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Abstract -

 

We consider the third order boundary value problem associated with the differential equation on time scales 

 
 
 

on

 

time scales satisfying the conditions

 
 
 

We establish the solution of the three point boundary value problem on time scales on [t1

 

, σ3(t3)]

 

by matching solutions 
on

 

[t1, t2 ]

 

with solutions on [t2

 

,

 

 3(t3)].

 

Keywords and phrases :

 

Time scales, boundary value problem, dynamical equation,

 

matching methods.

 

I.

 

INTRODUCTION

 

In this paper we consider, the existence and uniqueness of solutions of the three 
point boundary value problems associated with the di®erential equation on time scales

 
 

         
         

With

 
 
 

where f Є

 

Crd

 

[[t1

 

,

 

σ3(t3)] x

 

3

 

, ] and we assume through out that solutions

 

of 

initial value problems associated with (1.1) exist, are unique and extend

 

through out a 

¯xed interval of . A monotonicity restriction on  f

 

assumes that the two point boundary 

value problem for (1.1) satisfying any one of
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y∆3
= f(t, y, y∆, y∆2

), t ∈ [t1, σ
3(t3)]

y(t1) = y1, y(t2) = y2, y(σ3(t3)) = t3.

y∆3
(t) = f(t, y(t), y∆(t), y∆2

(t)) (1.1)

y(t1) = y1, y(t2) = y2, y(σ3(t3)) = y3 (1.2)

y(t1) = y1, y(t2) = y2, y∆(t2) = m (1.3)

or

y(t1) = y1, y(t2) = y2, y∆2
(t2) = m (1.4)

y(t2) = y2, y∆(t2) = m, y(σ3(t3)) = y3 (1.5)

Notes

Author     : 



 
 

 
 
 
 

have at most one solution and with added hypothesis, a unique solution of the three point 
boundary value problem (1.1), (1.2) is constructed by using di®erential

 

inequalities. This 
is acheived by matching solutions of the boundary value problem (1.1), (1.3) with 
solutions of (1.1), (1.5) or solutions of the boundary value problem (1.1), (1.4) with 
solutions of (1.1), (1.6).

 

The technique of matching solutions was discussed by Bailey, Shamphine and 
Waltman [2] to obtain solutions of two-point boundary value problems for the second 
order equation by matching solutions of initial value problems. Later, many authors like 
Barr and Sherman [4], Barr and Miletta [3], Das and Lalli [8], Henderson [10, 11], 
Henderson and Taunton [13], Lakshmikantham and Murty [16], Moorti and Garner [17], 
Rao, Murty and Rao [18] have used this technique and obtained solutions three point 
bound-ary value problems by matching solutions of two two-point boundary value 
problems for ordinary di®erential equations. Henderson and Prasad [12] and 
Eggensperger, Kaufmann and Kasmatov [9] obtained solutions of three point boundary 
value problems using matching methods for boundary value problems on time

 

scales.

 

In this paper, we are concerned with the existence and uniqueness of solutions of 
three point boundary value problems for a di®erential equation on time scales using 
di®erential inequalities. We state some basic de¯nitions of time scales for ready

 

reference.

 
 

De¯nition 1.1.

 

A nonempty closed subset of 

 

is called a time scale. It is denoted by . 
By an interval we mean the intersection of the given interval with a time scale. For t <

 

sup

 

and r >

 

inf , de¯ne the forward jump operator, σ

 

and backward jump operator, ρ, 
respectively, by

 
 
 

 
 

for all t, r Є

 

. If σ(t) = t, t is said to be right dense,(otherwise t is said to be right 
scattered) and if ρ

 

(r) = r, r is said to be left dense, (otherwise r is said to be left 
scattered).

 

De¯nition

 

1.2.

 

For x

 

: 

 



 



 

and t Є

 



 

(if t = sup, assume t is not left scattered), 
de¯ne the delta derivative of x

 

(t), denoted by x

 

¢(t), to be the number(when it exists), 

with the property that, for any Є

 

>

 

0, there is a neighborhood U of t such that

 
 
 

for

 

all s Є

 

U.

 

If x

 

is delta di®erentiable for every t Є

 

; we say that x

 

: 

 



 



 

is delta di®erentiable 
on .
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y(t2) = y2, y∆2
(t2) = m, y(σ3(t3)) = y3 (1.6)

σ(t) = inf{s ∈ T : s > t} ∈ T,

ρ(r) = sup{s ∈ T : s < r} ∈ T,

| [x(σ(t))− x(s)]− x∆(t)[σ(t)− s] |≤ ε | σ(t)− s |,

De¯nition 1.3. If the time scale  has a maximal element which is also left scattered, that 

point is called a degenerate point. Any subset of non- degenerate points of  is denoted 

by k.

De¯nition 1.4. A function x :    is right dense continuous (rd- continuous) if it is 

continuous at every right dense point t Є  and its left hand limit exists at each left 

dense point t Є .
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The forward jump operator σ

 

: 

 



  



 

is right dense continuous and more generally if x

 

: 


 



 

is continuous, then x(σ) : 

 



 



 

is right dense continuous. moreover, we say 

that f

 

is delta di®erentiable on k

 

provided f

 

¢(t) exists for all t Є

 

k: The function f¢

 

: k

 



 



 

is then called the delta derivative of f on k.

 

De¯nition 1.5.

 

A function 

 

: k

 



 



 

is called an antiderivative of f

 

: k

 



 



 

provided 

¢(t) = f(t) holds for all t Є

 

k: We then de¯ne the integral of f

 

by

 

 
 
 

De¯nition 1.6. The point t0

 

is a generalized zero of the function y(t) if either y(t0) = 0 or 

y(t0)y(σ(t0)) <

 

0.

 

Theorem 1.1.

 

Mean value theorem: if y

 

: 

 



 



 

is continuous and y(t) has generalized 

zeros at a and b, then there exists 

 

Є

 

[a,

 

b] such that y¢

 

has

 

a generalized zero at .

 
 

Proof. We refer to Bohner and Eloe [5].

 

II.

 

DIFFERENTIAL INEQUALITIES

 

In this section, we develop the theory of di®erential

 

inequalities on time scales 
associated with the second order di®erential equation

 
 
 
 

For this, we need the following set.

 

De¯nition 2.1.

 

Let 

 

Є

 

C2


d

 

[[t1,

 

σ2(t2)], ].

 

We say that a point t0

 

Є

 

(t1,

 

σ2(t2)) is in the set 

 if (t0) ≤

 

0 and ¢

 

has a generalized zero at t0.

 

Lemma 2.1.

 

Assume that 

 

Є

 

C2
rd[[t1,

 

σ2(t2)], ] and 

 

has a generalized

 

zero at t1

 

and 

suppose that ¢2(t0) <

 

0 whenever t0

 

Є

 

.

 

If (t0) ≠

 

0 on [t1, σ
2(t2)),

 

then ¢

 

has a 
generalized zero at t2

 

if and only if 

 

has a

 

generalized zero at t2.

 
 

Proof.

 

Suppose that 

 

has a generalized zero at t2

 

and (t) ≠

 

0 on [t1,

 

σ2(t2)).

 

For the 
sake of contradiction, we assume that ¢

 

has no generalized zero

 

at t2.

 

Since 

 

has 
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∫ t

a
f(s)∆s = F (t)− F (a).

y∆2
(t) = f(t, y(t), y∆(t)) (2.1)

generalized zeros at t1 and t2, 
¢ will have a generalized zero at some  Є (t1; σ2(t2)) such 

that ¢ has no generalized zero in (, σ2(t2))\. From the de¯nition of generalized zero, 

we have either ¢() = 0 or ¢()¢( σ()) < 0. If r is right dense, then ¢(r) = 0 and if r 

is right scattered, then ¢()¢( σ()) < 0. Let ¢(t) = 0 on (, σ2(t2)] \ . (otherwise use 

¡     ¢(t).) Then 0 <


t2


¢(t)¢(t) = (t2) ¡ () ≤        ¡() which implies () < 0. Since 

() < 0, ¢ has a generalized zero at  and hence  Є  which implies by hypothesis 

that¢2() < 0. However, if  is right dense (i.e. σ() = ),then

y∆2
(r) = lim

t→σ(r)

y∆(t)
t− r

> 0

and if  is right scattered (i.e. σ() > ) then

y∆2
(r) =

y∆(σ(r))− y∆(r)
σ(r)− r

> 0

Notes



    

     

    

        

        

       

       
 

 

   
 
 

Thus, in either case,we have obtained y          ¢2(r) >

 

0, which is a contradiction. Thus, y¢

 

has a 
generalized zero at t2. A similar argument holds if y¢

 

has a generalized zero at t2.

 

 

Lemma 2.2.

 

Assume that y

 

Є

 

C2
rd[[t1, σ2(t2)],R]  and     has  a  generalized zero at t2

 

and 

further suppose that y¢2(r) <

 

0 whenever r

 

Є

 

.

 

If y(t) ≠

 

0 on [t1,

 

σ2(t2)) then y¢

 

has a 
generalized zero at t1

 

if and only if y

 

has a generalized zero t1.

 

Proof is analogous to the proof of the Lemma 2.1.

 

Lemma 2.3.

 

If y(t) is any solution of (2.1) such that y

 

has generalized zeros at t1

 

and t2

 

and if y¢2(t0) <

 

0 whenever t0

 

Є

 

, then y(t) = 0 on [t1,

 

σ2(t2)].

 

Proof.

 

For the sake of contradiction, we assume that y(t) ≠

 

0 on [t1,

 

σ2(t2)].

 

Since y(t) ≠

 

0 

at any point in (t1,

 

σ2(t2)), y

 

must have a non zero extremum in (t1,

 

σ2(t2)) =) y¢

 

has a 

generalized zero at some t0

 

Є

 

(t1,

 

σ(t2)).

 

i.e. either y¢(t0) = 0 or y¢(t0)y
¢(σ(t0)) <

 

0.

 

If t0

 

is 
right dense, then y¢(t

 

) = 0 

 

if t0

 

is right scattered, then y¢(t0)y
¢(σ(t0)) <

 

0.

 

Assume with out loss generality that 

y¢(t0) >

 

0 on (t0,

 

¾(t2)].

 

Then 0 <

 

R

 

t2

t0

 

y¢(t)¢(t) = y(t2)

 

¡

 

y(t0) ≤¡

 

y(t0) which implies 

y(t0) <

 

0.

 

Now y(t0) <

 

0 and y¢(t0) ≥

 

0 which implies by hypothesis that y¢2(t0) <

 

0.

 

How 
ever, if t0

 

is right dense ,then

 

 

and if t0

 

is right scattered,then
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and

y∆2
(t0) = lim

t→σ(t0)

y∆(t)
t− t0

> 0

y∆2
(t0) =

y∆(σ(t0))− y∆(t0)
σ(t0)− t0

> 0.

Hence, a contradiction. Thus, (t) = 0 on [t1, σ2(t2)]. 

y

Consider the boundary value problem

Suppose ©(t) and ª(t) are two solutions of the above boundary value problem. Write 

(t) = ©(t) ª(t). Then

y∆2
(t) = f(t, y(t), y∆(t))

y(t1) = y1, y(σ2(t2)) = y2

(2.3)

χ

χ∆2
(t) = Φ∆2

(t)−Ψ∆2
(t)

= f(t, Φ(t),Φ∆(t))− f(t, Ψ(t), Ψ∆(t))

= f(t, χ(t) + Ψ(t), χ∆(t) + ψ∆(t))− f(t,Ψ(t), Ψ∆(t))

= F (t, χ(t), χ∆(t))

Clearly F(t, 0, 0) = 0, χ (t1) = 0, χ (t2) = 0. Thus, we have the following theorem.

Notes



 

 

 

 

  

 
 
 
 
 
 

   

Theorem 2.1.

 

The boundary value problem

 
 
 
 

where F(t, 0, 0) = 0 has only the trivial solution if and only if the following boundary 
value problem

 
 
 
 

has a unique solution.

 

Proof.

 

Suppose (2.2)  has  only  the  trivial solution Â

 

(t). Then Â

 

(t) = 0 

 

t Є

 

[t1, σ2(t2)] 

and hence ©(t) = ª(t). Conversely, suppose that (2.3) has a

 

unique solution. Then, Â

 

(t) 
= ©(t)

 

¡

 

ª(t). Obviously Â

 

(t1) = Â

 

(t2) = 0 and

 

Â¢2(t) = F(t, Â

 

(t), Â

 

¢(t)) and F (t, 0,

 

0) = 0. Hence Â

 

( t) is the only solution

 

of  (2.2).  Thus,  the  proof  of  the  theorem  is 
complete. 

 

We now develop the theory of di®erential inequalities associated with the third order 
di®erential equation. For this, we need the following sets and classes of functions.

 

De¯nition 2.2.

 

Let 

 

Є

 

C3
rd[[t1, σ3(t3)],]. We say that a point t0

 

Є

 

1

 

if (t0) ≤

 

0, ¢(t0) >

 

0 and ¢2

 

has a generalized zero at t0

 

for some t0

 

Є

 

[t1, t2] and t0

 

Є

 

2

 

if (t0) ≥

 

0, ¢(t0) >

 

0 and ¢2

 

has a generalized zero at t0

 

for some t0

 

Є

 

[t2, σ3(t3)].

 

De¯nition 2.3.

 

We say that a function

 

 

(t, (t), ¢(t), ¢2(t)) Є

 

rd[[t1, σ3(t3)] £

 

3,] is in the set G1

 

if (t, (t), ¢(t), ¢2(t)) 

≥

 

0 

 

t Є

 

[t1, t2], (t, (t), 
¢(t), ¢2(t)) is non decreasing in 

 

and strictly increasing in ¢
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y∆2
(t) = F (t, y(t), y∆(t))

y(t1) = 0, y(σ2(t2)) = 0
(2.2)

y∆2
(t) = f(t, y(t), y∆(t))

y(t1) = y1, y(σ2(t2)) = y2

(2.3)

and belongs to the set G2 if (t, (t), ¢(t), ¢2(t)) ≥ 0  t Є [t2, σ3(t3)], (t, (t), 
¢(t), 

¢2(t)) is non decreasing in y and strictly increasing in ¢.

Lemma 2.4. Let (t) be a solution of (1.1) such that  has generalized zeros at t1 and t2

with (t, 0, 0, 0) = 0. Further suppose that ¢3(t0) > 0 whenever t0 Є 1. If either ¢ or 

¢2 has a generalized zero at t2, then (t) = 0 for all t Є [t1, t2].

Proof. We ¯rst suppose that ¢ has a generalized zero at t2. Then we claim that ¢2 also 
has a generalized zero at t2. To the contrary, assume that ¢2 has no generalized zero at 

t2. With out loss of generality we can assume that ¢2(t2) < 0. So,  a  Є [t1, t2) such 
that ¢2 has a generalized zero at  and ¢2(t) < 0  t Є (, t2]. Then

0 >

∫ t2

t
y∆2

(t)∆t = y∆(t2)− y∆(t) ≥ −y∆(t)

which implies ¢(t) > 0  t Є (, t2]. Since ¢2(t) < 0  t Є (, t2], it follows that ¢(t) is 

decreasing for t >  and ¢() is positive. Again 0 <   t2
q 

¢(t)¢t = (t2) ¡ (q) ≤ ¡() 

which implies () < 0. Thus, () < 0, ¢() > 0 and ¢2 has a generalized zero at , 

which implies  Є 1 which implies by hypothesis that ¢3() > 0.

∫

Notes



    

 

    

     

    

    
  

        

        

 

 

 

 

      

      

    

      

However, if 

 

is right dense,

 

 

 

and if 

 

is right scattered,

 

 

 

 

 

Hence, a contradiction.

 

Thus, y¢2

 

has a generalized zero at t2. Since y

 

has a generalized zero at t2,

 

y¢

 

has a 
generalized zero at t2,

 

y¢2

 

has a generalized zero at t2

 

and f(t,

 

0,

 

0,

 

0) = 0,

 

it

 

follows that 

y(t) = 0 

 

t Є

 

[t1, t2].

 

Next, we suppose that y¢2

 

has a generalized zero at t2. Then it is claimed that y¢

 

has a 
generalized zero at t2. To the contrary, suppose that y¢

 

has no generalized zero at t2. 

With out

 

loss of generality we can assume that y¢(t2) >

 

0. Since y has generalized zeros at 

t1

 

and t2, it follows from mean value theorem that there exists an r Є

 

(t1, t2) such that y¢

 

has a generalized zero at 

 

and y¢

 

has no generalized zero in (, t2). Assume without loss 
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y∆3
(q) = lim

t→σ(q)

y∆2
(t)− y∆2

(q)
t− q

= lim
t→σ(q)

y∆2
(t)

t− q
≤ 0

y∆3
(q) =

y∆2
(σ(q))− y∆2

(q)
σ(q)− q

≤ 0.

of generality that y¢(t) > 0 forall t Є (, t2). We claim that there exists a p Є [, t2) such 

that y     ¢2() > 0. To the contrary, suppose that y    ¢2() ≤ 0. Then 0 ≥ t
r y      

¢2 (t)¢t = y¢(t)

¡y¢() ≥ ¡y¢() which implies y¢(t)≤0  t Є (, t2), which is a contradiction. Hence, the 

claim. Now, there exists a  Є (, t2) such that  ¢2 has a generalized zero at  and y              ¢2(t) 

> 0 forall t Є (, ). Again 0 <   t2
q y              ¢(t)¢t = y(t2) ¡ y(q) ≥¡y().

Thus y() < 0, y¢() > 0 and y¢2 has a generalized zero at  and hence  Є 1 which 

implies by hypothesis, y         ¢3() > 0. However, if q is right dense,

∫

∫

y∆3
(q) = lim

t→ρ(q)

y∆2
(t)− y∆2

(q)
t− q

= lim
t→ρ(q)

y∆2
(t)

t− q
≤ 0

and if  is right scattered,

Hence, a contradiction. Thus ¢has a generalized zero at t2. Since , ¢, ¢2 has 
generalized zeros at t2 and  (t, 0, 0, 0) = 0, it follows that (t) = 0  t Є [t1, t2]. 

Lemma 2.5. Let (t) be a solution of (1.1) such that  has a generalized zero at t1 and t2

with  (t, 0, 0, 0) = 0. Further suppose that ¢3(t0) > 0 whenever t0 Є 2. If either ¢ or 
¢2 has a generalized zero at t1, then (t) = 0 for all t Є [t1, t2].

Proof. We ¯rst suppose that ¢ has a generalized zero at t1. Then we claim that ¢2 also 
has a generalized zero at t1. To the contrary, assume that ¢2 has no generalized zero at 
t1. With out loss of generality we can assume that ¢2(t1) > 0. So,  a  Є [t1, t2) such that 

¢2 has a generalized zero at  and ¢2(t) > 0  t Є [t1, q). Then

y∆3
(q) =

y∆2
(ρ(q))− y∆2

(q)
ρ(q)− q

≤ 0.

0 <

∫ t

t1

y∆2
(t)∆t = y∆(t)− y∆(t1) ≤ y∆(t)

Notes



    

          
     

      

       

          

   

 
 
 

  
 
 
 

 
     

    
      

   

    
  

       

        

 

 

 

which implies y  ¢(t) >

 

0 

 

t Є

 

[t1, q). Since y¢¢(t) >

 

0 

 

t Є

 

[t1, q), it follows that y¢(t) is 

decreasing for t <

 

q

 

and y¢(t) is positive. Again 0 <   
q

t1

 

y¢(t)¢t = y(q)

 

¡

 

y(t1) ≤

 

y(q) which 

implies y(q) >

 

0. Thus, y(q) >

 

0,

 

y¢(q) >

 

0 and y¢2

 

has a generalized zero at q,

 

which 

implies q

 

Є

 

2

 

which implies by hypothesis that y¢3(q) >

 

0.

 

However, if q

 

is right dense,

 
 
 
 

and if q  is right scattered,
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∫

y∆3
(q) = lim

t→ρ(q)

y∆2
(t)− y∆2

(q)
t− q

= lim
t→ρ(q)

y∆2
(t)

t− q
≤ 0

y∆3
(q) =

y∆2
(ρ(q))− y∆2

(q)
ρ(q)− q

≤ 0.

Hence, a contradiction. Thus, y¢2 has a generalized zero at t1. Since y has a generalized 
zero at t1, y

¢ has a generalized zero at t1, y
¢2 has a generalized zero at t1 and f(t, 0, 0, 0) 

= 0, it follows that y(t) = 0  t Є [t1, t2]. Next, we suppose that y¢2 has a generalized zero 

at t1. Then it is claimed that y¢ has a generalized zero at t1. To the contrary, suppose 
that y¢ has a generalized zero at t1. With out loss of generality we can assume that y¢(t1) 

> 0. Since y has generalized zeros at t1 and t2, it follows from mean value theorem that 

there exists an r Є (t1, t2) such that y¢ has a generalized zero at r and y¢ has no 
generalized zero in [t1, r). Assume with out loss of generality that y¢(t) > 0 forall t 2 [t1, 

r). We claim that  a p Є [t1, r) such that y¢2(p) < 0. To the contrary, suppose that 

y¢2(p) ¸ 0. Then

which implies y¢(t) ≤ 0  t Є [t1,r), which is a contradiction. Hence, the claim. Now,  a q

Є [t1, p) such that y¢2 has a generalized zero at q and y¢2(t) < 0  t Є (q, p). Again

0 ≤
∫ r

t
y∆2

(t)∆t = y∆(r)− y∆(t) ≤ −y∆(t)

0 <

∫ q

t1

y∆(t)∆t = y(q)− y(t1) ≤ y(q).

Thus y (q) > 0, y ¢(q) > 0 and y  ¢2 has a generalized zero at q and hence q Є 2, which 

implies by hypothesis that y       ¢3(q) > 0. However, if q is right dense,

and if q is right scattered,

y∆3
(q) = lim

t→σ(q)

y∆2
(t)− y∆2

(q)
t− q

= lim
t→σ(q)

y∆2
(t)

t− q
≤ 0

y∆3
(q) =

y∆2
(σ(q))− y∆2

(q)
σ(q)− q

≤ 0.

Hence, a contradiction. Thus y ¢ has a generalized zero at t1. Since y, y ¢, y ¢2 has 
generalized zeros at t1 and f(t, 0, 0, 0) = 0, it follows that y(t) = 0 forall t Є [t1, t2].

Lemma 2.6. Let y(t) be a solution of (1.1) such that y has a generalized zero at t2 and t3

with f (t, 0, 0, 0) = 0. Further suppose that y¢3(t0) > 0 whenever t0 Є 2. If either y¢ or 

y¢2 has a generalized zero at t2, then y(t) = 0 for all t Є [t2, ¾
3(t3)].

Notes



  
   

    

 
 

   

     
 

    

  

 
 

      

       

 
 
 

      

   
 
 
 
 

  
 
 
 
 

    
    

 
 
 

    
      

   

Lemma 2.7.

 

Let y(t) Є

 

C3
rd[[t1, t2],] 

 

y

 

has generalized zeros at t1

 

and

 

t2, y
¢3(t0) >

 

0 for 

some t0

 

Є

 

1

 

and either y¢(t2) <

 

0 or y¢2(t2) <

 

0.

 

Then, 

 

a p

 

Є [t1, t2) such that y¢

 

has a 

generalized zero at p

 

and y¢(t) <

 

0 on (p, t2] and y(t) >

 

0 on [p, t2).

 

Proof.

 

We ¯rst suppose that y¢2(t2) <

 

0. Then, there exists a q

 

Є

 

[t1, t2) such that y¢2

 

has 

a generalized zero at q

 

and y    ¢2(t) <

 

0 

 

t Є

 

(q, t2].We ¯rst claim that y  ¢(t) <

 

0 

 

t Є

 

[q, t2]. 

To the contrary, suppose that y     ¢(t) >

 

0 

 

t Є

 

[q, t2]. Then 0 <

 

  t2
q

 

y   ¢(t)¢t = y(t2) ¡

 

y(q)
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∫

≤ ¡ y(q) which implies y(q) < 0. Thus y(q) < 0, y   ¢(q)           > 0 and y    ¢2 has a generalized zero at 

q and hence q Є 1, implies by hypothesis that y   ¢3(q) > 0.

However, if q is right dense, then

and if q is right scattered, then

which is a contradiction.Hence, y¢(t) ≤ 0 forall t Є [q, t2). therefore there exists a p Є [q, 
t2) such that y¢ has a generalized zero at p and y¢(t) < 0 forall t Є (p, t2] which implies 0 

> t2

t
y ¢(t)¢t = y(t2)¡y(t) ¸ ¡y(t) which implies y(t) < 0 on [p, t2). A similar argument 

holds if y¢(t2) < 0. 

Lemma 2.8. Let y(t) Є C 3
rd[[t2, σ3(t3)],]  y has generalized zeros at t2 and t3, y

¢3(t0) > 0 

for some t0 Є 2 and either y¢(t2) > 0 or y¢2(t2) > 0.Then,  a p Є (t2, σ3(t3)] such that y¢

has a generalized zero at p and y¢(t) < 0 on [t2, p) and y(t) < 0 on (t2, p].

Proof. We ¯rst suppose that y¢2(t2) > 0. Then, there exists a q Є (t2, σ3(t3)] such that y¢2

has a generalized zero at q and y¢2(t) > 0 forall t Є [t2, q). Then it is claimed that y¢(t) ≤
0 forall t Є (t2, q]. For the sake of contradiction, we assume that y¢(t) > 0  t Є (t2, q]. 

Then 0 <   q
t2 y

¢(t)¢t = y(q) ¡ y(t2) ≤ y(q) which implies y(q) > 0. Thus y(q) > 0, y¢(q) >
0 and y¢2 has a generalized zero at q and hence q Є 2, implies by hypothesis that y¢3(q) >
0.

However, if q is right dense, then

and if q is right scattered, then

which is a contradiction. Hence, y¢(t) ≤ 0 forall t Є (t2, q]. Therefore there exists a p Є (t2, 
q] such that y¢ has a generalized zero at p and y¢(t) < 0 forall t Є [t2, p) which implies 0 >   

t

t2
y  ¢(t)¢t = y(t)¡      y  (t2) ¸ y(t) which implies y(t) < 0 on (t2, p]. A similar argument 

holds if y¢(t2) > 0.

y∆3
(q) = lim

t→σ(q)

y∆2
(t)− y∆2

(q)
t− q

≤ 0

y∆3
(q) =

y∆2
(σ(q))− y∆2

(q)
σ(q)− q

≤ 0,

∫

∫

y∆3
(q) = lim

t→ρ(q)

y∆2
(t)− y∆2

(q)
t− q

≤ 0

y∆3
(q) =

y∆2
(ρ(q))− y∆2

(q)
ρ(q)− q

≤ 0,

∫

Notes



         

     

  

 

 

  

 

 

     
    

       

  

       

          

     

     

    

    

       

     
 

 

 

  

 

 

    
             

     

  

III.

 

MAIN RESULT

 

In this section we establish existence and uniqueness of solutions (1.1),(1.2). We 
¯rst  show that there  exists at most one  solution to (1.1) satisfying  one of (1.3) ,(1.4) 
,(1.5) or (1.6).

 

Lemma 3.1.

 

Assume that f

 

Є

 

Crd[[t1, ¾
3(t3)]£3,] and let f

 

Є

 

G1, f 2

 

G2.

  

Assume that when u1

 

≤

 

u2, v1

 

>

 

v2

 

and w1

 

= w2, then f(t, u1, v1,w1) ¡

 

f(t, u2, v2,w2) ¸

 

0 

 

t Є

 

[t1, t2).
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Also assume that when u1 ¸ u2, v1 > v2 and w1 = w2, then f(t, u1, v1,w1)¡ f(t, u2, v2,w2) ¸
0  t Є (t2, ¾

3(t3)].

Then for each m Є ,  at most one solution to (1.1) satisfying one of (1.3) ,(1.4) ,(1.5) 

or (1.6).

Proof. The proof of (1.1),(1.4) will be given. Similar argument holds for other boundary 
problems. Suppose that ©(t) and ª(t) are each solutions of the boundary value problem 

(1.1),(1.4). 

Write Â (t) = ©(t) ª(t).

Clearly Â (t1) = 0, Â (t2) = 0 and Â ¢2 (t2) = 0.

Hence

¡

χ∆3
(t) = Φ∆3

(t)−Ψ∆3
(t)

= f(t, Φ(t), Φ∆(t), Φ∆2
(t))− f(t, Ψ(t),Ψ∆(t), Ψ∆2

(t)) > 0.

Now Â (t) satis¯es the hypothesis of Lemma 2.4.

So, Â (t) = 0 or ©(t) = ª(t).

Theorem 3.1. Assume that

(i) for each m Є ,  solutions for each of the boundary value problem (1.1) satisfying 

one of (1.3) ,(1.4), (1.5) or (1.6).

(ii) f Є G1 and if u1 ≤ u2, v1 > v2 and w1 = w2, then f(t, u1, v1, w1) ¡ f(t, u2, v2, w2) ¸
0  t Є [t1, t2)

(iii) f Є G2 and if u1 ¸ u2, v1 > v2 and w1 = w2, then f(t, u1, v1, w1) ¡ f  (t, u2, v2, w2) ¸

0  t Є (t2, ¾3(t3)].

Then the boundary value problem (1.1),(1.2) has a unique solution.

Proof. By Lemma 3.1, the solutions of (1.1) satisfying one of (1.3) ,(1.4) ,(1.5) or (1.6), 
whenever they exists, are unique. Let ©(t, m) denotes the solution of the boundary value 
problem (1.1), (1.4).

Set Â (t) = ©(t, m1) ¡ ©(t, m2).

Clearly if m2 > m1, Â (t1) = 0, Â (t2) = 0, and Â¢2(t2) = 0. If t Є 1, then Â (t) ≤ 0, Â¢(t) 

> 0 and Â
¢2

(t) has a generalized zero at t and hence using (ii),

χ∆3
(t) =f(t, Φ(t,m1), Φ∆(t,m1), Φ∆2

(t,m1))

− f(t, Φ(t,m2), Φ∆(t,m2), Φ∆2
(t,m2)) ≥ 0

Notes



         

    

   

 
 

 
   
     

 
 
 

  

  

 

 

     

 
                 

   

                 

   

 

 

  

   

             

  

 

 

Thus Lemma 2.7 yields Â¢(t) <

 

0, t Є

 

(p, t2]. In particular,

 

 

 

Hence, it follows that ©¢(t2, m) is a strictly increasing function of m. A similar reasoning 
given above demonstrates that ª¢(t2, m) is a strictly decreasing function of m, where 
ª(t, m) is the solution of the boundary value problem (1.1),(1.6).
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χ∆(t2) = Φ∆(t2,m1)− Φ∆(t2,m2) < 0.

It now follows from the fact that solutions of (1.1),(1.4) and (1.1),(1.6) are unique and the 
ranges of ©¢(t2, m) and ª¢(t2, m) are the set of all reals, that there exists a unique m0 Є
 such that ©¢(t2, m0) = ª¢(t2, m0). Thus y(t) de¯ned by

is a solution of (1.1),(1.2).

y(t) =





Φ(t,m), t1 ≤ t ≤ t2,

Ψ(t, m), t2 ≤ t ≤ σ3(t3),
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