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he presence of such a variety of mathematical 
models indicates the lack of a fundamental theory 
of growth and reproduction of biological objects. 

All the models known in the literature can only be 
applied for the description and analysis of some 
particular aspects of the growth and reproduction 
processes of a specific biological object. The attempts 
to be expanded the range of application of these 
models and their utilization at the development of a 
general theory, enter into a disagreement with the 
factual data usually. Moreover, in few of these works the 
qualitative theory of ordinary differential equations has 
been used as a method for state analysis of biological 
objects [1]. The phase analysis gives a good possibility 
every nonlinear system, described with ordinary 
differential equations to be studied qualitatively. 

Mathematical models of the microorganisms 
cultivation processes in a bioreactor are developed, 
taking into account the kinetics of the final or 
intermediate metabolism products formation, the 
kinetics of biomass growth and the kinetics of sub-
stratum consumption. All these models are based on 
different hypotheses about the acting biosynthesis 
mechanism: the presence of limiting substrata, inhibitors 
or activators of growth, and the degree of their impact 
on the velocity of the biomass and product formation 
[2]. 

Another peculiarity is applied of the empirical 
approach at the development of mathematical models. 
The limiting factors are many in number which influence 
on the cells growth. Because of that in every specific 
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case the biomass growth velocity depending on the 
limiting factor concentrations is determined 
experimentally. In the kinetics of the "exact" 
microbiological systems it is assumed that the 
bioreactor sizes are small, and the mixing leads to an 
instant leveling of the concentrations of all substances 
into the whole volume of the bioreactor. Taking into 
consideration the above limits the mathematical models 
are obtained, which are not adequate to the actual 
processes. In these models it is assumed that the 
cultural medium of the bioreactor is homogeneous (all 
concentrations of biologically important substances are 
an even distributed). Thus, for the more precisely 
description of the biosynthesis processes in the 
bioreactor, it is necessary the diffusion processes to be 
reflected in the mathematical models. As a result all 
concentrations will be considered as functions of the 
time and space coordinates. The accounting of all these 
circumstances gives a possibility to be developed a 
more adequate model to the actual process. In order to 
solve such a problem, it is necessary to be used the 
qualitative theory of distributed kinetic systems. 

 
 

 

 

 

  

 
The mathematical model of the L-lyzin 

biosynthesis process during continually cultivation of the

 Brevibacterium flavum

 

type microbial population is 
obtained as a variant of the Ohno

 

et al.

 

model [3]. This 
model reflects the material balance of the basic 
components of the cultural medium and has the 
following form:
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I. Introduction

II. Mathematical Model with 

Concentrated Parameters of l Lyzin 

Biosynthesis Process During 

Continually Cultivation of the

Brevibacterium Flavum Type

Microbial Population



, ,L X
dL dXY DL
dt dt

= −

 

     

(1)

 

where:

 

X

 

–

 

biomass concentration

 

[g/1];

  

S

 

–

 

sugar concentration

 

[g/1];

  

L

 

–

 

lyzin concentration

 

[g/1];

 

μm

 

–

 

maximum relative velocity of the biomass growth

  

[s-1]; 

 

YX,S

 

= dX / dS-stoichiometry of the biomass to the

 

sugar

 

[–];

  

YL,X

 

–

 

constant

 

[–];

 

KS

 

= kx,s / rx,s,

 

where

 

rx,s

 

is the velocity of the

 

transformation of the biomass and sugar in biomass-
sugar complex

 

(XS),

 

and

 

kx,s

 

is the velocity of the

 

transformation of the biomass-sugar complex in

 

biomass and sugar

 

[g/l] [4].

 

D

 

–

 

diluting velocity)

 

[s-1];

  

S0

 

–

 

sugar concentration in the feeding medium

 

[g/1].

 

It is supposed that an ideal mixing is carried out

 

in the bioreactor and all the parameters of the

 

model are 
constants during the biotechnological process. As a 
result the proposed model (1) can be examined as a 
nonlinear autonomous system of ordinary differential 
equations with concentrated parameters.

 

Depending on the microorganisms cultivation 
technology for the specific process of L-lyzin 
biosynthesis nine replicable experiments were carried 

out under identical conditions in a bioreactor with 
volume 10 m3. The experimental data of the biomass 
(X), sugar (S)

 

and lyzin (L)

 

concentrations are obtained 
under laboratory conditions by means of samples taken 
every four hours from the cultural medium of the 
bioreactor. The processing of these experimental data is 
accomplished by using of the fuzzy sets apparatus [5]. 
The smoothed experimental values for

 

X, S

 

and L

 

at the 
different periods of time are shown in Table 1 and 
marked by "E

 

".

 

For this biotechnological process is speciality 
that the microorganisms nutrition with substratum 
(sugar) in the bioreactor is carried out at constant 
diluting velocity (D

 

=

 

0.025

 

s-1

 

). The sugar concentration 
in the feeding medium (S0

 

= 19 g/1)

 

is also constant and 
equal to the initial sugar concentration in the bioreactor 
(S0).

 

The numeric values of the parameters in system 
(1)

 

μm, KS, YX,S, YL,X

 

can be found by minimizing of the 
following functional:

 

10
2 2 2

1
[( ) ( ) ( ) ],E T E T E T

j j j j j j
j

J X X S S L L
=

= − + − + −∑
(2)

 

Where: Fj
E

 

=

 

{Xj
E, Sj

E, Lj
E}

 

is a vector of the 
smoothed experimental values of the biomass, sugar 
and lyzin concentrations at the j-th period of time

 

(Table 
1); 

 

Fj
T

 

=

 

{Xj
T, Sj

T, Lj
T}

 

is a vector of the theoretically 
obtained values of the biomass, sugar and lyzin 
concentrations at the j

 

-

 

th

 

period of time by solving of 
the system of ordinary differential equations (1).

 

 

Table. 1 :

 

Obtained experimental "Е"

 

and theoretical "T"'

 

values of the biomass, sugar, and lyzin concentrations at 
the different moments of time.

 

Time

 

XE

 

XT

 

SE

 

ST

 

LE

 

LT

 

[h]

 

[g/1]

 

[g/1]

 

[g/1]

 

[g/1]

 

[g/1]

 

[g/1]

 

0

 

3.0

 

3.00

 

19.0

 

19.00

 

0.0

 

0.00

 

4

 

5.1

 

5.28

 

15.2

 

15.56

 

5.6

 

5.56

 

8

 

9.5

 

8.76

 

9.4

 

10.53

 

14.1

 

13.68

 

12

 

13.1

 

12.80

 

4.1

 

4.78

 

22.3

 

22.95

 

16

 

14.3

 

15.04

 

1.0

 

1.48

 

26.9

 

28.28

 

20

 

14.8

 

15.35

 

1.0

 

0.82

 

28.7

 

2936

 

24

 

15.0

 

15.22

 

1.0

 

0.75

 

29.6

 

29.47

 

28

 

15.1

 

15.07

 

1.0

 

0.75

 

29.9

 

29.47

 

32

 

15.2

 

14.92

 

1.0

 

0.76

 

30.0

 

29.46

 

36

 

15.2

 

14.79

 

1.0

 

0.76

 

30.1

 

29.45
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40 15.0 14.67 1.0 0.77 30.0 29.43

System (1) can be solved by means of the 
Runge-Kutta method. The initial values of the 
parameters μm, KS, YX,S, YL,X in system (1) are 
determined on the basis of reference data for similar 

biotechnological processes, as well as taking into 
account the specific character of our process of the L-
lyzin biosynthesis [6]. When an apriori information for 
the initial parameter values is lacking they are 



       

 

 

determined randomly. In this case there exists a danger 
after minimizing of functional (2) such values of the 
parameters of the process to be obtained which are 
inadmissible from a physical point of view. The initial 
parameter values of the specific process of L-lyzin bio-
synthesis are presented in Table 2, line 1.

 

The minimum of functional (2) is found by using 
of an optimization method of the

 

adaptive random 
search [7]. As a result of the parametrical identification, 
such numeric values of the parameters of the specific 
process of L-lyzin biosynthesis are obtained, which are 
physically acceptable and warrant a minimum of the 
root-

 

mean-square criterion (the

 

values of the 
parameters are represented in Table 2, line 2). In Table 1 
the theoretical values of the biomass, sugar and lyzin 
concentrations at the different periods of time marked 
by "T"

 

are obtained exactly for such values of the 
parameters whose functional (2) has a minimum.

 

It can be seen from Table 1 that the deviation of 
the smoothed experimental data from the theoretically 
obtained values is by a negligible margin, which 
suggests the conclusion that the proposed nonlinear 
system with concentrated parameters (1) describes the 
actual biotechnological process in a sufficiently accurate 
way.

 

In a qualitative aspect the phase portraits in the 
planes (X, S)

 

and (L, S)

 

are identical, since in the 
proposed model (1) a proportional dependence of the 
change of the L-lyzin concentration (L)

 

from the change 
of the biomass concentration (X)

 

exists. 
This

 

circumstance gives a possibility the autonomous 
system (1) to be investigated in the phase plane (X, S)

 

qualitatively by substituting of the obtained numerical 
values of the parameters μm, KS, YX,S, YL,X

  

in it. (Tab. 2).

  

The nonlinear system (1) has two fixed points 
whose coordinates are:

 

' ' 0
1 1

2 2 0 2 0
'
2 2

1 int 0, 19

2 int m S m m

m

st fixed po X S S

K D DS D Snd fixed po X
D D

µ µ µ
α µ α

− → = = =

− + −
− → =

−

(3)

 

 

'
2 0.8432,S

m

K DS
Dµ

= =
−

Table 2

 

:

  

First Line –

 

Parameters Initial Values, Second Line –

 

Parameter Values Obtained at the

 

Parametrical 
Identification.

 

No

 

μm

 

KS

 

YX,S

 

YL,X

 

1.

 

0.1

 

1.0

 

1.0

 

1.0

 

2.

 

0.2333

 

7.0258

 

0.7439

 

2.1705

 

For every fixed point the local coordinates may 
be introduced by using of the formulae:

 

' ', , 1 2,j j j jX X S S jξ η= − = − = ÷

 

i.e. every fixed point with coordinates (Х’j ,

 

S’j )

 

in the 
coordinate system (X, S)

 

is transformed at the beginning 
of new coordinate system (ξ, η).

 

In (1) the differential equations' right-hand parts 
for X

 

and S

 

are expanded into a Taylor series in some 
neighbourhood of every fixed point (Х’j ,

 

S’j ) j

 

= 1 ÷ 2. 
Passing to local

 

coordinates system (1) is transformed 
into:

( ) ( ) ( )

( ) ( ) ( )

' ' ' ' ' '1 1
1 1

' ' ' ' ' '2 2
2 2

, , , ,

, , , .

j
j j j j j j j j j j

j
j j j j j j j j j j

d F FX S X S R X S F
dt X S

d F FX S X S R X S F
dt X S

ξ
ξ η ξ η ξ η

η
ξ η ξ η ξ η

∂ ∂  
= + + + + = ∂ ∂  

∂ ∂  
= + + + + = ∂ ∂                               

(4)
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In order to study system (4) qualitatively the 
linearization theorem should be taken into account. 
It reads: if the nonlinear system has a simple fixed 
point with coordinates (0,0), then in the 
neighbourhood of this fixed point the phase 
portraits of the nonlinear system and its 

linearization are equivalent qualitatively only if the 
fixed point of the linearized system is not a centre 
[8].

The first requirement of the linearization 
theorem is executed since the matrices



 

 

( ) ( )' '

1 1

2 2

, , , 1 2,j j

j

X S X S j

F F
X SA
F F
X S

= = ÷

∂ ∂ 
 ∂ ∂=  
∂ ∂ 

 ∂ ∂ 

 

Have
 

simple   fixed   points ( Х’j ,
 

S’ j ) j = 1 ÷ 2
 (further on this is seen from (5)). 

 After linearization of system (1) the only solution 
of the matrix equations, AjYj=0

 
is 

 
0

, 1 2
0

j
j

j

Y j
ξ

η
   

= = = ÷   
      

Thus system (1) has two simple fixed points 
transformed at the beginning of the coordinates of the 

phase plane

 

( ),ξ η . In the concrete case system (1) 

has the following matrices

 

, 1 2 :jA j = ÷

 

 

1 1 2 2
1 2

1 1 2 2

0.1453 0.0000 0.0000 0.3576, .
0.2290 0.0250 0.0336 0.5056

a b a bA A
c d c d

      
      = = = =
      − − − −      

(5)

 

The second requirement of the linearization 
theorem reads that a qualitative equivalence between 
the nonlinear system (1) and its linearization (4) exists 
only if the fixed points of the linearized system are not a 
centre. This requirement is executed since the matrices

, 1 2 :jA j = ÷

 

have different and real proper values. The 
fixed points can be from centre type, if the matrices Aj

 

have complex proper values. For the nonlinear system 
(1) the conditions of the linearization theorem are ex-
ecuted, which makes possible further on at the phase 
analysis its linearized version (4) to be used.

 

After the canonization of system (4) the Jordan 
forms Jj

 

of the matrices Aj

 

are obtained in the form of:

 

1 2

0.1453 0.0000 0.0250 0.0000
, .

0.0000 0.0250 0.0000 0.4806
J J

   
   = =
   

− −   
For the first fixed point the proper values are λ1

(1)

 

= 0.1453

 

and λ2
(1)  = –

 

0.0250

 

respectively. In this case 
the proper values have real numbers with converse 
signs so this fixed point generates a saddle at the 
beginning of the phase plane coordinates (ξ, η). For 
the

 

second fixed point the proper values are negative 
real numbers –

 

λ1
(2)

 

= –

 

0.0250, λ2
(2)

 

=

 

0.4806, and thus 
this fixed point generates stable node at the beginning 
of the phase plane coordinates (ξ, η). For the exact 
construction of the full phase portrait of the nonlinear 
system (1) it is necessary to be found the vertical (dX/dt

 

= 0)

 

and horizontal (dS/dt

 

= 0)

 

isoclinals additionally. The 
biomass and sugar concentrations have real positive 
values. As

 

a

 

result it is necessary to be constructed the 
full phase portrait of nonlinear system (1) only for the 1st

 

–

 

quadrant of the phase plane (X, S). Passing from local 
coordinates (ξ, η)

 

to real coordinates (X, S)

 

and taking 
into consideration the linearization theorem.

 

 

 

At the qualitative investigation of the model with 
distributed parameters it is accepted that the space is 
one-dimensional in which the different reactions of the 
biosynthesis are carried out. In this special case the 

bioreactor is considered as long and narrow tube of 
which the one end is opened and through its pass 
substratum (sugar) with concentration (S°). For the 
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model with distributed parameters it is necessary to be 
investigated the stability of the space similar stationary 
solutions (3). This investigation will be carried out taking 
into consideration the following limiting conditions:

0 0

, ,
r r R r r R

X X S S
r r r r= = = =

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
(6)

Where r=0 and r = R = 5 m are the coordinates 
of the beginning and end sections of the bioreactor.

Accounting for the diffusion processes in the 
specific process of L-lyzin biosynthesis the model with 
distributed parameters has the following form:

2

2 ,m X
S

dX S XX DX D
dt K S r

µ ∂
= − +

+ ∂
(7)

( )
2

0
2

,

,m
S

X S S

dS S SX D S S D
dt Y K S r

µ ∂
= − + − +

+ ∂

Where DX and DS are coefficients of the 
biomass and sugar diffusions respectively.

In order to be stable the distributed system 
(7), it is necessary small disturbances of the forces 
acting upon the system to provoke small deviations 

III. Mathematical Model with 
Distributed Parameters of l-lyzin 

Biosynthesis Process During 
Continually Cultivation of the 

Brevibacterium Flavum Type 
Microbial Population



 

 

       
    

 

 
  

 

       

 

    
 

from its stationary solutions (3). The investigation of 
the stability is carried out on the basis of the linear 
distributed system analysis:

 
 

2

2

2

2

j j
j j j j X

j j
j j j j S

a b D
t r

c d D
t r

ξ ξ
ξ η

η η
ξ η

∂ ∂
+ +

∂ ∂
∂ ∂

+ +
∂ ∂

  

      
(8)

 

Where
 

ξ j (t, r)
 

and η j (t, r),
 

j
 

= 1 ÷ 2, are small 
deviations from the space similar solutions

 
(Xj, Sj),

 
and

 

aj, bj, cj, dj, j=
 

1 ÷ 2, are the values of the coefficients 
obtained in (5).

 

At the limiting conditions (6) the solution of 
system (8) is searched in the form of:

 

( ) ( )( ) ( )2 / 2 /, , , ,
j jp t i r p t i r

j j j jt r A e e t r B e eπ λ π λξ η= =

    

(9)

 

Where

  

Aj

  

and

 

Bj ,  j

 

= 1 -

 

2, are constants.

 

By substituting of the solutions (9) in system (8) 
it is obtained:

 
 

2

2

2 ,

2 ,

j
j X j j j

j
j j j S j

d
a D b

dt

d
c d D

dt

ξ π ξ η
λ

η πξ η
λ

  = − +  
   

  = + −  
   

 

     

(10)

 

From system (10) for the complex frequency (p)

 

the following

 

characteristical polynomial is obtained:

 

 
 

( ) ( )2 2( ) ( )2 / 2 / ,j j
j X j S j jp a D p d D b cπ λ π λ   − + − + =                                      

(11)

 

where: 

 

λ

 

–

 

wave length;

 

u = (2π/λ)2

 

–

 

wave number. 

  

   

 
 

 

( ) ( ) ( )(1) 1 1
1,2 1 1

1 ,
2 2 2X S X S

a d up D D u D D a d+
= − + ± − − −  

where:

 

p1
(1)

 

= –

 

0.0250 –

 

u,   p2
(1)

 

= –

 

0.1453 –

 

u. 

 
 

Analogous for the second fixed point

 

p(2)
1,2

 

has the form 
of:
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It is established experimentally that for the specific process of L-lyzin biosynthesis the diffusion coefficients
have the following values: DX = DS = 1.
For the first fixed point p(1)

1,2 is defined from the equality (11) by the formulae:

( ) ( ) 2(2) 2
1,2 2 2 2

1 4 ,
2 2 2X S X S
d up D D u D D d b c= − + ± − + +  

where: p1
(2) = – 0.4806 – u,    p2

(2) = – 0.0250 – u.

As a result the stability of system (7) at different 
wave lengths can be investigated by the help of the 
quadratic equation (11) and its solutions.

For the first fixed point the characteristical 
equation (11) has two real roots:  p1

(1) < 0 for all λ values, 

p2
(1) > 0 for λ > λ2 = 16.4751 and u < u2 = 0.1453. In this 

case at small deviations ξ(t, r) and η(t, r) in the 
immediate proximity of Х’1 and S’1 the linear distributed 
system have a fixed point of saddle type. The limits of 
wave numbers (u), at which this fixed point generates a 
saddle, are given with the equality:

( ) ( ) ( )
2

2
1,2 1 1 1 1 1 1 1 1

1,2

2 1 4 .
2 S X S X X S

X S

u a D d D a D d D D D a d b c
D D

π
λ

   = = + ± + − −      
In the concrete case for λ2 = 16.4751 < λ ≤ ∞ and 

0 ≤ u < u2 = 0.1453 ( if λ2 → ∞ => u2 = 0) system (7) have 
a fixed point of saddle type, and the space periodical 
and independent of time solutions (dissipative structure) 
can arise. The stability of the stationary solution of the 
first fixed point has not be studied, since this fixed point 
can not be reached from a physical point of view. For 
the specific process of L-lyzin biosynthesis the biomass 
concentration (X) is changed from 3 to 15 [g/l], and the 
sugar concentration (S) – from 0.5 to 19 [g/l]. The limits 

of these concentrations are determined depending on 
the specific technology of the microorganisms 
cultivation.

For all λ values of the second point p1
(2) < 0

 
and 

p2
(2) < 0. This shows that in the immediate proximity of 

this fixed point (X’
2, S’

2) a stable node is generated, and 
at small deviations from it the stationary solution of the 
second fixed point for all wave length (λ) values is 
stable.



        

 

  

         
   

   

 
 

 

      
           

    
   

 
   

  
  

 
 

As a final result of the analysis two variants are possible:

 

a)

 

If

 

λ > λ2

 

=

 

16.4751

 

then in system (7) stable or 
unstable space periodical and independent of time 
solutions (dissipative structure) can arise. This 
possibility is ignored since the first fixed point can not 
be reached from a physical point of view.

 

b)

 

If  λ < λ2

 

= 16.4751

 

it is obviously that system (7) is 
stable and space periodical and independent of time 
solutions can not arise in it.

 

  

In the proposed work the obtained results show 
that at definite conditions space periodical and 
independent of time solutions (dissipative structure) can 
arise. The carried out phase analysis gives an answer to 
the question for the stability of the stationary

 

solutions of 
the systems with concentrated and distributed 
parameters. It has to be noted that the wave length

 

(λ2

 

= 
16.4751

 

m)

 

and the bioreactor length (R = 5 m)

 

are of 
one and the same order. If

 

DX

 

and

 

DS

 

tend to zero,

 

A2

 

tends to zero too. In this case the considered nonlinear 
system is unstable regarding all kinds disturbances. The 
meaning of this fact is simple: at zero diffusion 
coefficients in the one-dimensional bioreactor with 
length (r)

 

there is a copulation of identity cells, the 
symmetrical states of which are unstable [9]. When 
there is a diffusion the stability of the solutions 
describing the symmetrical states increases at small 
disturbances. This is naturally since the simultaneous 
exchange of the substratum and the product makes 
difficult the switching over of two neighbouring cells in 
different regimes. As a result the neighbouring cells are 
switched over in the regime of the second fixed point at 
the product diffusion. When the substratum 
concentration decreases the same cells are switched 
over in a converse direction at the substratum diffusion. 
In this way the regime of one or other cell is determined 
depending on the competition of two kind influences –

 

specific (by product diffusion) and nonspecific (by 
substratum diffusion). If the concentration of the cells (X)

 

becomes critical (effect of the "narrowness") it is 
possible to be reached to the first fixed point from a 
physical point of view, at the condition that the 
biotechnological process is not terminated. In 
conclusion this analysis shows that the space periodical 
and independent of time solutions (dissipative structure) 
in the distributed system can arise when there exists 
conditions guaranting the relaying invariant regarding 
time.
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