Y such that

(1) S is continuous, S(X) resides in a compact subset of Y ;

(il) T: X — Y is expansive and onto.
Then there exists a point x* € X with Sx* 4+ Txz* = x*.

Here we will use the following definition for expansive operator.

Definition. (see [3], pp. 3230) Let (X,d) be a metric space and M be a subset of X. The
mapping T : M — X is said to be expansive, if there exists a constant A > 1 such that

d(Tz,Ty) > hd(z,y) Vz,y € M.
For this purpose we will use the representation of the operator Li; as follows

Lu(u) = Tu(u) + S11(’LL),

where
Ti1(u) = (1 + e)u(t, z),

S11(u) = —eu(t,x —i—mfo f f u(y, s dsdzdy+)\f0 f f |ulP~tudsdzdy

+>2 1fof le 8;)ds;dz;dy — f f( )—uo(s))dsdz.

Also, we define the sets

My = {u(t,x) € CH([0.1],C(By)),  maxicpp,y maxsen,

u(t,@)| < P,

maXieo,1] MaXge B,

umi(t,x)‘ <P i:O71,2,...,n},

Ny = {u(t,x) € CY([0,1],C3(By)), max;co,1] MaXze B,

u(t,:z:)‘ <(1+¢P,

maXyecjo,1) INaXgze B,

uwi(t,x)‘ <(1+e)P, i= 0,172,...7n},

© 2012 Global Journals Inc.
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where ug, = u;. In these sets we define a norm as follows

ullz = sup{|u(t, 2)| : (t,2) € [0,1] x By }.
Lemma 2.3. The sets My; and Nyy are closed, compact and convez spaces in C([0,1] X By) in the
sense of norm || - ||2.

Proof. We will prove our assertion for M.
Let {u,} is a sequence of elements of My; and u,, —,— 00 u in the sense of the norm || - ||2.
Evidently u € C([0,1] x By) and |u(t,z)| < P for every (t,z) € [0,1] x By.
We suppose that w ¢ C1([0,1] x By). Then there exists j € {0,1,2,...,n} and € > 0 so that

for every 61 = 01(e) > 0 and |h| < 1, h # 0, (zo,z1,...,2j—1,2; + h,xjq1,...,2,) € [0,1] X By, we
have

> €. (2.5)

‘U($0,$17"‘ y Lj—1,Tj +h7xj+1,"' axn) 7’[1,(1'0,131,"' 7xn)
h

On the other hand since u,, € C*([0,1],C?(B;)) we have that there exists 2 = da(€) > 0 so that
from |h| < 02, h # 0, (x0,21,...,%j—1,%j + h,Tjt1,...,2,) € [0,1] X By, we have

’Un(xla"‘ Ti—1, T F R Ty, Tn) —un(@1, 0, X)) < € (2.6)
h 3
Also, from u, —,— u in the sense of the norm || - ||a we have for enough large n and |h| <

min{51,§2}, h 7é O, (Iro,l’l,zg, cee ,IL’j_l,LUj + h,l’j+1, cee ,I’n) S [0, 1] X Bl that

Un (20,21, 51,8+ RT 41,0, Tn) —Un (T0,%1, 4 %0)  w(To,®1, %5 —1,@th@j 41,0, T0) —u(T0,T1, ,Tn) <

L (2.7)

£
3

Then from (2.7), (2.6), (2.5) we obtain for |h| < min{d1,d2}, h # 0, (xo,z1,22, -+ ,xj_1,2; +
h,zjq1,--- ,xp) € [0,1] x By, for enough large n,

€< u(@o,x1, -, 1,%+h, 241, @) —u(xo,T1, - ,Tn)
h
< Un (0, T1, &= 1,2 HRT 41, &) —Un (0,21, ,Tn)
Un (T0,T1, T -1, +h,Tj 41, ) —Un (T0,T1, " ,Tn) w(@o,T1, T -1, +h,Tj 41, @) —u(T0,T1, - ,Tn) 9e
+ - h <23

which is a contradiction with our assumption that u ¢ C1([0,1] x By).

Therefore u € C'([0,1] x By)

We suppose that u ¢ C*([0,1],C?(By)). Then there exists j € {1,2,...,n} and €; > 0 so that
for every 3 = d3(e1) > 0 and |h| < 83, h # 0, (xo,21,...,Tj—1,2; + R, Tjp1,...,25) € [0,1] X By we
have

Ug, (To, 21, -+ Tj—1, T + h,2j1, -+ Tp) — Ug, (To, 21, -+, Tp)

h > €7. (28)

On the other hand since u,, € C1([0,1],C%(B1)) we have that there exists d; = d4(€1) > 0 so that

from |h| < 02, R # 0, (20, 21,...,2j—1,2; + h,zjq1,...,2,) € [0,1] X By we have
(un)xj($07$1,"' s Lj—1,Ty5 +h,$j_~]_11,"' axn) - (un)a:j(x()axla"' 73?”) < g (29)

© 2012 Global Journals Inc. (US)
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Also, from u, —,—,00 u in the sense of the norm || - ||2 we have for enough large n and |h| <

min{53,54}, h 7é 0, (SCl,LL‘Q,"' ,l'j_l,llfj +h,ﬂ§j+1,"' ,CEn) S Bl that

(un)e; (z0,1, - 1,85+, @41, @0 ) = (Un)a; (T0,@1, 7, @n)  Uay (T0,@1, 851, +T 41, Tn) —Ua; (T0,@1, ,Tn) e
h - h < 3.
(2.10)
Then from (2.10), (2.9), (2.8) we obtain for |h| < min{ds,ds}, h # 0, (x1,22, -+ ,2j_1,2; +
h,xjt1,- -+ ,x,) € By, for enough large n,
Notes Uz (T0,T1, L= 1,5+ T, 80 ) —Uay (T0,81, ,Tn)
€1 < n
< (Un)e; (To,1, 85— 1,85+ 41, @0 ) = (Un)a, (To, @1, Tn)
— h
(un)a; (To,T1, -1, +hTj41, ,Tn) = (Un)a; (To,T1, ,@n) Uz (£0,T1, -1, +h,Tj 41,0 Tn) —Ua; (T0, @1, Tn) €
+ : R ] - h . <2§’

which is a contradiction with our assumption that u ¢ C1([0, 1],C?(By)).
Therefore u € C*([0,1],C%(By)).

Now we suppose that there exists j € {0,1,...,n} and (£,%) € [0,1] x B; so that
lug, (,2)| > P.
Then there exists €5 > 0 so that
g, (£, %) = P + €.
From here there exists d5 = d5(e2) > 0 such that from |h| < d5, h # 0, (5,501,...7@,1,93]» +
h, (fjJrl, . ‘%n) € [0, ].] X B1 we have

‘U(t,{i‘h ce ,i‘jfl, ‘fj + h7§7j+1, . :i'n) — ’U,(t, f) > P
h
On the other hand, since u, (£, #) — u(f, %) in sense of || - ||2, as n — oo, follows that there exists

86 = d6(€2) > 0 so that we have from |h| < dg, h # 0, (¢,%1,...,5j-1,3j+h,Tjt1,...7n) € [0,1] x By

Un (6F1,0 81,8 hE 1, En)—un (68)  u(lE1,.0,8 1,8 4+hEj 01,0 8n) —u(t,E)
7 7 < €2
and since |(un )z, | < P in [0,1] x By
’un(g,ila R 7‘%j—1a"zj + h):z'j—‘rla s i'n) - un(ﬂ i') ‘ <P
5 <
for enough large n. From here, for enough large n and for |h| < min{ds,d¢}, h # 0, (£, &1, ..., 51,3+

h, ‘%j+17 .. ‘%n) € [0, 1] X B1 we have

eoc=P+e— P
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U(E,il,...,i]‘71,i’j+h,57]‘+1,...in)fu({,i) Un (f,:i’l,...,i]‘,l,i’j+h,ij+1,...in)7un (E,CE)

< R - R
< w(t, &1, F 1,8 E 1, En) —u(6E)  un(GE1, o E 1,8 T, ) —un (E,E) < e,
which is a contradiction. Therefore |u,,| < P in [0,1] x By for every j = 0,1,...,n. Consequently

u € M7y and My, is closed in C([0, 1] x By) in sense of || - ||2. Using Arzela - Ascoli Theorem the set
M, is a compact set in C([0,1] x By) in sense of || - ||2.

© 2012 Global Journals Inc. (US)
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Let now A € [0,1] is arbitrary chosen and fixed and uy,us € My;. Then for (¢,z) € [0,1] x B;
we have Auj (¢, z) + (1 — Nua(t,z) € C1([0,1],C?*(B1)) and

lui(t,z)| < P, |uig, (t,2)] <P for j=0,1,...,n,i=12,

[Aui(t,z) + (1 — Nua(t, z)| < Mug (6, 2)|] + (1 = N)|ua(t,z)| < AP+ (1= NP =P,

[Muig, (8, 7) + (1 = MNuzg, (8, 2)| < AMuig, (8, 2)[ + (1 = A)|ug,, (£, 2)| K AP+ (1 -NP =P, j=0,1,...

Therefore M is convex.

As in above we can prove that Ni; is closed, compact and convex in C([0, 1] x Bj) in sense of I ]2

Lemma 2.4. The operator Ti1 : M11 —> Ni1 4s an expansive operator and onto.
Proof. Let uw € My;. Then u € C([0,1],C?(By)), from here (1 + e)u € C([0,1],C3(By)), i.e
Ti1(u) € CH([0,1],C?3(By)) and |T11(u)| < (1 +€)P, |[(T11(uw))e,| < (1 +€)P,i=0,1,2,...,n. Let

now u,v € My;. Then we have

[[T11(u) = T (v)[l2 = (1 + €)[|u — v][2.

From here and above follows that 771 : M1; — Np; is an expansive operator.

Now we will see that T1; : M1 — Ni; is onto. Really, let v € N11, v # 0. Let also u = 1+E

From here max;e 1] maxzep, [u| < P, max;e 1) MaxXyep, |Ug,| < P fori=0,1,2,...,n. Therefore

u € My and the operator 117 : My; — Njqis onto.

Lemma 2.5. We have
St My — My

s continuous.

Proof. Let u € My, is arbitrary chosen element. Then, using the definition of the operator Sy1, we
have

[S11 ()| < elult, @)] + [ml [y [ [ uly, s)|dsdzdy + |\ [y [ [ [ulPdsdzdy

i Sy o S

S eP + |m\(A1A2 RN An)ZP + |/\|(A1A2 e An)QP;D + 3(A1A2 ce An)QP

sillasiazidy + [ [ (lu(t, )] + uo(s)] ) dsd

P((A1A2 o Ap1)? 4 (A Ay Ay g Ag)? 4+ (A As . An)2) <eP+(1—e)P=P
Also,
(S11(u)); = —ewy(t, —|—mf f (t,5) dsdz—i—)\f f |ulP~ udsdz + > 1f f (t,8;)ds;dz;
—sz fZA ug(t, s)dsdz.

Then
|(Sa(w)):] < elug(t, )| + [m] [ [ u(t, s)|dsdz + [A] [7* [ [ulPdsdz

F 0 S 2 e, 8 dsidz + [ [ et 5)|dsdz

P((A1A2 A )? 4 (A1 Ag o Ay o A)? 4 (AgAs . An)2>

<eP+(1—¢P=P.

© 2012 Global Journals Inc. (US)
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Let now j =1,2,--- ,n, is arbitrary chosen and fixed. Then

(Sll(u)) —e€ug, (t, x) mfof f u(y, s)dsdz;dy — )\fof f lulP~ udsdz jdy
Tj
A A . _
z 11;6] fo f;c f21 y"sl Cr ledy-i- fO f z; fzj uﬂij (y7sj)d§szjdy

A I (e 55) = uo(3)) ) ds;dz;,

where

A A Ai— A; Aj_ A A
Notes f? = xll e fmiill fan_:tl U fmjj_ll ij:_tl e fz;’

ij

A A
fz7 - 1”.fzj 1 fz7 fzjitl.”fzn )

and from here

(1),

+Zz 1,i#7 fO fa: le

< €|ug, (t, )| + |m)| f(f f;: f; luy, s)|dsdz;dy + |A| fot f; f; |ulPdsdz;dy

y,sz |d31f dy+f0 f f |Uaf] y753)|d516r dy

i 2 (e 35)] + o (3,)1 ) s
<P N(AAg- Ay Ajer - Ap)2A PP+ (44 ) (A1 Ag - Ay Ajiy - Ay)2AP
+((A1A2 A A A1) (Ag e A A ~~An)2)AjP <eP+(1-P=P
Consequently
St My — M.

From the above estimates for [S11(u)|, [(S11(%))e;|, 5 =0,1,2,...,n, follows that if v,, —, 0 v

in the sense of the topology of the set My1, v,,v € Mi1, we have that S11(vn) —n—s00 S11(v) In

the sense of topology of the set Mj;. Therefore the operator Sy; : My — Mjq is a continuous
operator.

Using Lemma 2.3, Lemma 2.4, Lemma 2.5 we apply Theorem 2.2 as the operator .S in Theorem
2.2 corresponds of Si1, the operator T' in Theorem 2.2 corresponds of 171, the set X in Theorem
2.2 corresponds of M7, and Y in Theorem 2.2 corresponds of Ni; and therefore follows that there

exists u'l € My; so that u'! = S(ull) + T'(ull), i.e. ull is a fixed point of the operator Li;. From
here and Lemma 2.1 follows that u!! is a solution to the Cauchy problem (2.2), (2.3), for which

ull € C1([0,1],C%(By)).
Now we define the set
BQ:{xER”:Al <z <24,,0< z; < A, iz2,...,n},
the operators

Lia(u) = ult, +mfof f u(y, s dsdzdy+)\fof f lu|P~Tudsdzdy
+Zz 2f0f f fcfdy
S (u(t, s) —u'!(0, s))dsdz
+fo le le (y, @1, 82, ..., 8n) —ult(y, A1, 52, ..., sn) 4+ (A1 — z1)ull (y, Av, s2, . . ., 8n))dS1dZ1 dy,

IS [O, 1], T € B,
ng(u) = T12(U) + Slg(u),

© 2012 Global Journals Inc. (US)
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where

Tio(u) = (14 €)u(t,z), te€]0,1],z € By,

Sia(u) = —eu(t,x) +m fi [ [Py, s)dsdzdy + A [ [ [ fulp udsdzdy

+ 000 fo S [ uly, $0)dsidzidy

—fwA sz (u(t, s) — u11(0,8)>dsdz

+J5 fml le (Y 1,82,y 80) — U (Y, A1, 82, ..y 80) + (A1 — 21)ull (y, A1, 82, ..., 8,))d51dZ1dy,

€ [0, 1],.’13 € Bs,

the sets
My = {u(t,x) € CY([0,1),C3(By)), max;c) ] maxyep,

u(t,@)| < P,

maxyeo,1] MaXze B, |Ug, (L, x)) <P, 1=0,1,2,... ,n},

N12 = {U(t,l‘) € Cl([O, 1]702(82)), maxte[o)l] maXgzeB,

u(t,@)| < (1+ )P,

maxge[o,1] MaXge B,y

uzi(tm)‘ <S(+9P, i=0,1,2...,n},

in these sets we define a norm as follows
lulls = sup{ |u(t, @) : (1,2) € [0,1] x Ba }.

The sets M;2 and N1 are closed, convex and compact in C([0, 1] x Bs) in sense of || - ||2.
As in above we conclude that there exists u!2 € M5 so that Lisu'? = u!'2, i.e. u!? is a solution
to the Cauchy problem

— (A +m)u = NulP~tu, t€]0,1],z € Bo,
uw(0,z) = u't(0,2),2 € Bs.

12

For u*“ we have

mfof fA (y,s dsdzdy+>\fof f |ul? P~ tul2dsdzdy
+Zz 2f0 fx 37 ya Sz)dszdzzdy

ff I (12ts —ul (0,5))d5dz

A rA —
+f0t fil le (ulz(yaxlv 5250 Sn) - ull(y,Alv 5250 Sn) + (Al - 1’1)’&;1 (y,Ala 8250 Sn))dsldzldy =0.

(2.11)
Now we put z1 = A; in the last equality and we obtain

t A A
/ / / (ulz(yaAla*S?a"',sn) 7ull(yaAlaSQ,'"75n))d§1d§1dy:0
0 1 z1

and we differentiate it in ¢, twice in x5 and etc. twice in x, and we obtain

12 11
‘Tl Aq lzg=aq"

Now we differentiate in 27 the equality (2.11), after which we put ;7 = A; and we obtain

/ / / yvAlaSZ,-" s )_u;i(y,AhSQ?“'asn))dgldzldy:0
S)

© 2012 Global Journals Inc. (US)
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and we differentiate it in ¢, twice in x4 and etc. twice in x,, and we obtain

12

) 11
1 |11:A1

(u - (U’wl)|xl Aq "
Using the equalities
— (A +m)utt = Nut P lutt w2 — (A + m)ut? = Aul? P yl2,

12

ull ul?  (ull ml)‘” N

1 )|11=A1 - (u

|w1 =41 le =4y’

we conclude that

(U )y may = (U, )y, -
In this way we obtain that the function
utl t€]0,1],0<m <A,0< 23 < Ag,...,0< 2, < A,
ul2 te0,1],4; <x1 <24;,0< 23 < Ay,...,0< 2, < A,
is a solution to the Cauchy problem
—(A4+m)u = AulP~tu, t€]0,1],0<m <24;,0< 29 < Ag,...,0< 1, < A,
w(0,2) = up(z),0 <1 <247,0 <29 < Ay,...,0< 2, < A,.

Repeat the above steps in 1, 2 and etc. z,, we obtain a solution u; to the Cauchy problem (1.1),
(1.2) which belongs to the space C1([0,1]),C?(R™)).

Now we consider the Cauchy problem
— (A +m)u=NulP~tu, tell,2], € By,
(2.12)
u(l,z) =ui(l,z), =z € Bj.
For this purpose we consider the operator

L1y (u) = T (w) + 87, (u),

where
Ty (u) = (1 + e)u(t, z),

Sii(u) = —eu(t,z —|—mf1f f u(y, s dsdzdy+)\f1f f |ulP~tudsdzdy

+ 1f1f f u(y, 8;)dsidz;dy — f f ( (t,s) —ui(1, s))dsdz.

Also, we define the sets

Mlll = {u(t’x) € Cl([lv 2]762(31)), maxie(y,2) MaXge By

u(t,x)‘ <P,

um(t,x)’ <P i= 0,1,2,...,n},

maxX;e [1,2] maXge B,

N = {ult,@) € CH([1L,2,C3(BY)),  maxiep o maxoep,

u(t,@)| < (1+ )P,

maXge [1,2] maXgepB,

uxi(t,x)’ <(1+eP, i= 0,1,2,...,n}.

In these sets we define a norm as follows

\Mb:Qmﬂma@L@@nquxB@,
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these sets are closed, convex and compact in C([1,2] x Bj) in sense of || - ||.
As in above we conclude that the problem (2.12) has a solution u}! € C1([1,2],C?(By)).

Now we consider the Cauchy problem

—(A+m)u=ANuP~tu, tell,2], x€ By,
(2.13)
u(l,z) = ui (1, )
Liy(u) = u(t,x) +m [} [ [P uly, s)dsdzdy + A ) [ [ julp " udsdz=dy

+Zz 2f1 f f u(y, 8;)ds;dz;dy Notes
—f I ( (t,s) —ui(1, s))dsdz

+f1 fml le y,$17827 .- '7871) - u%l(y7A1a527 .. .,Sn) + (Al - .’El)’u;i (yvAhSQa .. '7Sn))d§1d§1dy7

€[1,2], =z € By,
Lig(u) = Tiy(u) + Siy(u),

where

Th(u) = (1 +e)u(t,z), te[l,2],r € By,

Shy(u) = —eu(t,x) +m [ [ [P uly, s)dsdzdy + N [ [ [ P~ udsdzdy

+30, ft f f u(y, 8;)ds;dz;dy

—f I ( (t,8) —up (1, s))dsdz

+ ! frl f21 u(y, @1, 82,5 50) = ui' (y, Avs s, 850) + (Ar = 2)uil (y, A, s2,. ., 80))d51dZ1dy,

€[1,2],x € By,

the sets
M112 = {u(tv z) € Cl(“? 2], 62(32)), maXge(1,2) MaXgeB,

u(t,@)| < P,

Maxye[1 2] MAXye B, |Ug, (£, x)‘ <P i=0,1,2,... ,n},

Ni, = {u(t,ac) € C'([1,2],C*(Ba)), maXie[1,2) MaXze B,

u(tw)‘ <(1+¢P,

um(t,x)‘ <(1+eP, i:O,l,Z,...,n},

maxte[l,g] maXgeB,
in these sets we define a norm as follows
lulls = sup{ [u(t,@)| : (1,2) € [1,2] x Ba}.

The sets M, and Ni, are closed, convex and compact in C([1,2] x Bs) in sense of || - ||2. As in the

step 1 we conclude that the problem (2.13) has a solution ui? € C*([1,2],C?(B2)).
Since ui?(1,x) = u1 (1, ) for z € By and uil(1,2) = ui(1,z) for x € B; we have that
12
U172y w1=Aq ul\t:l,zlel’

12 —
(W )or )2y gy may = Wy,
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(u%g)l’ll’l lt=1,27=4; = (u1)11w1 lt=1,2,=4;"

(2.14)
11 —
Uy lt=1,2y=4; ul\t:Lxl:Al’
11 —
(ul )961|t:1m1:A1 - (ul)zl\t:Lml:Al’
(u%1)$1$1|t:1y11:A1 = (U’l)wlwl\tzl’ggl:f;l?
as in the case ¢ € [0, 1] we have
12 _ 11
Lley=ay — u1|w1:A17
(u%2)$1|11:A1 = (u%l)w1‘11:A17 (215>

@) rar, o = @,
for ¢t € [1,2] and etc. In this way we obtain a solution us € C1([1,2],C%(R"™)) to the Cauchy problem
up — (A +m)u= AulP~tu, te[l,2],z€R",
u(l,z) =ui(l,2), x€R™
Using reasonings as (2.14), (2.15) we have that
u; teo,1],z € R™,
uz te€l,2],z R
is a solution to the Cauchy problem
ur — (A +m)u=ANulPru te€[0,2],z € R",
u(0,z) =up(z) ze€R”

which belongs to the space C!([0,2],C*(R™)) and etc. we obtain a solution to the problem (1.1),
(1.2) which belongs to the space C1(]0, c0), C2(R™)).
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