

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS AND DECISION SCIENCES

Volume 12 Issue 11 Version 1.0 Year 2012

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Solution of Fractional Kinetic Equation with Laplace and Fourier Transform

By Satendra Kumar Tripathi & Renu Jain

Jiwaji university, India

Abstract - In earlier paper Saxena et al.(2002,2003)[18],[19] derived the solutions of a number of fractional kinetic equations in terms of generalized Mittage-Leffler functions which extended the work of Haubold and Mathai (2000)[5]. The objects of present paper is to investigate the solution of fractional diffusion equation involving Mittag-Leffler functions. The method involves simultaneous application of Laplace and Fourier transforms with time and space variable respectively. The results obtained are in a form of H-function.

Keywords: Mittage-Leffler function, Fractional Kinetic Equation, Laplace Transform, Fourier Transform amd H-functions.

GJSFR-F Classification: MSC 2010: 65T50, 44A10

Strictly as per the compliance and regulations of :

© 2012. Satendra Kumar Tripathi & Renu Jain. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of

Ref

Hilfer,R(Ed):2000, Application of fractional calculus in physics,

Solution of Fractional Kinetic Equation with Laplace and Fourier Transform

Satendra Kumar Tripathi a & Renu Jain 5

Abstract - In earlier paper Saxena et al.(2002,2003)[18],[19] derived the solutions of a number of fractional kinetic equations in terms of generalized Mittage-Leffler functions which extended the work of Haubold and Mathai (2000)[5]. The objects of present paper is to investigate the solution of fractional diffusion equation involving Mittag-Leffler functions. The method involves simultaneous application of Laplace and Fourier transforms with time and space variable respectively. The results obtained are in a form of H-function.

Keywords: Mittage-Leffler function, Fractional Kinetic Equation, Laplace Transform, Fourier Transform amd H-functions.

Introduction

Fundamental law of physics are written as equations for the time evolution of a quantity X(t), dX(t)/dt=-AX(t), where this could be Maxwell's equation or Schroedinger's equation (If A is limited to linear operators), or it could be Newton's law of motion or Einstein's equations for geodesics (If A may also be a non linear operator). The mathematical solution (for linear operators) is $X(t) = X(0) \exp{-At}$. The initial value of the quantity at t=0 is given by X(0).

The same exponential behavior referred to above arises if X(t) represents the scalar number density of species at time t that do not interact with each other. If one denote A_p the production rate and A_d the destruction rate, respectively, the number density obey an exponential equation where the coefficient A is equal to the different of A_p - A_d . Subsequently, A_p^{-1} is the average time between production and A_d^{-1} is the average time between destruction. This type of behavior arises frequently in biology, chemistry and physics (Hilfer, 2000; Metzler and Klafter, 2000) [6],[12]. This paper in Section 2 summarizes mathematical result concerning solution of the diffusion equations in section 3 and section 4 respectively, widely distributed in the literature or of very recent origin. These involve the Mittage-Leffler function, H-function and the application of fractional calculus, Fourier transform and Laplace transform to them.

The section 3 and section 4 presented in a closed form solution of a fractional diffusion equation in terms of H-function.

Mathematical Prerequisites II.

A generalization of the Mittage-Leffler function (Mittage-Leffler, 1903,1905)[9],[10]

$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(n\alpha + 1)} , (\alpha \in C, Re(\alpha) > 0)$$
 (1)

was introduced by wiman(1905)[20] in the general form

$$E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(n\alpha + \beta)} , (\alpha, \beta \in C, Re(\alpha) > 0)$$
 (2)

The main result of these functions are available in the handbook of Erdelyi Magnus. Oberhettinger and Tricomi (1955, Section 18.1)[4] and the monographs written by Dzherbashyas (1966,1993)[1][2], Prabhakar(1971)[14] introduced a generalization of (2) in the form

$$E_{\alpha,\beta}^{\gamma}(z) = \sum_{n=0}^{\infty} \frac{(\gamma)_n z^n}{\Gamma(n\alpha + \beta)n!} , (\alpha, \beta, \gamma \in C, Re(\alpha) > 0)$$
 (3)

Where

$$(\gamma)_0 = 1$$
, $(\gamma)_k = \gamma(\gamma + 1)(\gamma + 2) \dots (\gamma + k - 1)$ $(k = 1, 2 \dots)$ $\gamma \neq 0$
For $\gamma = 1$

$$E_{\alpha,\beta}^1(z) = E_{\alpha,\beta}(z),$$

For
$$\gamma = 1, \beta = 1$$

$$E_{\alpha,1}^1(z) = E_{\alpha}(z) \tag{5}$$

The Mellin-Barnas integral representation for this function follows from the integral

$$E_{\alpha,\beta}^{\gamma}(z) = \frac{1}{\Gamma(\gamma)} \frac{1}{2\pi\omega} \int_{\Omega} \frac{\Gamma(-\xi)\Gamma(\gamma+\xi)(-z)^{\xi}}{\Gamma(\beta+\xi\alpha)} d\xi \tag{6}$$

where $\omega = (-1)^{1/2}$ The contour Ω is straight line parallel to the imaginary axis at a distance 'c' from the origin and separating the poles of $\Gamma(-\xi)$ at the point $\xi = \nu(\nu =$ 0,1,2...) from those of $\Gamma(\gamma + \xi)$ at the points $\xi = -\gamma - \nu(\nu = 0,1,2...)$. If we calculate the residues at the poles of $\Gamma(\gamma + \xi)$ at the points $\xi = -\gamma - \nu(\nu = 0,1,2...)$ then it gives the analytic continuation formula of this function in the form [2]

$$E_{\alpha,\beta}^{\gamma}(z) = \frac{(-z)^{-\gamma}}{\Gamma(\gamma)} \sum_{\nu=0}^{\infty} \frac{\Gamma(\gamma+\nu)}{\Gamma(\beta-\alpha\gamma-\alpha\nu)} \frac{(-z)^{-\nu}}{\nu!}, |z| > 1$$
 (7)

Ref.

9. Mittage-Leffler, G.M.:1903, Sur la nouvelle fonction $E_{\alpha}(x)$, C.R.Acad.Sci., Paris (ser.II),137, 554-558.

 ∞

Ref.

From (7) it follows that for large z its behavior is given by

$$E_{\alpha,\beta}^{\gamma}(z) \sim \mathcal{O}(|z|^{-\gamma}), |z| > 1 \tag{8}$$

The H-function is defined by means of Mellin-Barnes type integral in the following manner (Mathai and Saxena, 1978 p-2)[8]

$$H_{p,q}^{m,n}(z) = H_{p,q}^{m,n} \left[z \begin{vmatrix} (a_p, A_p) \\ (b_q, B_q) \end{vmatrix} = H_{p,q}^{m,n} \left[z \begin{vmatrix} (a_1, A_1) \dots (a_p, A_p) \\ (b_1, B_1) \dots (b_q, B_q) \end{vmatrix} \right]$$
$$= \frac{1}{2\pi i} \int \theta(s) z^{-\xi} d\xi \tag{9}$$

where
$$\theta(\xi) = \frac{\prod_{j=1}^{m} \Gamma(b_j + B_j \xi) \prod_{j=1}^{n} \Gamma(1 - a_j - A_j \xi)}{\prod_{j=m+1}^{q} \Gamma(1 - b_j - B_j \xi) \prod_{j=n+1}^{p} \Gamma(a_j + A_j \xi)}$$
 (10)

 $m, n, p, q \in N_0 \text{ with } 1 \le n \le p, 1 \le m \le q, A_i, B_i \in R_+ a_i, b_i \in R$

$$(i = 1, 2 \dots, p, j = 1, 2 \dots, q)$$

$$A_i(b_j + k) \neq B_j(a_i - l - 1) \ (k, l \in N_0; i = 1, 2 \dots n, j = 1, 2 \dots m)$$
 (11)

Where we employ the usual notations $N_0 = (0,1,2...) R = (-\infty,\infty) R_+ = (0,\infty)$ and C defines the complex number field. Ω is a suitable contour separating the poles of $\Gamma(b_i + B_i \xi)$ from those of $\Gamma(1 - a_i - A_i \xi)$.

A detailed and comprehensive account of the H-function along with convergence condition is available from Mathai and Saxena (1978)[8] It follows from (7) that the generalized Mittag-Leffler function

$$E_{\alpha,\beta}^{\gamma}(z) = \frac{1}{\Gamma(\gamma)} H_{1,2}^{1,1} \left[-z \left| \frac{(1-\gamma,1)}{(0,1)(1-\beta,\alpha)} \right| (\alpha,\beta,\gamma \in C, Re(\alpha) > 0) \right]$$
 (12)

Putting $\gamma = 1$ in (12)

$$E_{\alpha,\beta}(z) = H_{1,2}^{1,1} \left[-z \begin{vmatrix} (0,1) \\ (0,1)(1-\beta,\alpha) \end{vmatrix} \right]$$
 (13)

If we further take $\beta = 1$ in (13) we get

$$E_{\alpha}(z) = H_{1,2}^{1,1} \left[-z \begin{vmatrix} (0,1) \\ (0,1)(0,\alpha) \end{vmatrix} \right]$$
 (14)

From Prudnikov, A.P., Brychkov, Yu.A. and Marichev, O.I (1989,p.355,eq2.25.3.2) [15] and Mathai and Saxena(1978,p.49)[8] it follows that the cosine transform of the Hfunction is given

$$\int_{0}^{\infty} t^{\rho - 1} \cos kt \, H_{p,q}^{m,n} \left[at^{\mu} \, \left| \begin{pmatrix} a_{p}, A_{p} \\ b_{q}, B_{q} \end{pmatrix} \right| dt \right] \\
= \frac{\pi}{k^{\rho}} H_{q+1,p+2}^{n+1,m} \left[\frac{k^{\mu}}{a} \, \left| \begin{pmatrix} 1 - b_{q}, B_{q} \end{pmatrix} \left(\frac{1}{2} + \frac{\rho}{2}, \frac{\mu}{2} \right) \right| \\
(\rho, \mu) \left(1 - a_{p}, A_{p} \right) \left(\frac{1}{2} + \frac{\rho}{2}, \frac{\mu}{2} \right) \right] \tag{15}$$

The Riemann-Liouvile fractional integral of order $v \in C$ is defined by Miller and Ross(1993, p.45;)[11] see also Srivastva and saxena, 2001)[17]

$${}_{0}D_{t}^{-\nu}f(t) = \frac{1}{\Gamma(\nu)} \int_{0}^{t} (t - u)^{\nu - 1} f(u) du$$
 (16)

Ref.

11. Miller, K.S and Ross, B.:1993 An introduction the Fractional Calculus and Fractional differential equation, John Wiley and Sons, Newyork.

where $Re(\nu) > 0$ following Samko, S.G., Kilbas, A. A. and Marichev, O.I. (1993, p.37)[16] we define the fractional derivative for $\alpha > 0$ in the form

$${}_{0}D_{t}^{\alpha}f(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{dt^{n}} \int_{0}^{t} \frac{f(u)}{(t-u)^{\alpha-n+1}} du, (n = [Re(\alpha)] + 1)$$
 (17)

where $[Re(\alpha)]$ means the integral part of $Re(\alpha)$.

In particular, if $0 < \alpha < 1$

$${}_{0}D_{t}^{\alpha}f(t) = \frac{d}{dt} \int_{0}^{t} \frac{f(u)du}{(t-u)^{\alpha}}$$

$$\tag{18}$$

And in $\alpha = n \in N$ then

$${}_{0}D_{t}^{\alpha}f(t) = D^{n}f(t) \tag{19}$$

is the usual derivative of n.

From Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G (1954,p.182) [3] we have

$$L\{_{0}D_{t}^{-\nu}f(t)\} = s^{-\nu}F(s) \tag{20}$$

$$F(s) = L\{f(t); s\} = \int_0^\infty e^{-st} f(t)dt$$
 (21)

where Re(s) > 0

The Laplace transform of the fractional derivative is given by Oldham and spanier(1974, p.134, eq 8.1.3;)[13]see also (srivastva and saxena 2001)[17]

$$L\{_{0}D_{t}^{-\nu}f(t)\} = s^{\alpha}F(s) - \sum_{k=1}^{n} s^{k-1}_{0}D_{t}^{\alpha-k}f(t)|_{t=0}$$
 (22)

In this we present solution of the fractional diffusion equation given by (Metzler and Klafter 2000; Jorgenson and Lang, 2001)[12][7]

Theorem 1. Consider the fractional diffusion equation

$$N(x,t) - N_0 t^{\mu-1} = -c^{\nu} {}_0 D_t^{-\nu} {}_0 D_x^{\nu} N(x,t)$$
 (23)

with initial condition

$$_{0}D_{t}^{\nu-k} N(x,t)|_{t=0} = 0 \text{ and } _{0}D_{t}^{-\nu-k} N(x,t)|_{x=0} = 0, k = 1, 2 \dots n$$
 (24)

Where n = [Re(v)] + 1; c^v is diffusion constant then for the solution of (23) is given by

$$N(x,t) = \frac{N_0 \Gamma(\mu)}{c^t} H_{1,1}^{1,0} \left[\frac{|x|^{\nu}}{(ct)^{\nu}} \middle| (\mu + \nu, \nu) \right]$$
(25)

 $N(x,t) - N_0 t^{\mu-1} = -c^{\nu} {}_0 D_t^{-\nu} {}_0 D_{\nu}^{\nu} N(x,t)$ Proof-

Apply Laplace and fourier transform with time variable and space vaiable respectively to (23) we get

$$N^{*}(k,s) - N_{0} \frac{\Gamma(\mu)}{s^{\mu}} = -c^{\nu} k^{\nu} s^{-\nu} N^{*}(k,s)$$

$$N^{*}(k,s) \{1 + (S/c)^{-\nu} k^{\nu}\} = N_{0} s^{-\mu} \Gamma(\mu)$$

$$N^{*}(k,s) = N_{0} s^{-\mu} \Gamma(\mu) \left\{1 + \left(S/kc\right)^{-\nu}\right\}^{-1}$$

$$= N_{0} s^{-\mu} \Gamma(\mu) \sum_{r=0}^{\infty} \frac{(1)_{r} \left[-\left(S/kc\right)^{-\nu}\right]^{r}}{r!}$$

$$= N_{0} \Gamma(\mu) \sum_{r=0}^{\infty} \frac{(1)_{r} (kc)^{r\nu} (-1)^{r}}{r!} s^{-\nu r - \mu}$$

where $N^*(k,s)$ Laplace and Fourier transform of N(x,t)Taking inverse Laplace transform

$$N(k,t) = N_0 \Gamma(\mu) \sum_{r=0}^{\infty} (kc)^{r\nu} (-1)^r L^{-1} \{ s^{-\nu r - \mu} \}$$

Ref.

$$N(k,t) = N_0 \Gamma(\mu) \sum_{r=0}^{\infty} (kc)^{r\nu} (-1)^r \frac{t^{\mu+r\nu-1}}{\Gamma(r\nu+\mu)}$$
$$= N_0 \Gamma(\mu) t^{\mu-1} E_{\nu,\mu} (-c^{\nu} k^{\nu} t^{\nu})$$

which can we expressed in terms of H-function

$$= N_0 \Gamma(\mu) t^{\mu - 1} H_{1,2}^{1,1} \left[c^{\nu} k^{\nu} t^{\nu} \left| \begin{array}{c} (0,1) \\ (0,1)(1 - \mu, \nu) \end{array} \right] \right.$$

Now take inverse fourier transformation

$$N(x,t) = \frac{1}{\pi} \int_0^\infty \cos kx \, t^{\mu-1} N_0 \Gamma(\mu) H_{1,2}^{1,1} \left[c^{\nu} k^{\nu} t^{\nu} \, \middle| \, \begin{array}{c} (0,1) \\ (0,1)(1-\mu,\nu) \end{array} \right] dk$$

$$= \frac{t^{\mu-1} N_0 \Gamma(\mu)}{\pi} \frac{\pi}{|x|} H_{3,3}^{2,1} \left[\frac{|x|^{\nu}}{(ct)^{\nu}} \middle| \, \begin{array}{c} (1,1)(\mu,\nu)(1,\nu/2) \\ (1,1)(1,\nu)(1,\nu/2) \end{array} \right]$$

Applying a result of Mathai and Saxena (1978, p.4.eq1.2.1) the above expression becomes

$$N(x,t) = \frac{N_0 \Gamma(\mu)}{|x|} H_{2,2}^{2,0} \left[\frac{|x|^{\nu}}{(ct)^{\nu}} \middle| \frac{(\mu,\nu)(1,\nu/2)}{(1,\nu)(1,\nu/2)} \right]$$

If we employ the formula Mathai and Saxena (1978, p.4. eq 1.2.4)

$$x^{\sigma}H_{p,q}^{m,n}\left[z\left|\begin{pmatrix} a_{p},A_{p}\\ b_{q},B_{q}\end{pmatrix}\right] = H_{p,q}^{m,n}\left[z\left|\begin{pmatrix} a_{p}+\sigma A_{p},A_{p}\\ b_{q}+\sigma B_{q},B_{q}\end{pmatrix}\right]\right]$$

$$N(x,t) = \frac{N_0 \Gamma(\mu)}{ct} H_{2,2}^{2,0} \left[\frac{|x|^{\nu}}{(ct)^{\nu}} \middle| \frac{(\mu + \nu, \nu)(1, \nu/2)}{(1 + \nu, \nu)(1, \nu/2)} \right]$$

$$N(x,t) = \frac{N_0 \Gamma(\mu)}{ct} H_{1,1}^{1,0} \left[\frac{|x|^{\nu}}{(ct)^{\nu}} \middle| (\mu + \nu, \nu) \right]$$

Consider the fractional diffusion equation (Metzler Klafter 2000; Jorgenson and Long, 2001) [12] [7]

$${}_{0}D_{t}^{\nu} N(x,t) - E_{\nu}(-d^{\nu}t^{\nu}) = -c^{\nu} \frac{\partial^{2}}{\partial x^{2}} N(x,t)$$
 (26)

with initial condition

Ref.

Jorgenson, J. and Lang, S.:2001, The ubiquitous heat kernel, in mathematics Unlimited-2001 and Beyond, Eds.B. Engquist and W.Schmid, Springer-Verlag.Berlin and Heidelberg

 $_{0}D_{t}^{\nu-k} N(x,t)|_{t=0} = 0 \ k = 1,2..n$ (27)

Where n = [Re(v)] + 1; c^v is diffusion constant. Then for the solution of (26) is given by

Notes

$$\frac{1}{2d^{\nu/2}}\sin(d^{\nu/2}x)*\frac{1}{(ct)^{\nu}}H_{1,1}^{1,0}\left[\frac{|x|^2}{(ct)^{\nu}}\left|\binom{(1-\nu/2,\nu)}{(0,2)}\right|\right]$$

$$-\frac{1}{2d^{\nu/2}}\sin(d^{\nu/2}x)H_{1,2}^{1,1}\left[d^{\nu}t^{\nu}\begin{vmatrix} (0,1)\\ (0,1)(0,\nu) \end{vmatrix}\right]$$
(28)

Proof-

$$_{0}D_{t}^{\nu} N(x,t) - E_{\nu}(-d^{\nu}t^{\nu}) = -c^{\nu} \frac{\partial^{2}}{\partial x^{2}} N(x,t)$$

Applying the fourier transform with respect to the space variable x and the Laplace transform with respect to the time variable t. we get

$$s^{\nu}N^{*}(k,s) - \frac{s^{\nu-1}}{s^{\nu} + d^{\nu}} = -c^{\nu}k^{2}N^{*}(k,s)$$

$$\{s^{\nu} + c^{\nu}k^{2}\}N^{*}(k,s) = \frac{s^{\nu-1}}{s^{\nu} + d^{\nu}}$$

$$N^{*}(k,s) = \frac{s^{\nu-1}}{\{s^{\nu} + d^{\nu}\}\{s^{\nu} + c^{\nu}k^{2}\}}$$

$$= \frac{s^{\nu-1}}{c^{\nu}k^{2} - d^{\nu}} \left[\frac{1}{s^{\nu} + d^{\nu}} - \frac{1}{s^{\nu} + c^{\nu}k^{2}} \right] \cdots$$
(29)

To invert equation (29). It is convenient to first invert the Laplace transformation and fourier transform. Apply inverse Laplace transform we obtain

$$N(k,t) = \frac{1}{c^{\nu}k^{2}t^{\nu}} \left[E_{\nu}(-d^{\nu}t^{\nu}) - E_{\nu}(-c^{\nu}k^{2}t^{\nu}) \right] \cdot$$
 (30)

Which can expressed in terms of H-function

$$N(k,t) = \frac{1}{c^{\nu}k^2 - d^{\nu}} \left\{ H_{1,2}^{1,1} \left[d^{\nu}t^{\nu} \Big|_{(0,1)(0,\nu)}^{(0,1)} \right] - H_{1,2}^{1,1} \left[c^{\nu}k^{\nu}t^{\nu} \Big|_{(0,1)(0,\nu)}^{(0,1)} \right] \right\}$$
(31)

Invert the fourier transform

Notes

$$N(x,t) = \frac{1}{\pi} \int_0^\infty \cos kx \frac{1}{c^{\nu} k^2 - d^{\nu}} \left\{ H_{1,2}^{1,1} \left[d^{\nu} t^{\nu} \middle|_{(0,1)(0,\nu)}^{(0,1)} \right] dk - \frac{1}{\pi} \int_0^\infty \cos kx \frac{1}{c^{\nu} k^2 - d^{\nu}} H_{1,2}^{1,1} \left[c^{\nu} k^{\nu} t^{\nu} \middle|_{(0,1)(0,\nu)}^{(0,1)} \right] dk \right\}$$

$$= -\frac{1}{2d^{\nu/2}} \sin(d^{\nu/2}x) H_{1,2}^{1,1} \left[d^{\nu}t^{\nu} \begin{vmatrix} (0,1) \\ (0,1)(0,\nu) \end{vmatrix} + \frac{1}{2d^{\nu/2}} \sin(d^{\nu/2}x) \right]$$

$$* \frac{1}{|x|} H_{3,3}^{2,1} \left[\frac{|x|^2}{(ct)^{\nu}} | (1,1)(1,\nu)(1,1) \right]$$

$$= -\frac{1}{2d^{\nu/2}}\sin(d^{\nu/2}x)H_{1,2}^{1,1}\left[d^{\nu}t^{\nu}\begin{vmatrix} (0,1)\\ (0,1)(0,\nu) \end{vmatrix}\right] + \frac{1}{2d^{\nu/2}}\sin(d^{\nu/2}x)*\frac{1}{(c^{\nu}t^{\nu})^{1/2}}H_{2,2}^{2,0}\left[\frac{|x|^{2}}{(ct)^{\nu}}\begin{vmatrix} (1-\nu/2,\nu)\left(\frac{1}{2},1\right)\\ (0,2)\left(\frac{1}{2},1\right) \end{vmatrix}$$

$$= \frac{1}{2d^{\nu/2}} \sin(d^{\nu/2}x) * \frac{1}{(ct)^{\nu}} H_{1,1}^{1,0} \left[\frac{|x|^2}{(ct)^{\nu}} \middle| \begin{pmatrix} 1 - \nu/2, \nu \end{pmatrix} \right] - \frac{1}{2d^{\nu/2}} \sin(d^{\nu/2}x) H_{1,2}^{1,1} \left[d^{\nu}t^{\nu} \middle| \begin{pmatrix} 0,1 \\ (0,1)(0,\nu) \end{pmatrix} \right]$$

Conclusion III.

The fractional kinetic equation has been extended to generalized fractional equation (23) and (26). Their respective solutions are given in terms of Mittag-Leffler function and their generalization, which can also be represented as Fox's H-function.

References Références Referencias

- 1. Dzherbashyan, M.M.:1966, Integral transforms and representation of function in complex domain(in Russian), Nauka, Moscow.
- 2. Dzherbashyan, M.M.:1993, Harmonic Analysis and Boundary Value Problems in the Complex Domain, Birkhaauser Verlag, Basel.

- 3. Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G.: 1954, Table if integral transform .Vol.1,Mcgraw-Hill, New York -Toronto-London
- 4. Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G.: 1955, Higher Transcendental Functions, Vol.3, McGraw-Hill, New York-Toronto-London.
- 5. Haubold, H.J and Mathai, A.M.: 2000, The fractional kinetic equation and thermonuclear functions, Astrophysics and space science 273,53-63
- 6. Hilfer,R(Ed):2000, Application of fractional calculus in physics, World Scientific, Singapore.
- 7. Jorgenson, J. and Lang, S.:2001, The ubiquitous heat kernel, in mathematics Unlimited-2001 and Beyond, Eds.B. Engquist and W.Schmid, Springer-Verlag.Berlin and Heidelberg.

Notes

- 8. Mathai, A.M and Saxena, R.K,:1978, The H-function with application in Statistics and other disciplines, Halsted Press[John Wiley and Sons],
- 9. Mittage-Leffler, G.M.:1903, Sur la nouvelle fonction $E_{\alpha}(x)$, C.R.Acad.Sci., Paris, (ser.II), 137, 554-558.
- 10. Mittag-Leffler, G.M.: 1905, Sur la representatin analytique d'une branche uniforme d'une fonciton monogene, Acta Math. 29, 101-181.
- 11. Miller, K.S and Ross, B.:1993 An introduction the Fractional Calculus and Fractional differential equation, John Wiley and Sons, Newyork.
- 12. Metzler, R and Klafter, J.: 2000 The random walk's guide to anomalous diffusion: Afractional dynamics approach, Phys. Rep. 339, 1-77.
- 13. Oldham, K.B and Spanier, J:1974, The fractional calculus. Theory and application of differention and integration of Arbitrary order., Academic Press, Newyork
- 14. Prabhakar, T. R.: 1971, A singular integral equation with the generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19, 7-15.
- 15. Prudnikov, A.P., Brychkov, Yu.A. and Marichev, O.I.: 1989, Integrals and Series. Vol.3, More Special Functions, Gordon and Breach, New York.
- 16. Samko, S.G., Kilbas, A. A. and Marichev, O.I.: 1993, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York.
- 17. Srivastava, H.M. and Saxena, R.K.: 2001, Operators of fractional integration and their applications, Applied Mathematics and Computation 118, 1-52.
- 18. Saxena, R.K., Mathai, A. M. and Haubold, H. J.: 2002, On fractional kinetic equations, Astrophysics and Space Science 282, 281-287.
- 19. Saxena, R.K., Mathai, A.M. and Haubold, H. J.: 2003, On generalized fractional kinetic equations, submitted for publication.
- 20. Wiman, A.:1905, Uber den fundamentalsatz in der Theorie der Functionen $E_{\alpha}(x)$ Acta. Math. 29, 191-201.

