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Abstract-

 

We have studied the behaviour of a

 

radiating star when the interior expanding, shearing

 

fluid particles are 
traveling in geodesic motion. A

 

systematic approach enables us to write the junction

 

condition as a Riccati equation. In 
this article we

 

obtained two new solutions in terms of elementary

 

functions with assuming a separation of variables and

 

also have discussed the physical significance of these

 

solutions.
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I.

 

Introduction

 

The interior space-time of the collapsing radiating

 

star should match to the 
exterior space-time

 

described by the

 

Vaidya solution in 1951. To obtain

 

realistic analytic 
solutions, different authors

 

constructed different models. De Oliviera et al (1985)

 

proposed a radiating model of an initial interior static

 

configuration leading to slow 
gravitational collapse.

 

Herrera et al (2004) proposed a relativistic radiating

 

model with a 
vanishing Weyl-tensor, in a first order

 

approximation, without solving the junction 
condition

 

exactly. Then Maharaja and Govender (2005) &

 

Herrera et al (2006) solved the 
relevant junction

 

condition exactly, and generated classes of solutions

 

in terms of 
elementary functions which contain the

 

Friedmann dust solution as special case. The first

 

exact solution, with nonzero shear was obtained by

 

Naidu et al (2006) in 2006, 
considering geodesic

 

motion of fluid particles; later in 2008, Rajah and

 

Maharaja (2008) 
obtained two classes of nonsingular

 

solutions by assuming that the gravitational function

 

Y(r,t) is a separable function and solving a Riccati

 

equation. Recently S.

 

Thirukanesh and Maharaj (2010) demonstrate and

 

obtained exact solutions 
systematically without

 

assuming separable forms and not fixing the

 

temporal evolution of 
the model. We further

 

extended it and obtained two new solutions by

 

assuming that the 
gravitational potential Y(t, r) and

 

B (r, t)

 

is a separable function.

 

II.

 

The Model

 

In general relativity, the form for the interior space

 

time of a spherically 
symmetric collapsing star with

 

nonzero shear when the fluid trajectories are

 

geodesies is 
given by the line metric.
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Notes



 (1)

 
 
 

Here B and Y

 

are functions of both the temporal

 

coordinate t and radial coordinate 

r. The fluid four –

 

velocity vector u is given by    

   

  which is

 

comoving. For the line 
element (1), the four

 

acceleration      , the expansion scalar    , and the

 

magnitude of the 
shear scalar are given by

 (2a)

 
 (2b)

 
 (2c)
 
 
 

respectively, and dots denote the differentiation with

 

respect to t.

 

The energy momentum 
tensor for the interior matter

 

distribution is described by

 
(3)

 
 where p

 

is the isotropic pressure, p
 

is the energy

 

density of the fluid,     is the 
stress tensor, and qa

 

is

 

the heat flux vector. The stress tensor has the from

 
 (4)

 
 Where Pr

 

is the radial pressure, and Pt

 

is the

 

tangential pressure and n is a unit 

radial vector given
 
by            .

 
The isotropic pressure is given by

 
 (5)

 
 In terms of the radial pressure and the tangential

 
pressure, for the line element (1) 

and matter
 
distribution (3) the Einstein field equations becomes

 
 (6a)
 
 (6b)
 
 

(6c) 
 

(6d)
 
 

where the heat flux q
 a  = (o, q, o, o) is radially

 
directed and primes denote the 

differentiation with
 
respect to r. These equation describe the

 
gravitational interactions of 

a shearing matter
 

distribution with heat flux and anisotropic pressure
 

for particles 

travelling along geodesics from (6a) – 
(6d), we

 
observe that if the gravitational potentials

 

B(t, r) and y (t, r)
 
are specified, then the expressions

 
for the matter variables p, pr

 ,
 
pt

 

and q follow by
 
simple substitution.

 

The vaidya exterior space-time of radiating star is
 
given by

 
 

(7)
 

 

where m(v) denoted the mass of the fluid as
 
measured by an observer at infinity. 

The matching of
 
the interior space-time (1) with the exterior spacetime

 
(7) generates the 

set if junction conditions on
 
the hyper surface Σ

 
given by
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Notes



(8a) 
 
 (8b)
 
 
 

(8c)

 
 
 

(8d)

 
 The nonvanishing of the radial pressure at the

 

boundary Σ

 

is reflected in equation 
(8d). Equation

 

(8d) is an additional constraint which has to be

 

satisfied together with the 
system of equations (6a)-

 

6d).

 

On substituting (6b) and (6d) in (8d) we obtain

 
 (9)

 
 

which has to satisfied on Σ. Equation (9) governs the gravitational behaviour of 
the radiating anisotropic star with nonzero shear and no acceleration. As equation (9) is 
highly nonlinear, it is difficult to solve without some simplifying assumption. This 
equation comprises two unknown functions B(t, r) and Y(t, r). 

iii.  Exact Solutions 
For convenience rewrite equation (9) in the form of the Riccati equation in the 

gravitational potential B as follows 
 

(10) 
 
 

Equation (10) was analyzed by Nogueira and Chan (2004) who obtained 
approximate solutions using numerical techniques. To describe properly the physical 
features of a radiating relativistic star exact solutions are necessary, preferably written in 
terms of elementary functions. An exact solution was found by Naidu et al (2006), which 
was singular at the stellar centre. 

The Riccati equation (10), which has to be satisfied on the stellar boundary Σ, is 
highly nonlinear and difficult to solve. In 2008, Rajah and Maharaj obtained solutions by 
assuming that the gravitational potential Y(t, r) is a separable function and specifying 
the temporal evolution of the model. Later in 2010, Thirukanesh and Maharaj, 
demonstrate that it is possible to find another exact solutions systematically without 
assuming separable forms for Y(t, r) and not fixing the temporal evolution of the model a 
priori by introduce the transformation 

 
(11) 

 
Then equation (10) becomes 

 
(12) 

 
where set  

 
Observe that equation (12) becomes a separable equation in Z and t, and therefore 

integrable, let F be a constant or a function of r only. In other word, (12) is integrable as 
long as F is independent of t. 
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ݐ݀ = (1 − ଶ
ோΣ

+ 2 ௗோΣ

ௗ௩
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ܻ(ܴΣ, (ݐ = ܴΣ(ݒ)

Σ(ݒ)݉ = ቈ
ଶ
ቆ1 + ܻ̇ଶ −

 ′
మ

మ
ቇ

Σ
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ܤ = ܼܻᇱ

ܼ̇ = ଵ
ଶ

ଶܼܨ] − 1]                         

ܨ = 2ܻܻ̈ + ܻ̇ଶ + 1

Notes

ܤ̇                       = ቈ
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ܻᇱ +

ܻ̇ଶ

2ܻܻᇱ +
1

2ܻܻᇱ
 ଶܤ +

ܻ̇ᇱ

ܻᇱ ܤ −
ܻᇱ

2ܻ



For F
 
= 1 S. Thirukanesh and S. D. Maharaj

 
obtained the solution

 
 
 
 
 
 
 
 

(13)

 
 

For                           the line element (13)

 

reduces to

 
 

 

 

 

 

 

 

 

 

 

 

(14)

 
 

Which is the first category of the Rajah and Maharaja (2008) models for an 
anisotropic radiating star with shear. They match the line element (14) with the Naidu et 
al solution 

 
 
 

(15) 
 
 

Again for F = 1 + R2
1(r) Thirukanesh & Maharaj found the line element 

 
 

(16) 
 
 
 

For R1 = R, R2 = aR which is reduces to equation 
 

(17) 
 
 

iv. New Solutions 

Now we obtained solutions by assuming that the
 
gravitational potential Y(t,r)

 

and B(t,r)
 
is a

 
separable function and specifying the temporal

 
evolution of the model 

Equation (9).
 
Choose,

 

Y=R(t)A(t)
 
And B=R(t)C(r)

 

Now from equation (9) we have
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Case-1
 

For     = 0, then we have
 

 
 
 

Therefore we have,
 

 
 
 

Then we can calculate the metric (1) is
 

 
 
 
 
Where  
 
 Here the expansion scalar Θ

 
is non zero and if

 
time(t)

 
is increase this will be 

decrease. Again
 
pressure is zero but density is nonzero i.e. the

 
universe is gaseous.

 Now we draw a graph (using MATLAB) for the scale
 
factor

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : This

 

solution shows the universe is either open or closed.

 
 

For 
 
≠

 
0

 
we have

 
 
 
 
 

Therefore the metric (1) can be written as
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.(ݎ)ܣ(ݐ)2ܴ (ݎ)ܣ(ݐ)ܴ̈ + ܴଶ̇(ݐ)ܣଶ(ݎ)−
ܴଶ(ݐ)ܣ′ଶ(ݎ)
ܴଶ(ݐ)ܥଶ(ݎ) +

(ݎ)′ܣ(ݐ)ܴ̇(ݎ)ܣ(ݐ)2ܴ
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Case-2
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Notes



Where A(r)
 
is the function of r

 
only.

 
 And 

 
 which is not a collapse solution. 
 
Consider,  
 
 Therefore the metric (1) becomes 
 
 
 
 For

 
 
 
 
 
Therefore we have, 
 
 
 
 
 
 
 
 
 
 

Here the expansion scalar Θ and density are non zero and both will be decrease if 
time is increase. Pressure is also non zero. 

v. Conclusion 
For the first case, the above solutions indicates that the space is very diluted as P 

= 0. So we may consider the solution for dust, the density and the expansion scalar Θ 
decreases when t is increases and tends to zero when t → ∞. The density decreases rapidly 
than the expansion scalar Θ. This solution shows the universe is either open or closed. So 
the solutions are physically realistic. 
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For case-2 we see that for                            both pressure p and density p
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the expansion scalar Θ. The form of the solution is Robertson Walker type solution for 
open universe. The pressure decreases slowly when both r and t increases but does not 
tends to zero when both r and t tends to infinity. The solution is physically realistic.
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