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gﬂ [ INTRODUCTION
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@ The H-function introduced by Inayat-Hussain ([9], see also [1]) in terms of Mellin-Barnes

= type contour integral is defined as follows
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which contains fractional powers of some of the '-functions. Here and throughout
the paper a, (j=1,...,P) and b(j = 1,...,Q) are complex parameters,ocj >0(j=1,..., P,

Bj >0(j=1,..,Q), (not all zero simultaneously) and throughout A; (j = 1,...,N) and B;
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(j=M+1,...,Q) can take on non-integer values.
The contour in (1.2) is imaginary and Re(§) = 0. It is suitably idented in
I'—function and to keep these singularities on appropriate side. Again, for A; (j=1,...,N) |
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not an integer, the poles of the I'-functions of the numerator in (1.2) are converted to
branch points. However, as long as there is no coincidence of poles from any I'(b—B&) (j
= 1,...,M) and I'(1-a4-a&) (j = 1,...,N) pair, the branch cuts can be chosen so that the
path of integration can be distorted in the usual manner.

For the sake of brevity
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I[I. MAIN INTEGRAL
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where

i)  k=0K=0;

b b
ii Re|o+k L +k—L|>0;j=1,..M
(ii) 5
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(i)  |arg(z) |<%T n,T>0,|arg(Z)] <%T'7c

(iv) F (B,o;x) is Fujiwara polynomials [8].
(v)  A=u(b-a).

Proof

To establish (2.1), we express the H-functions in series from and contour form as in
(1.2) respectively, and then interchanging the order of summations and integrations which
is permissible under the conditions stated, solving the remaining integral with the help of a
known result Chiney and Bhonsle ( [4], p.9, eqn. (3.1)), and thus, interpreting the result in
the desired form.

Special Cases
(i) Putting M = 1, N = 3 = P = Q, and replacing z by — z in (1.2), and using

1 =

gy, Tpsy)= .
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21_dTE_d/2
where E =— 11}, p.4121,eqn. (5
¢ TR ([11], p qn. (5))

The above function is connected with a certain class of Feynman integrals. We get
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valid under the condition as surrounding (2.1).

I1I.  APPLICATION

We shall define the Riemann-Liouville fractional derivative of function f(x) of order ¢ (or,

alternatively, —oth order fractional integral) ([5], p.181, 11, p.49) by

7961
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dx@ aDi’_q {f(¥}, (0-1)<Re(o)<q,

where q is a positive integer and the integral exists.

For o = 0, we have D° = _D°.
x 0 X

Now, replacing b by x and a = 0 in the main result, it can be rewritten as the following
fractional integral formula
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Notes
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where Re(c) > 0 and all other conditions of validity mentioned with (2.1) are satisfied.

The results recently derived by Gupta and Soni in [6], Chaurasia and Srivastava in
2] and Chaurasia and Pandey in [3] can be obtained on giving suitable values to the
parameters and arguments. The result given in (4.2) is also quite general in nature and can
easily yield Riemann-Liouville fractional integrals of large number of simpler functions and
polynomials merely by specializing the parameters of H and F, appearing in it which may
find applications in electromagnetic theory, statistical mechanics and probability theory.
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