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l. [NTRODUCTION

Nair [11] introduced the Pathway fractional integral operator which is defined in
the following manner

X

~n
R =x[ " )} 1 g (1)

where f(x) € L (a,b), n € C, Re(n) > 0, a >0 and pathway parameter o < 1.

Mathai [7] introduced the pathway model and further studied by Mathai and

Haubold ([8], [9]). For real scalar o, the pathway model for scalar random variables is
denoted by following probability density function (p.d.f.)W.

B
f(x)=c|x [ [1-al-a)|x[P1F, (1.2)

where y > 0,6>0,> 0,{1-a(1-a)| X |6}>O,y>0,— ®0 < X < o , Cis the normalizing

constant and a is known as pathway parameter. The normalizing constant, for real a, is
as follows:
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It is a finite range density with {1-a(1-a) |x [° >0, for a < 1, and (1.2) remains in

for a— 1. (1.5)

< the extended generalized type — 1 beta family. For o < 1, the pathway density in (1.2)

includes the extended type — 1 beta density, the triangular density, the uniform density
and many other p.d.f.

We have, for o > 1,
B
f)=cix[[d+ae-1)|x 1=, (1.6)

where a0 >1,8>0, f >0, — 00 <X < oo, which is extended generalized type — 2 beta
model for real x. It includes the type — 2 beta density, the F-density, the student —t
density, the Cauchy density and many more. The pathway parameter d< 1 has only been
considered here. For o — 1, (1.2) and (1.6) take the exponential form, since

n
lim c|x|' ™ [1-a(l—a)| x P ]F
a—>1

o
=limc|x [ [1+a(o.—1) x ]2
a—1

)
=c|x" ter @ (1.7)

This includes generalized Gamma-, the Weibull-, the Chi-square, the Laplace-, the
Maxwell-Boltzmann and other related density.
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For a—1 ,{1—8(—(1)} “ e X U, the operator (1.1) reduces to the well
B X

known Laplace integral transform of f with parameter an
X

PMDfx=x"[ e X f(t)dt
(P ) _fo (t)
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For o = 0, a = 1, then replacing n by n—1 in (1.1) the integral operator reduces to
Riemann-Liouville fraction integral operator.
Sharma [13] introduced the generalized M-series as follows

M (Z) Z ..(a ) ZK
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where z,0',p' € C,Re(a') > 0, Vzif p <o, |z|<a'®, for other details see [13].

The following series representation of H-function [12] will be required
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for convergence condition and other details see ([4] and [13]).
For the sake of brevity

13. Sharma, Manoj and Jain, Renu, A note on a generalized M-series as a special function
of fractional calculus, Fract. Cal. Appl. Anal., 12(4) (2009), 449-452.
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[I. MAIN RESULTS
Theorem 1. Let n,0 €C, Re() > 0,Re(8) > 0, Re(l+1ij>0, Re(p)>0,a<lLbeR,
-

b'
1 1 .
J>O Re ®+BBJ >O,|argc|<§Tln,|argb|<§T2n,B >0,

f
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Proof. Making use of (1.9), (1.10) and (1.1) and appealing to a known result [11],
we arrive at the desired result (2.1).

Theorem 2. Let 1,7,8,B,T,. T, >0, Re(n)>0,Re(y)>0,Re(w)> 0, Re(1+1ij > max.
i 04

f.
[0,-Re(w)],b,ceR, a<l, Re(ow SFJ

}>O,|argc|<%Tln,p<cand|d I<.B* >0,
j
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where Eg ,, (D) s the generalized Mittag-Leffler function (see [14],[15]). °

Proof. The result in (2.2) can be derived from Theorem 1 by takingm =1 =n,p=1, q = .
85

2, b1 =0,,=0, b2 =1-0,p, =0, =1-yand o, =1. We have the required result.
Theorem 3. Let 1,7,veC,8>0,a<1p<c,|d|<a'*,Re(n)>0,ceR, Re(y+V)>0,

f
n i 1 * .
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Here oV qdenotes the generalized Wright hypergeometric function ([14],[15]).

London Math. Soc., 38 (1934), 257-270.

Proof. The result in (2.3) can be established by taking m =1, n =0,p =0, q = -

14. Wright, E.M., The asymptotic expansion of the generalized Bessel function, Proc.

t
2, b,=0, Ble, b2 =—V,B2 =lLo=y+V,b'=1,=2 and replacing t by > after a little

simplification, we have the desired result.
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1.

[11.  SpeciAL CASES

Letting B*—0 in the result (2.1), we get the result recently obtained by Chaurasia
and Ghiya [1] for p, p, and p, — 0.

Making B*,6—0 in the results (2.1) through (2.3), we have the results recently
derived by Chaurasia and Gill in [2].
Giving suitable values to the parameters in the results (2.1) through (2.3), we get the
results recently obtained by Nair in [11].

A large number of simpler corresponding results pertaining to simpler functions can

be obtained easily merely by specializing the parameters in them.
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