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For |q| < 1,

(a; q)∞ =
∞∏

n=0

(1 − aqn) (1.1)

(a; q)∞ =
∞∏

n=1

(1 − aq(n−1)) (1.2)

(a1, a2, a3, ..., ak; q)∞ = (a1; q)∞(a2; q)∞(a3; q)∞...(ak; q)∞ (1.3)

Ramanujan [2, p.1(1.2)]has defined general theta function, as

f(a, b) =
∞∑
−∞

a
n(n+1)

2 b
n(n−1)

2 ; |ab| < 1, (1.4)

Jacobi’s triple product identity [3,p.35] is given, as

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞ (1.5)

Special cases of Jacobi’s triple products identity are given, as

φ(q) = f(q, q) =
∞∑

n=−∞

qn2

= (−q; q2)2
∞(q2; q2)∞ (1.6)

(q) = f(q, q3) =
∞∑

n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

(1.7)

f(−q) = f(−q,−q2) =
∞∑

n=−∞

(−1)nq
n(3n−1)

2 = (q; q)∞ (1.8)
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New results on q-product identities based on Ramanujan's findings

Equation (1.8) is known as Euler’s pentagonal number theorem. Euler’s another well
known identity is as

(q; q2)−1
∞ = (−q; q)∞ (1.9)

Throughout this paper we use the following representations

(qa; qn)∞(qb; qn)∞(qc; qn)∞ · · · (qt; qn)∞ = (qa, qb, qc · · · qt; qn)∞ (1.10)

(qa; qn)∞(qb; qn)∞(qc; qn)∞ · · · (qt; qn)∞ = (qa, qb, qc · · · qt; qn)∞ (1.11)

(−qa; qn)∞(−qb; qn)∞(qc; qn)∞ · · · (qt; qn)∞ = (−qa,−qb, qc · · · qt; qn)∞ (1.12)

Now we can have following q-products identities, as

(q2; q2)∞ =
∞∏

n=0

(1 − q2n+2)

=
∞∏

n=0

(1 − q2(4n)+2) ×
∞∏

n=0

(1 − q2(4n+1)+2) ×
∞∏

n=0

(1 − q2(4n+2)+2) ×
∞∏

n=0

(1 − q2(4n+3)+2)

=
∞∏

n=0

(1 − q8n+2) ×
∞∏

n=0

(1 − q8n+4) ×
∞∏

n=0

(1 − q8n+6) ×
∞∏

n=0

(1 − q8n+8)

or,

(q2; q2)∞ = (q2; q8)∞(q4; q8)∞(q6; q8)∞(q8; q8)∞ = (q2, q4, q6, q8; q8)∞ (1.13)

(q4; q4)∞ =
∞∏

n=0

(1 − q4n+4)

=
∞∏

n=0

(1 − q4(3n)+4) ×
∞∏

n=0

(1 − q4(3n+1)+4) ×
∞∏

n=0

(1 − q4(3n+2)+4)

=
∞∏

n=0

(1 − q12n+4) ×
∞∏

n=0

(1 − q12n+8) ×
∞∏

n=0

(1 − q12n+12)

or,

(q4; q4)∞ = (q4; q12)∞(q8; q12)∞(q12; q12)∞ = (q4, q8, q12; q12)∞ (1.14)

(q4; q12)∞ =
∞∏

n=0

(1 − q12n+4) =
∞∏

n=0

(1 − q12(5n)+4) ×
∞∏

n=0

(1 − q12(5n+1)+4)×

×
∞∏

n=0

(1 − q12(5n+2)+4) ×
∞∏

n=0

(1 − q12(5n+3)+4) ×
∞∏

n=0

(1 − q12(5n+4)+4)

=
∞∏

n=0

(1− q60n+4)×
∞∏

n=0

(1− q60n+16)×
∞∏

n=0

(1− q60n+28)×
∞∏

n=0

(1− q60n+40)×
∞∏

n=0

(1− q60n+52)

or,
(q4; q12)∞ = (q4; q60)∞(q16; q60)∞(q28; q60)∞(q40; q60)∞(q52; q60)∞

= (q4, q16, q28, q40, q52; q60)∞ (1.15)

Notes
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New results on q-product identities based on Ramanujan's findings

Similarly we can compute following as

(q5; q5)∞ = (q5; q15)∞(q10; q15)∞(q15; q15)∞ (1.16)

(q6; q6)∞ = (q6; q24)∞(q12; q24)∞(q18; q24)∞(q24; q24)∞ = (q6, q12, q18, q24; q24)∞ (1.17)

(q6; q12)∞ = (q6; q60)∞(q18; q60)∞(q30; q60)∞(q42; q60)∞(q54; q60)∞

= (q6, q18, q30, q42, q54; q60)∞ (1.18)

The outline of this paper is as follows. In sections 2, some recent results obtained by the
author [1], and also some well known results are recorded in [6;7], those are useful to the
rest of the paper. In section 3, we state and prove four q-product identities, which are
new and not recorded in the literature of special functions.

In [1], following identities are being established

(q; q2)∞ = (q, q3, q5; q6)∞ (2.1)[
(−q; q2)8

∞ − (q; q2)8
∞

q

] 1
4

=
2[

(q2; q4)∞
]2 (2.2)

(q2; q2)∞
(q4; q4)∞

= (q,−q; q2)∞ (2.3)

(q2; q2)∞ = (q2; q4)∞(q4; q4)∞ (2.4)

In Ramanujan’s notebook [7, p.107], Chapter IX, Entry 7(iii) is recorded as

φ(q) + φ(−q) =
1

4
φ(q2) (2.5)

In Ramanujan’s notebook [7, p.198], Chapter XV I, following entries are recorded as

Entry 24(i) :

f(q)

f(−q)
=

(q)

(−q)
=

χ(q)

χ(−q)
=

√
φ(q)

φ(−q)
(2.6)

where χ(q) is given in [7, p.197], Chapter XV I, Entry 22(iv), as

χ(q) =
∏

(q, q2) = (1 + q)(1 + q3)(1 + q5)(1 + q7) and constant (2.7)

Entry 24(ii) :

f 3(−q) = φ2(−q) (q) = 1 − 3q + 5q3 − 7q6 + 9q10 − and constant (2.8)

Entry 24(iii) :

χ(q) =
f(q)

f(−q2)
= 3

√
φ(q)

(−q)
=
φ(q)

f(q)
=
f(−q2)

(−q)
(2.9)

where χ(q) is given by (2.7)
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New results on q-product identities based on Ramanujan's findings

Entry 24(iv) :
f 3(−q2) = φ(−q) 2(x) (2.10)

and
χ(q)χ(−q) = χ(−q2) (2.11)

where χ(q) is given by (2.7)

In this section, we established following new results with the help of (.) and φ(.) functions
or in more general language we can say that by using the properties of Jacobi’s triple
product identity as (.) and φ(.) functions are its special cases. These results are not
recorded in the literature of special functions

(−q2; q4)∞ = 2(−q,−q; q2)
1
2∞[(−q; q2)2

∞ + (q; q2)2
∞]

1
2 (3.1)

(−q; q2)∞(q; q)∞ = (q; q2)∞(−q;−q)∞ (3.2)

(q; q)∞ = (q; q2)∞(q2; q2)∞ = (q, q2; q2)∞ (3.3)

(−q;−q)∞ = (−q; q2)∞(q2; q2)∞ (3.4)

Proof of (3.1): By substituting, q = −q and q = q2 respectively in (1.6), we have

φ(−q) = (q; q2)2
∞(q2; q2)∞ ; φ(q2) = (−q2; q4)2

∞(q4; q4)∞

by substituting the values φ(−q), φ(q2), and employing (1.6) in (2.5), we get

(q2; q2)∞[(−q; q2)2
∞ + (q; q2)2

∞] =
1

4
(−q2; q4)2

∞(q4; q4)∞

further using (2.3), and after simplification, we get

(−q2; q4)∞ = 2(−q,−q; q2)
1
2∞[(−q; q2)2

∞ + (q; q2)2
∞]

1
2

which established (3.1)

Proof of (3.2): By substituting, q = −q in (1.7) and (1.8) respectively, we have

(−q) =
(q2; q2)∞
(−q; q2)∞

; f(q) = (−q;−q)∞

III. MAIN RESULTS 

by substituting the values of f(q) and (−q), and employing (1.7) and (1.8), in first and
second part of (2.6), after little simplification, we get

(−q;−q)∞
(q; q)∞

=
(−q; q2)∞
(q; q2)∞

which can also be written as

(−q; q2)∞(q; q)∞ = (q; q2)∞(−q;−q)∞

which established (3.2)
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New results on q-product identities based on Ramanujan's findings

Note: We verified that the result (3.2), can also be proved by taking any other two parts
of (2.6).

Proof of (3.3): By (1.6) and (1.8) respectively, we have

φ2(−q) = (q; q2)4
∞(q2; q2)2

∞ ; f 3(−q) = (q; q)3
∞

by substituting the values of φ2(−q) and f 3(−q), and employing (1.7), in first and second
part of (2.8), after little simplification, we get

(q; q)∞ = (q; q2)∞(q2; q2)∞ = (q, q2; q2)∞

which established (3.3)

Note: If we put q = q2 in (3.3), then we find (2.4) a result already proved by the author
in [1].

Proof of (3.4): By (1.7) and (1.8) respectively, we have

(−q) =
(q2; q2)∞
(−q; q2)∞

; f 3(q) = (−q;−q)3
∞ ; f 3(−q2) = (q2; q2)3

∞

by substituting the values of (−q), f 3(q), f 3(−q2) and employing (1.6), in second and
third part of (2.9), after little simplification, we get

(−q;−q)∞ = (−q; q2)∞(q2; q2)∞

which established (3.4)

Note: We verified that the result (3.4), can also be proved by taking any other two parts
of (2.9).
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