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Abstract – This paper presents a new two-stage hypergraph-based algorithm for edge detection 
in noise-free gray images. The first stage consists of mapping the input image onto a hypergraph 
called the Intensity Interval Hypergraph (IIHG) associated with the image. In the second stage, 
each hyperedge is partitioned into two disjoint subsets, namely, the interior pixels and the edge 
pixels. The interior pixels are then suppressed, so that the edge pixels trace out the edges in the 
image. These edges are then sharpened using an edge sharpener function to eliminate all the 
duplicated edges. The algorithm is validated on a number of images of largely varying details, 
and shows promising results. Other hypergraph-based algorithms are of computational 
complexity O (n2) or O (n3) whereas the IIHG model works at a reduced computational complexity 
of O (n). 
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 Abstract
 
-
 
This paper presents a new two-stage hypergraph-based algorithm for edge detection in noise-free gray 

images.  The first stage consists of mapping the input image onto a hypergraph called the Intensity Interval Hypergraph 
(IIHG) associated with the image.  In the second stage, each hyperedge is partitioned into two disjoint subsets, namely, 
the interior pixels and the edge pixels.  The interior pixels are then suppressed, so that the edge

 
pixels trace out the 

edges in the image.  These edges are then sharpened using an edge sharpener function to eliminate all the duplicated 

edges.  The algorithm is validated on a number of images of largely varying details, and shows promising results.  Other 

hypergraph-based algorithms are of computational complexity O (n2) or O (n3) whereas the IIHG model works at a 

reduced computational complexity of O (n).   
Keywords / phrases : Hypergraph, hyperedge, chessboard metric, interior point, edge.    

 
In edge detection, one approach is to track pixels column wise (or, row wise) 

before using statistical measures for the processing [1].
 

Graph-based approach [2] 

identifies binary-related pixels before processing them. Graphs are mathematical modeling 

tools for low-level image processing applications because graphs are essentially about 

relationships between objects (these are pixels in images).  But graphs do not go beyond 

binary relations, and pixel relations in images are, in most applications, complex and not 

necessarily binary.  Hence a model that can accommodate higher order relations would be 

desirable and valuable.
 

Hypergraphs do precisely that –
 
they accommodate higher order object relations.  

Hypergraph theory is an original work of Claude Berge [3].  As mathematical entities, 

hypergraphs are rich and extensive in theory.  They also have applications, and published 

research works [4-7] have shown hypergraphs to be excellent tools in image processing.  
 The concept of edge is a very familiar one, yet there is no precise rigorous 

definition of an edge in an arbitrary image.  Indeed, the concept as we use it is an 

abstract one, and so it can give different meaning in different contexts [8].  Several widely 

accepted ideas of edges and edge detection methods are reported in literature [9, 10].  

Essentially, edges in an image correspond to intensity discontinuities or visible intensity 

changes.  The average human eye sees edges in the form of boundaries of objects in the 

target image.  Edge detection, therefore, can be thought of as the process of bringing into 

view these boundaries while suppressing
 
the rest of the image.  Broadly, edge detection 

can be
 
considered a two-stage process:  first, the characterization of intensity changes; 

and second, the use of some structural knowledge to find the edges [11].  Some widely 

known edge detectors are the Sobel, the Laplacian-of-Gaussian (or LoG) and the Canny 

edge detectors.  However, they do have drawbacks: appearance of undesirable double 

edges, large and complicated set of rules, and generation of speckles, to mention a few.  
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A premise in this paper is that edges are consequences of pixel features and pixel 

relations.  As regards gray images, we have only two aspects at our disposal: the intensity 

of each pixel and the spatial relationship between pixels.  Many algorithms in the 

traditional class tend to ignore the important spatial relationship aspect [2].  This 

problem is addressed in the hypergraph framework in this paper.  
 Wide and thick edges (roughly speaking, these are edges upon edges without any 

separating features, with one edge following exactly the course of the other) hamper edge 

detection processes even in clean images by producing undesirable duplication effects in 

the output image (or, the edge image).  So there is a need to characterize not just edges 

but also duplication of edges to identify the undesirable thick edges before eliminating 

such.  This hypergraph-based work brings some properties of sets and functions into a 

hypergraph model towards such characterization in a clean image. 
 The contribution of this article is a novel hypergraph model (called the IIHG, 

detailed in section 3) for edge detection (in noise-free gray images) with reduced 

 The remainder of this paper is organized in sections 2 through 7.  Section 2 

mentions some published and widely-cited graph-
 

and hypergraph-based edge detection 

works.  Section 3 introduces the hypergraph model that is the base for our algorithm.  

Section 4 presents the flow of the algorithm in a compact form.  Results of experiments 

on standard test images and real world images are reported and discussed in section 5.  

This section also features comparative studies to establish the excellent performance and 

potential of the proposed algorithm.  Features of the algorithm are presented in section 6.  

Concluding remarks form section 7.  
 

 

A unified graph-based method for segmentation and edge detection is given in [2], 

which is in a way a pioneering shift from the traditional approach (of row or column 

tracking).  In [2], mapping of the image onto a graph and computation of shortest 

spanning trees are important preludes to the process of segmentation and edge detection.  

However, [2] does not go into the computational complexity of the algorithm .  Also, this 

approach conveys an impression that pixel relations in any image could be simplistic 

enough to be binary, which impression finds no support in published research.
 Bretto and others [4-7] based their research on hypergraph models where patches 

of pixels (rather than pairs of pixels) are processed by algorithms that are guided 

principally by the pixel intensity values.  This approach is reflective of the fact that 

hypergraphs are generalizations of graphs.  Besides mapping the image onto a hypergraph 

structure, Bretto et al use the idea of stars and star aggregates.  These illustrate 

possibilities of application of higher order pixel relations in hypergraphs to image 

processing.  But these algorithms are computationally expensive (O (n3)) and tend to 

leave unprocessed pixels behind.
 

 
A hypergraph

 
is a couple H = (V, E), where V is a nonempty finite set and E

 
is a 

family
 

of nonempty subsets of V that fills out V.  Since E is finite, we index it by a set J 
= {1, …, k}, k Є

 
N,

 
and so we have E =

 
{X1, . . ., Xk

 
}

 
and X1   . . .   Xk

 
= V.  The set V is 
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called the vertex set of H. The family E is called a hyperedge family on the vertex set V, 

and each member of E is called a hyperedge (in H). 
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complexity O (n).  To the best of our knowledge, the proposed algorithm is the first 
hypergraph-based one for edge detection with complexity O (n).   



  

If the members of E are distinct (meaning: i ≠

 

j 

 

Xi ≠

 

Xj), then H is simple.  In 

this case, E is a set

 

of nonempty subsets of V.  H = (V, E) is called a partitioned 

hypergraph if its hyperedges

 

form a partition of V –

 

i.e., V = X1      . . .    

 

Xk

 

and Xi ∩

 

Xj 

= φ

 

for i ≠

 

j (where φ

 

denotes the empty set). 

 

To begin with, the input image is represented as a partitioned hypergraph.  The

 

hyperedges for this representation are constructed as follows:

 
A digital gray image labeled I (and assumed noise-free) is mathematically 

represented by the function I: V→

 

W (where V µ

 

N x N and W is the set of non-negative 

integers), where for a = (x, y) Є

 

V, I (a) is the gray scale intensity value of the pixel a 

located at (x, y) Є

 

N x N, so that it is natural to think of the image I as a nonempty 

finite subset V of N x N.  Let V be endowed with the chessboard metric ρ.  

 
Let L be a positive integer, L ≤

 

254 and q = [255 –

 

255(mod L)] ⁄

 

L.  We set

 

 

     

      

      

 

Let E =  Et │t = 1 through q + 1; and Et

 

≠

 

φ}.  Then E is a set

 

of nonempty 

subsets of V, and E fills out V. We take H = (V, E). Then H is a hypergraph on the set 

V, and thereby is a hypergraph representation of the image I.  We call this the Intensity 

Interval Hypergraph (IIHG) associated with the image I. This hypergraph is a partitioned 

one.

 

The essential mathematics for the algorithm is given in the appendix (after the 

references), where all the theory (A1 through A5) is within the framework of the IIHG on 

V detailed above.

 

 

Figure 1 below gives the flow of the proposed IIHG algorithm.  The input image data 

(box numbered 1 in Fig. 1) are as follows:

 

1(a) V = set of pixels of the image I (as a finite nonempty subset of N ×

 

N)

 

1(b) Gray scale intensity matrix of V. 

 

1(c) Domain distance metric ρ

 

(Chessboard metric) on V

 

1(d) Parameter L (called ‘intensity interval’)
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Notes

{

(a) E1= {a Є V │ 0 ≤ I (a) ≤ L},  

(b) Ek = {a Є V │ (k – 1) L + 1 ≤ I (a) ≤ k L} for k = 2, …, q, 

(c) Eq+1 = {a Є V │ q L +1 ≤ I (a) ≤ 255}.  Obviously the Et (t = 1, . . ., q + 1) are subsets 

of V, some possibly empty (φ).  



 

 

 

 

 

 

 

 

 

 

 

The computing environment for coding the proposed IIHG algorithm has the following 

principal components:  

(i) Computer category: Micro  

(ii) Processor: Intel i13, 3.2 GHz  

(iii) Software: MATLAB  7.0.1  

 

In the proposed algorithm, the output showing the edges depends on the number 

of hyperedges.  The more the number of hyperedges, the denser the edges in the output 

image.   

a)  Test reports  
Figure 2 below is a simple illustration of how the edge detection algorithm works 

on a 10 x 10 image patch for L = 90.  This patch is a part of a test image from [12].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Input: Gray image 
(noise-free)  

2. Construct the IIHG 
(H) for the input image  

3. Identify the interior 
points and edge points in 

each hyperedge  

4. Suppress the interior 
points in each hyperedge  

 

5. Sharpen the thick edges  
 

6. Output:  
Edges in the image  
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Figure 1 : The IIHG algorithm flow diagram
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Figure 2 : The input image is the patch of size 10 x 10.  The hundred pixels in this patch 

are labeled P1 through P100.  The intensity value of each pixel is just above its label. The 

pixels filled with black are the edge pixels as identified by the algorithm.  The pixels 

without any filling color are the suppressed pixels – these are either the interior pixels 

suppressed in the partitioning of the hyperedges or the edge pixels suppressed in the 

sharpening of thick edges. 

 
Over six hundred images were taken from [12, 13] and Google Earth which contain 

ranges of gray images with widely varying features and details. Several of these images 

appear in published works, and are standard test images –
 

for instance, Lena, 

Photographer and Peppers –
 
in image processing research. Tests on five widely used 

images are reported and discussed in this section. The values of the parameter L specified 

in the reports have been selected after exhaustive testing covering the entire range of L (1 

≤
 
L ≤

 
254).  For each image reported here, the selected values of L produce visually more 

credible results (to the subjective human eye) than its other values.  As is always the case 

in any low level image processing, the judgment of the visual results shown in the 

examples is subjective.
 In fig. 3(b) and 3(c), the outputs show ‘cluttering’

 
of edges for L = 50 and L = 60, 

respectively.  For L >
 
80, the edges become more distinguishable.  However, as L is 

increased, some of the edges may actually disappear-
 
for instance, in the edge image for L 

= 100, the outline of the lips has all but vanished.  It is inferred that large values of L 

could result in loss of edges.  And this is in direct contrast to ‘too many edges’
 
(or, 

cluttering) resulting from a low value of L.  As regards the Lena image, our inference is 

that 80 ≤
 
L ≤

 
95 is a good range for the edge image to be a reliable representative of the 

true edges in the original (to the human eye).  A similar inference can be made for each 

image tested.  
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In each of the following test reports, the first image (a) is the input (original).  

The others are the output edge images for the specified values of L.  

 Pic: original

 
3(a) Lena 

 

Pic: Edges for L=50

 
3(b) L = 50

 

Pic: Edges for L=60

 
3(c) L = 60

 

Pic: Edges for L=90

 
3(d) L = 90

 

 
3(e) L = 100

 
 

3(f) L = 110
 

 
3(g) L = 115

 
 

3(h) L = 120
 

 

Another widely used test image –
 

Peppers –
 

features in figure 4.  The range 90 ≤
 

L 

≤
 

120 gives better edge representations.  The Lena and the Peppers images also feature in 

the comparison of our proposed algorithm with three other edge detection algorithms, 

shown in section 5.2
 

  
 Pic: original

 

4(a) Peppers 
 

Pic: Edges for L=50

 

4(b) L =  50
 

Pic: Edges for L=75

 

4(c) L = 75
 

Pic: Edges for L=85

 

4(d) L = 85
 

Pic: Edges for L=95

 

4(e) L = 95
 

Pic: Edges for L=105

 

4(f) L = 105
 

Pic: Edges for L=115

 

4(g) L = 115
 

Pic: Edges for L=121

 

4(h) L = 121
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Pic: original

 
5(a)Photographer 

Pic: Edges for L=80

 
5(b) L = 80 

Pic: Edges for L=90

 
5(c) L = 90 Pic: original

 
6(a)  House 

Pic: Edges for L=70

 
6(b) L = 70 

Pic: Edges for L=90

 
6(c) L = 90 

 
Synthetic and real world images were tested with a view to stress-testing the code.  

Results on two such images are seen in figures 7 and 8 below.
 

       
7(a) Synthetic image (Syn 1)        7(b) Edges in Syn 1 (L = 90)      7(c) Edges in Syn 1 (L = 100) 

              
          

8(a) Real world image (RW1)             8(b) Edges in RW 1 (L = 128)           8(c) Edges in RW 1 (L =
 
65)

 
                 

(Acquired from Google Earth)
 

 

The images reported here are of different sizes (80 x 80 to 512 x 512) and detail contents.  

CPU run time is more for some of these images because of their larger size.       
 

b)
 
Comparisons and performance reports

 

The proposed IIHG algorithm was compared for edge detection results with three 

other published algorithms –
 
namely, the Sobel [14], the Canny [15], and the MG-IT2FIS 

[16]. The original images (inputs) are in panel 1.  The results of each of the four 

algorithms on these five images are in panel 2.  Figures in these panels have not been 

numbered.  As can be seen from panel 2, the comparison works out, to a significant 

extent, in favor of the
 
proposed IIHG-based algorithm.
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Pic: original

 Photographer
 

Pic: original

 Lena
 

Pic: original

 Peppers
 

Pic: original

 House
 

Pic: original

 Parakeet
 

Panel 1  :  The five original images that feature in the comparison (shown in panel 2)  

 Canny                                     Sobel                              MG + IT2FIS*

 
( these edge image pictures are as published in [16])

 
* Morphological Gradient Interval Type 2 Fuzzy Inference System [16]

 

IIHG + suppression

 
(proposed)

 

 

Pic: Edges for L=90

 

  

 

Pic: Edges for L=95

 

 

Pic: Edges for L=90
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Panel 2 : Comparison of the proposed IIHG algorithm with Sobel, Canny and MG+IT2

Notes



 

 

   

In the above comparison experiment, we used L = 90 (for the Photographer image), 80 

(Lena), 95 (Peppers), 90 (House) and 60 (Parakeet).

 

Table 1

 

:

 

Performance of the proposed algorithm (Standard test images)

 

#H: Number of 

hyperedges;

 

*Run time in seconds, rounded to one place after the decimal

 

S.no.

 

Image

 

L

 

#H

 

Run 
time*

 

S.no.

 

Image

 

L

 

#H

 

Run 
time*

 

1

 

Lena

 

(200 x 200;

 

Bitmap)

 

50

 

6

 

13.8

 

4

 

Peppers

 

(200 x 200;

 

JPEG)

 

50

 

6

 

12.8

 

60

 

5

 

12.7

 

75

 

4

 

10.5

 

90

 

3

 

10.3

 

85

 

3

 

10.9

 

100

 

3

 

11.2

 

95

 

3

 

9.5

 

110

 

3

 

11

 

105

 

3

 

8.8

 

115

 

3

 

10

 

115

 

3

 

8.4

 

2

 

Photographer

 

(333 x 336;Bitmap)

 

80

 

4

 

15.8

 

5

 

House

 

(333 x 333;

 

Bitmap)

 

70

 

4

 

10

 

90

 

3

 

17.4

 

90

 

3

 

8.1

 

105

 

3

 

17.9

 

100

 

3

 

7

 

3

 

Parakeet

 

(328 x 198;

 

Bitmap)

 

60

 

5

 

15

 

6

 

Other images**

 

TIF / 
JPEG / Bitmap

 

40 to

 

150

 

2 
to

 

7

 

3

 

to 
40

 

70

 

4

 

13.2

 

85

 

3

 

12.4

 

** More than 350 images from [12] and [13] (size: 80 x 80 to 512 x 512)

 

Table 2

 

:

 

Performance of the proposed algorithm 

 

(Synthetic and real world images)

 

S.no.

 

Image & size

 

L

 

#H

 

Run time*

 

1

 

Syn 1

 

(94 x 150; 
Bitmap)

 

90

 

3

 

8.2

 

100

 

3

 

8.6

 

55

 

5

 

7.1

 

2

 

RW1

 

(108 x

 

168; 
Bitmap)

 

128

 

2

 

10.5

 

93

 

3

 

14

 

65

 

4

 

16.6

 

3

 

Other images***

 

TIF / 
JPEG / Bitmap

 

40 to

 

150

 

2 to

 

7

 

6

 

to 40

 

*** More than 300 images from [12] and [13] and Google Earth (size: 90 x 90 to 512 x 512)

 

c)

 

Computational complexity of the proposed algorithm

 

The number of hyperedges in the first stage does not exceed q + 1, where q = [255 

–

 

255 (mod L)] ⁄

 

L.  So for any positive integer value of L, we have q ≤

 

255.  Since the 

hyperedges are non-intersecting, each pixel is visited exactly once in the first stage.  

 

In the second stage, in each hyperedge, each pixel is visited at most four times for 

segregating the edge points from the interior points.  Then, to suppress each interior 

pixel, we need exactly one assignment of the value 255 to the pixel.  Subsequently, to 

identify the thick edges, each edge pixel is visited at most four times.  And the 
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sharpening process that follows takes one assignment operation (the one mentioned 

above) for every pair of thick edge pixels that correspond in the required bijective way 

(see A3 of appendix).  Hence the number of computations in the algorithm is λn, with 1 ≤

λ ≤ 10, where n = number of pixels in the input image.  Let f(n) = n and g(n) = λ n.  As 

n tends to ∞, the limit of f(n) / g(n) is 1 / λ, and that of g(n)/ f(n) is λ.  Since both λ and 

1/ λ are finite and nonzero, we aver that the complexity of the proposed algorithm is 

O(n).

Notes



 

 

 

 

 

 

(i) The sequential combination of two functions –

 

thick edge identifier and thick edge 

sharpener, in that order –

 

ensures that no redundancies appear in any edge.  This 

combination is effective principally because of the IIHG model.  

 

(ii) The first stage (construction of the IIHG) ends when the empty set (φ) takes the place 

of V, and this happens in at most q + 1 steps.  The second stage (edge detection) 

ends when each hyperedge has been cleared of its thick edges, which happens in at 

most S steps (but in most images well below S because of interior points being 

excluded from this process), where S = Σ

 

Σ

 

(│Ej│x │Ek│),

 

the sums running over the 

indices j (second) and k (first) with j, k ϵ  1, . . , │E   and j   k; and whatever the 

value of L, │E│does not exceed 255.  Thus the algorithm is convergent.

 

(iii) The algorithm handles large sized images of varying  dimensions and for all values of 

L in its stipulated range (1 ≤

 

L ≤

 

254), and so is robust.  

 

(iv) The algorithm is fast for test images that are widely used as standards by researchers 

in image processing (for instance, Lena and Peppers).  

 

(v) Since the output is always viewed rather subjectively, edges that are considered ‘not 

desirable’

 

can be removed by tuning L.  While this is a facility that is in-built in the 

algorithm, tuning L to eliminate such ‘undesirable’

 

edges could accidentally rub out 

true edges also.  This is one limitation of the algorithm.  

 

 

(i) We have presented a hypergraph-based one-parameter-driven partitioning algorithm 

for edge detection in clean gray images.  The algorithm processes patches of pixels of 

arbitrary (finite) size

 

and distribution efficiently.  The computational complexity is 

O(n), which is an outstanding feature here.

 

(ii) From the tests reported in section 5.1, we have arrived at an apparently good range 

for L for a large number of images, standard or real-time, and this is 60 ≤

 

L ≤

 

120.  

However, L is image-dependent.  Going by our tests (on hundreds of standard, real-

pixels, resulting in loss of true edges.  Since performance of parameter-driven 

algorithms are application-dependent, we have not gone into the question of 

optimizing L.  

 

(iii) In image engineering applications, the input image may have to be first subjected to a 

noise removal scheme before the IIHG algorithm is applied.  As for noise removal, 

adequate schemes are available [5, 6, 17-20].
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Notes



 

 

 

Bonded sets

 

Let N ×

 

N denote the Cartesian square of the set N of positive integers.  For (x1,

 

y1),

 

(x2,

 

y2) Є

 

N ×

 

N, we define ρ

 

((x1,

 

y1), (x2,

 

y2)) = max{|x1 –

 

x2|, |y1 –

 

y2|}.  The 

function ρ

 

is a metric on N x N –

 

and hence on any nonempty subset of N x N –

 

and ρ

 

is 

called the chessboard metric.    

 

For a given nonempty set V, by 2V we mean the power set of V; and by 2V* we 

mean the set of all nonempty subsets of V.   Let V be a finite nonempty subset of N x N 

endowed with the chessboard metric.  

 

If X Є

 

2V*

 

and a Є

 

V, we define ρ

 

(a, X) = min {ρ (a, b): b Є

 

X}.  If X, Y Є

 

2V*

 

then we define ρ(X,

 

Y) = min {ρ (a, b): a Є

 

X, b Є

 

Y}.  

 

Let A be a nonempty subset of V.  A finite sequence x1, . . . , xk

 

of elements of A 

is called a 1-step sequence

 

(1-ss) in A  if ρ

 

(xi, xi + 1) = 1 for each i = 1, . . . , k−1.  If a, b 

Є

 

A, then we say a is bonded

 

to b

 

in A if ρ

 

(a, b) ≤

 

1 or if there exist points z1, . . .,zk

 

in 

A such that the sequence a, z1, . . .,zk, b is a 1-ss in A.  In this case we write {a: b}A.  

 

Clearly: (i) {a: a}A, (ii) {a: b}A 

 

{b: a}A and (iii) {a: b}a and {b: c}A {a: c}A, 

for all a, b, c Є

 

A.  Further, {a: b}A 

 

{a: b}B whenever A 

 

B.  A is called a bonded 

set

 

if {a: b}A for every a, b Є

 

A.  A singleton set is obviously bonded.  

 

Interior points and edge points in an image 

 

Given a = (x, y) Є

 

V, we define the neighborhood B4(a) as: 

 

B4(a) = {b

 

= (p, q) Є

 

V│

 

ρ

 

(a, b) ≤

 

1 and

 

( x = p or y = q)}.  Clearly a Є

 

B4(a) 

for each a Є

 

V. 

 

Let A Є

 

2V*and a = (x, y) Є

 

A.  We say a is an interior point of A

 

if and only if B4 

(a) µA. We let IntA denote the set of all the interior points of a given set A.  If a is not 

an interior point of A then we call it an edge point of A. 

 

Edges in an image 

 

By │A│we mean the cardinality (or, size) of the set A.  An edge

 

in V is a 

nonempty subset e (V) of V with the following properties:

 

(ed-1) e (V) µ

 

X for some (hence unique) hyperedge X in H;

 

(ed-2)

 

│e (V)│> 1;

 

(ed-3)

 

no point of e (V) is an interior point of X;

 

(ed-4)

 

e (V) is bonded, and
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(ed-5) if Y satisfies (i) e (V) Y µ X, (ii) e (V) ≠ Y and (iii) Y IntX = φ, then Y is 

not bonded. 

A thick edge (or, a duplicated edge) in V is a nonempty subset r(V) of V that can 

be partitioned as r(V) = r1(V) r2(V) (i.e., r1(V) and r2(V) are nonempty subsets of r(V) 

such that r1(V) r2(V) = φ) with the following properties:

(t-ed-1) │r1(V)│ = │r2(V)│, 

Notes



     

 

 

 

  
  

 

(t-ed-2)

 

r1(V) 

 

µ

 

X1

 

and r2(V) 

 

µ

 

X2

 

for some distinct (hence disjoint) hyperedges X1

 

and  

X2

 

in H (we call X1

 

and X2

 

the source hyperedges of r1(V) and r2(V), respectively), and

(t-ed-3)

 

there exists a bijective map f: r1(V) →

 

r2(V) such that for each a Є

 

r1(V) we have

 

a Є

 

B4 (f(a)) as well

 

as

 

f(a) Є

 

B4 (a).

 

Suppression of interior points

 

Let A Є

 

2V*

 

and b* (A) = A –

 

IntA, where IntA denotes the set of all the interior 

points of A.  Let.  Evidently b* (A) is nonempty unless A = V.  We call the computation 

of b* (A) the suppression

 

of the interior points of A.  Notice that if A Є

 

E, then b* (A) is 

either an edge in V or a union of edges in V.

 

Sharpening of thick edges

 

Given two distinct hyperedges X1

 

and X2

 

in H, we write X1

  

X2

 

if I(a) 

 

I(b) for 

every a Є

 

X1

 

and  b Є

 

X2.  Let r(V) = r1(V) 

 

r2(V) be a thick edge in V with source 

hyperedges X1

 

and X2, respectively, such that X1

  

X2.  Let ψ: r2(V) →

 

W be the constant 

function ψ(b) = 255.  The function ψ

 

is called the edge sharpener function.  It suppresses 

one half of the targeted thick edge out of the picture, so that only the other half is seen in 

the edge image.
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