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[.  INTRODUCTION

Authors like Lambert and Shaw (1965) [1, 15| considered a class of formulae for
the numerical solution of

y =fy);yx) =y (1)

in which the underlying interpolant was a rational function, which was in contrast with
the classical formulae. The numerical methods that resulted from the works of the above
mentioned authors afforded an improved numerical solution which was closed to a
singularity of the theoretical solution of (1), since they locally represented the numerical
solution of (1) by an interpolant which can possess a simple pole.

[1. DETERMINATION OF THE UNDETERMINED COEFFICIENTS

The Interpolant considered in this work is presented as:

F(x)=> ax +b|A+x [',Ng{012,..,L} 2)
J=0

where &, , O, Aand N are real, L is a positive integers.
Assuming that

F(%)) = Ynand F(%.1) = Yo %1 = %+ N iorwhich . — a+ nh
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Let T ) denotes the i ™" total derivative of f(x,y) with respect to x such that

It follows thus;

The above expressions hold provided all the derivatives concerned exist.

F(Xn+1) -F (Xn) = Yha— Yn

FO(x,) = f(x,Y,) = f,and

FO(x)=f9(x,,y,) = f,”

FM(x,)=f™(x,y,) = fm?

L
yn+1 - yn = Zaj I:Xr];+1 - Xr]; ]+ b[(A+ Xn+1)N - (A+ Xn)N]
j=0

Elimination of the undetermined coefficients from (7) then gives the required algorithm:

When L = 1 (i.e. the polynomial F,(x) is linear)

Differentiate F(x, )= a, + a,X, + b(A+ x,)" to eliminate the undetermined coefficients

© 2012 Global Journals Inc. (US)

P, (x)=ioajxj =8, + & X =8 +a,X

F(x,)=a, +aXx, +b(A+x, )"

F(Xa.1) = 8 + Xy, +D(A+X,.0)"

Let ¥, =F(x,) and y,., = F(x,,)

= F(Xy1) = F(X,) = Yoa = Y2 12)

Yo = Yo = (% = %)+ B(A+ %, )" — (A4 %,)"

Yo =Y = a1h+ bl(A+ X, + h)N _(A+ X, )NJ

a,=f — [Nb(A+ xn)'HJ

f @

n

b= N(N _—1)(A+ x )2

(8)
9)

(10)

(11)

(13)

(14)

Notes



Therefore

2 N
Y= Yn= hfn + (A+ Xn) 1+ h -1- Al fn(l)
N(N-1) A+Xx, A+X,
N(A+ X
Let us introduce % to the third term in the bracket to have;
+ X,

Notes

2 N 2
i A [ b (Arx ) NA+x (AL x| g
" IN(N-D A+x N(N-1) N(N-1fA+x,) | "
(17)
2 c0) N
oy ot AR H“ h j P ]
N(N-1) A+X, A+X,
= (18)
When L=2 (i.e. the polynomial P, (x) is a quadratic):
2
P(X)=)ax =ax’+ax +a,X’ =a,+ax+a,X (19)
=0
F(x,)=a, +aXx, +a,x’ +b(A+ X, )" (20)
By applying the above assumptions, one obtains the undetermined coefficients as;
(A+x, )2 )
= n n _ 1 (A+ Xn) 2 22
N(N 1N -2)(A+x,)" a?‘z[fn()‘m_z)f““} 22)
_ , (A+x, )2 (At x,)° 2 23
ai—fn‘{xnf””‘xn (N-2) +(N—1)<N—1)} .

Thus

2 3 ¢(2) N B 2
SIS S S

2 N(N-1)N-2)

N(A+ X
Let us introduce ( i ”) to the third term in the bracket to have;
N(A+x,)
2 A 352 N -
oo g, (ARXSER (0 b Yy NIN=D)f b (24)
2 N(N-1)(N -2) A+ X, 2 [ A+x,
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To generalize this integrator, we let

F(X) = ap + ayx + ax? + azx® + -+ a,x™ + b(A + x)V

F(x,) = ag+ ayx} + apx? + azxs + -+ a,x* + b(A + x,)V

Let (A+xn) = mnand(A + xn+1) = ¢n+1

F(xn) =Qqy + a X, + azx-,zL + a3x2 + - 4 anx‘rly + b@ﬁ

And F(xpi1) = g + Qyxy + aX5 41 + Q3Xnpq + 0+ auXq + Oy

It follows (3) that
Yo = Qo + ayx, + ayx2 + azx> + -+ a,x* + b[p(m)]V
And so

Ynt1 = Qo+ QXpiq + GpXppq + a3x3 g + o+ apxyyg + bl (4N

Subtraction equation (29) from (30) we have
Ynt1 = Ya T g (xn+1 - xn) +a; (x72l+1 - xn2)+---+an(xiz+1 - xiz) + b[¢(xn+l)]N - [(p(xn)]N

Since the mesh size is defined as x; = a + th and Continuing untox(;

x{ = (a + th)"usingbinomialexpansion

We obtain

(25)

(26)

(27) I\Iotes

(28)

(27)

(29)

(30)

(BD

n(n —1)a™2h? N 3n(n — 1)(n — 2)a™3t3h? N 3n(n — 1)(n — 2)a"3th3

X4 — % =na""th + n(n — Da™2th? + o 31 3!

(n—1)(n—2)a"3h3
+ 3!

Thus, one obtains:

Global Journal of Science Frontier Research ( F) Volume XII Issue XI Version I E Year 2012

Yes1 — Ve = o+ ay h+ az (2ah + h2( 1+ 21))

+as (3a’h + 3a’h (1+2t) + h3 @t3+ 3t+ 1)) + -+ a, (xF — x™)

Also with the generalized interpolant;

F(x,) = ag+ aix; + ax? + asx? + -+ apx? + b[p(x )]V

© 2012 Global Journals Inc. (US)

(36)

(37)

(38)



This can be written as;

FG) = ) agxd + blp o) (39
i=0

By differentiating 6.1.29 nth times, one obtains;

Fl(x,) = ay + 2a,x3, + 3azx? + - +na,x} 1 +bN[p(x)]¥N 1= f (40)
I q otes

FO D) = (n=Dlay_; +n! ayx, + - +nn—1)n—-2).. (n—[(n—1) — 1Da,x "
+BN(N=1D(N=2) .. (N=[(n—1)—1]) ¢ (x)"-(-D = (A1 (1)
F* =nla, + DN (N —1)(N=2) .. (N=[(n—1) —1]) ¢ (x)V ™ = D7 (42)
Fr=nn+1)n-2)..n—-[(n-1]) a, +--
+bN (N = 1D)(N = 2) ... (N =n) ¢ (x)V-0+D = 07D (43)
£ = bN (N = 1)(N = 2)(N = 3) ... (N —n)[4 + x,]V-C+D (44)
Thus, the undetermined coefficients are obtained asfollows:
B (A +xt]n+1ft(")
T D R T AL (#5)
ey X w
= [ft (N—-n) fe (46)
1 _ _ (N=n+2)A="  x(A+ x,)
_ n-2) _ (n-1) _ M t (n)
e Y] (ff xl: W-DN-(-D  N-mn ]ff > 47
ft(n—s) —x, ft(n_Z) + xtz)ct(n—l)
1
n-2 = (n=2)! + (n){ x, (A+ x,.)? 3 x2(A+ x,) A+ x)° } (48)
- W - 0-n N-@-2)W-m-D)N-n
1 ft(4) —720agx, — - —nn—1)...(n — a, x>
=— n 49
%75 [ —BN(N = 1) ...(n — )[A + x, ]S 49
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0 = i[ft(s) —120asx, —+—nn—1)..(n — 4a, x""‘] (50)
T —bN(N —1) ...(N — 3)[A + x,]V*
as = l[ﬁ(z) —24ax;, —— nn—1)(n-2a, x”‘3] 1)
T —bN (N — 1)(N — 2)[A + x, N3
1
a, = E[ft(l) —6a3x,——nn—1a,x"2— bN(N-1)[4A+ xt]N’Z] (52)
a; = [f, — 2a,x, —3a3 %% — - — na,x," ' — bN [A+ x,]V71] (53)

In all, by substituting the undetermined coefficients appropriately, one obtains;

L b e, (A x,) h ) . &@k-1 h
2 7& 1 - _2
Yra ™I = ~= al [[+A+xj ~ Kl [A+X ]]

n

Prove of Convergence for the Scheme

According to Henrici (1962): we define any algorithm for solving a
differentialequation in which the approximation y,,, to the solution at the x,,, can be

calculated if only x, y, and h are known as a ONE-STEP METHOD. We proceed to
establish that our numerical algorithm is one step methods. From (2), the numerical

N
integrator generated is given by (). If we expand qut Ah D by binomial expansion

X

and taking N as a real, we shall have

= hiz Ak a
h Atx +Z(N—(l+1)) ((l+1)'(A+x )0+1>>

L hK—l
.. . (k-2) (A+xp) (L) N L K1
This implies  y,.1 =Y, +h < (Z Kl f J g h {A—+Xn +B_ Z‘P[hij }) (56)

K=1 = (A+x)"

Thus v~y 4 h{g (GF oD 4 ﬂn(L))} (57)
Yo = Yo +hO(X,, ¥, h) (58)
P(Xo» Yoih) = kZ:; (GF& D)+ AE,) (59)
where
© :% - (A;L”X")l{(AFinY}ﬂ_KZL:W((Ah:;)K J} v alz R O (‘“)) ((i“)!“‘h*i"")(i“))
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Notes

where 3(X,, Y,;h) is called the increment function.

Derivationofthelocation andnatureofthepointofsingularity

To derive A(n) and N(n), we make use of the Taylor series expansion of (55). This

gives the following expression for the truncation error:

TE= yn+1 - y(xml)

o a N+t pLta+rt
TE=>[-f&® 92 .07
= (A+ x,)° (L+g+D!
N-L-1
(24
— (L+a) gq-1 (L)
Tq =—f, + 5 f,
(A+Xx,)

The values of the parameters A(n) and N(n) are now chosen to satisfy

T, =T, =0

So that :
TE, = —f &0 +7(,Z{7;)° fO -0
N-L-1
TE=-ft2+-% 0 _g0
" (A+x)> "

(A x ) D g N O

1 =0
(A+x,)

It can be shown that;

_ Afn(ul) =X £ (L) _ag\l—L—lfn(L)

n

N-L-1 ¢ (L)
a f
—A(n) = x, ——2 n

(L+1)
fn

2
X, f

2

N-L-d g (1) £ (L+2) N-L-dg (1)

(L2 R P + a f LA N1 )

n ) ) n T n
n n

From the above, one obtains;

L _ 28 (12) __ N-L1g ()
o h ™ =—a

Nl g (1) N (1)) NLg ()
2 o o o 2
{x“fon[ ] +[ +2X]

Ly [ [
fy fy fy

2(¢ () £ (L+2) N-L-1 ¢ (L+1) NV e e N-Lag )5 (2 P
N T S T S R TR

1
(N—L—2)=[ o ] § (L2
(

(N — L—l)l fn(|_+1))2 n

N(fn(LJrl))Q _ (L + 2)( fn(L+1))2 _ an(L) f (L+2) _ (L +1) f (L) fn(L+2)

n n

(63)

(64)

(68)

(69)

(70)
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This result to;

n n f n
N(n) = (FE02 (L)f(L+2)J (75)
(fr1(|_+l))2
N(n) =(L+2D I_( fn(LJr[l))z fn(L) f]n(L+2)J (76)

Substitude (76) into (69) to obtain the value of A(n) as follow:

(f59) £
7A(n):xn7|:[L+1 l(f(L[l)) f(L)f](L Z)J L- 1} £ (77)

) ) fn(L+1) fn(L)
This gives; — A =x, - I fnm[n)z ]fnm 7] (78)

In the above derivation,N(n) is the nature of singularity and A(n) is the location
of singularity.

[1I.  CONVERGENCE THEOREM
Let the function ®(x,y;h) be continuous (jointly as a function of its three

arguments) in the region defined by x xe[a,b], y € (a,x) 0<h<hg, where hp>0, and let
there exist a constant L such that

[®(x, y*;h) - d(x, y;h)| < Ljy* -y (79)

for all (x,y;h) and (x,y*h) in the region just defined. Then the relation
d(x,y;0) = f(X,Yy)is a necessary and sufficient condition for theconvergence of the method

defined by the incrementfunction, ®. With the increment function deducted from the
formula or scheme.

B(x,, yrih)= Z[Af((k B ]+ Bf (- +Cf () )+Z[Df(f(:)yn ]

k=1
(81)
Hence
ol Yoih)-olx,ys:h) Z[Af“]Z[Af B, B, +OF Y, -OR ZDfxnynZ o)
k=1
(82)

=Sillre - sl sl - Jeelre - e (e, - 1)

h (83)

© 2012 Global Journals Inc. (US)
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Let y, be defined as a point in the interior of the interval whose endpoints are y

and y*, if we apply the mean value, we have

. of (X,,Y) ;o - ® V_fO of D (x,,y)
f(xn’yn)_f(xn1yn):7n(yn_yn)yf (Xn'yn)_ (Xn!yn)_i(y yn)
oy, ayn
L L of S(L) afx 84
() )_f(() :a(Tny)( yn)And f(kl) f;k;))_ Oi'yny)(yn yn) ( )
Notes .
If we defined
L= sup M L = SUp Laﬂd L. = Ssup o,

1(x, .1 n)eDom n (X1 n)eDom (%n .l n)sDom

Put equations

of (<D

#(%,, Vo) = 4%,y 1) = Z a;Y)( y)} {agg‘)y’(y;yn)]w[ag”(y;yn)J+ZD[afa(yi::”(y;yn)}

n n n

:¢(xn,y;;h)—¢(xnyn;h{LL[B+C+iDj+ LkZL:A}(y; - yn)

k=1 k=1

Taking the absolute value of both sides, we have

[#(x,. Yoih)- 4(x,y,:h) < LL[B+C+iD]+ L /{(y;—yn]
K=1 K=1
Let k= LL[B+C+ZL:D]+ LS

Thus [¢(x,. ya:h)-¢(x,Y.: 0} < K|(vs - v, )
which is the condition for convergence.

V. CONSISTENCY

#(%,. ¥a10)= (%, )
If put h=0

L Ak L+l
Yoy = Yo+ Z% £ty (A+an) fn(”{l“‘ +0-1- 0}
K=1 N+

a

yn+1 yn = f (Xn’ yn)

L L
Yur =Y t h{( B+C+ z D] f(&:)y") + [Z Aj f(&fyj;\))}
k=1

(85)

(87)

(88)
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The application of mean value theorem and the subtraction of 4.6 and 4.6, one obtains;

(L) ~ L af'Kfl) /L
sup —a; (xn,ln{B+C+ZD]+ up — (xn,ln{ZAj
K=1 K=1

n

yn+l_|n+1 = yn_|n+h

(xﬂ,\rn)eDum n (x,‘,\rn)eDom

:ynfln+h|:(B+C+ZL:DjL,_+( AJLH}(ynqn) (98)

M-

K=1 K=1

Vair = losdl <[¥a = 1|+ [A|PLL + ML [y, — 1

o

—
-

1+hS=R S=PL +ML | y,=4 and |, =2

s |yn+l_|n+1|S R‘/f_i‘:>|yn+1_|n+1|g[1+hs]yn_|n| :>|yn+1_|n+l|s Rlyn_|n| (100)

V. CONCLUSION

If in (2), the parameter A is regarded as undetermined coefficients and eliminated
in the same way as b and a ,(p=0.L...L), another class of formulae would emerge, which
is given as:

hf(li{(N—l))_f(N/(N—l))

J— n n

Yn+1 = Yn = A/ N-D) (A/N-1)) N #0 (60)
an+1 ~fa

This shall be used to construct a subroutine called GENFOR, which shall be able
to jump the point of singularity.
Ibijola, et (2004) constructed a one-step method, which was based on the non-linear
interpolant:

c

Fx)=————
() 1+ aeM

, (61)

where C and a are real constants.
The resulting integrator is:

3 Ay
Y= Ay + (e — Dhy,

(62)

This is capable of skipping the point of singularity if the mesh size is carefully

selected. This scheme can't give any information concerning the location and nature of
singularity. However, it will be used for the construction of another subroutine called
GENDOR, which could be preferred where GENFOR might not be strong enough to give
a better approximation, hereafter, the programme retunes to (55) for a continuation after
the point of singularity.
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