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lvan Edissonov ¢, Elena Nikolova ° & Sergei Ranchev®

Abstract - A  mathematical model with concentrated
parameters of L-lyzin biosynthesis process during continually
cultivation of the Brevibacterium flavum type microbial
population is proposed. A parametrical identification of the
model's kinetic variables is carried out. A mathematical model
with distributed parameters of the same biotechnological
process is developed. The stability of the stationary solutions
of the obtained dissipative structure is investigated.
Keywords . L-lyzin biosynthesis process, continually
cultivation, kinetic variables, parametrical identification,
aissipative structure.

[. [NTRODUCTION

he presence of such a variety of mathematical
Tmodels indicates the lack of a fundamental theory

of growth and reproduction of biological objects.
All the models known in the literature can only be
applied for the description and analysis of some
particular aspects of the growth and reproduction
processes of a specific biological object. The attempts
to be expanded the range of application of these
models and their utilization at the development of a
general theory, enter into a disagreement with the
factual data usually. Moreover, in few of these works the
qualitative theory of ordinary differential equations has
been used as a method for state analysis of biological
objects [1]. The phase analysis gives a good possibility
every nonlinear system, described with ordinary
differential equations to be studied qualitatively.

Mathematical models of the microorganisms
cultivation processes in a bioreactor are developed,
taking into account the Kkinetics of the final or
intermediate  metabolism products formation, the
kinetics of biomass growth and the kinetics of sub-
stratum consumption. All these models are based on
different hypotheses about the acting biosynthesis
mechanism: the presence of limiting substrata, inhibitors
or activators of growth, and the degree of their impact
on the velocity of the biomass and product formation
[2].

Another peculiarity is applied of the empirical
approach at the development of mathematical models.
The limiting factors are many in number which influence
on the cells growth. Because of that in every specific
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case the biomass growth velocity depending on the

limiting  factor  concentrations is  determined
experimentally. In  the kinetics of the ‘"exact'
microbiological systems it is assumed that the

bioreactor sizes are small, and the mixing leads to an
instant leveling of the concentrations of all substances
into the whole volume of the bioreactor. Taking into
consideration the above limits the mathematical models
are obtained, which are not adequate to the actual
processes. In these models it is assumed that the
cultural medium of the bioreactor is homogeneous (all
concentrations of biologically important substances are
an even distributed). Thus, for the more precisely
description of the biosynthesis processes in the
bioreactor, it is necessary the diffusion processes to be
reflected in the mathematical models. As a result all
concentrations will be considered as functions of the
time and space coordinates. The accounting of all these
circumstances gives a possibility to be developed a
more adequate model to the actual process. In order to
solve such a problem, it is necessary to be used the
qualitative theory of distributed kinetic systems.

[I.  MATHEMATICAL MODEL WITH
CONCENTRATED PARAMETERS OF L LYZIN
B1OSYNTHESIS PROCESS DURING
CONTINUALLY CULTIVATION OF THE
BREVIBACTERIUM FLAVUM TYPE
MICROBIAL POPULATION

The mathematical model of the L-lyzin
biosynthesis process during continually cultivation of the
Brevibacterium flavurn type microbial population is
obtained as a variant of the Ohno ef a/. model [3]. This
model reflects the material balance of the basic
components of the cultural medium and has the
following form:

X _ S x_px,
dt Ks+S
OS__Hn S v .p-s),

dt Y, Ko+S
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dL dX
-y , 2 DL, 1
dt “* dt 0

where:

X — biomass concentration [g/1];

S — sugar concentration [g/1];

L —lyzin concentration [g/1];

Um — maximum relative velocity of the biomass growth

[s];

Yy s = dX / dS-stoichiometry of the biomass to the sugar
-1

Y| x —constant [];

Ks = Kkgs / I, Where rys is the velocity of the
transformation of the biomass and sugar in biomass-
sugar complex (XS), and ks is the velocity of the

transformation of the biomass-sugar complex in
biomass and sugar [g/1] [4].

D — diluting velocity) [s™];
S° — sugar concentration in the feeding medium [g/1].

It is supposed that an ideal mixing is carried out
in the bioreactor and all the parameters of the model are
constants during the biotechnological process. As a
result the proposed model (1) can be examined as a
nonlinear autonomous system of ordinary differential
equations with concentrated parameters.

Depending on the microorganisms cultivation
technology for the specific process of L-lyzin
biosynthesis nine replicable experiments were carried

out under identical conditions in a bioreactor with
volume 10 m® The experimental data of the biomass
(X), sugar (S) and lyzin (L) concentrations are obtained
under laboratory conditions by means of samples taken
every four hours from the cultural medium of the
bioreactor. The processing of these experimental data is
accomplished by using of the fuzzy sets apparatus [5].
The smoothed experimental values for X, S and L at the
different periods of time are shown in Table 1 and
marked by "E ".

For this biotechnological process is speciality
that the microorganisms nutrition with substratum
(sugar) in the bioreactor is carried out at constant
diluting velocity (D = 0.025s). The sugar concentration
in the feeding medium (S° = 19 g/1) is also constant and
equal to the initial sugar concentration in the bioreactor
(S0

The numeric values of the parameters in system
(1) um, Ks, Yxs, YLx can be found by minimizing of the
following functional:

10
J :Z;[(xf = X7 +(SF -S))*+ (L5 - L)),
= @)

Where: F& = {X, SF, L} is a vector of the
smoothed experimental values of the biomass, sugar
and lyzin concentrations at the fth period of time (Table
1);

Fi' ={X, S;', i} is a vector of the theoretically
obtained values of the biomass, sugar and lyzin
concentrations at the j - th period of time by solving of
the system of ordinary differential equations (1).

Table. 7 Obtained experimental "E" and theoretical "T"* values of the biomass, sugar, and lyzin concentrations at

the different moments of time.

Time XE X' St s’ LE LT
[h] [9/1] [9/1] [9/1] [9/1] [9/1] [9/1]
0 3.0 3.00 19.0 19.00 0.0 0.00
5.1 5.28 15.2 15.56 5.6 5.56
9.5 8.76 94 10.53 14.1 13.68
12 13.1 12.80 41 4.78 223 22.95
16 14.3 15.04 1.0 1.48 26.9 28.28
20 14.8 15.35 1.0 0.82 287 2936
24 15.0 15.22 1.0 0.75 29.6 29.47
28 15.1 15.07 1.0 0.75 29.9 29.47
32 15.2 14.92 1.0 0.76 30.0 29.46
36 15.2 14.79 1.0 0.76 30.1 29.45
40 15.0 14.67 1.0 0.77 30.0 29.43

System (1) can be solved by means of the
values of the

Runge-Kutta method. The

parameters iy,
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KS! YX,S! YL,X

in system (1) are
determined on the basis of reference data for similar

biotechnological processes, as well as taking into
account the specific character of our process of the L-
lyzin biosynthesis [6]. When an apriori information for

the parameter

values

lacking



determined randomly. In this case there exists a danger
after minimizing of functional (2) such values of the
parameters of the process to be obtained which are
inadmissible from a physical point of view. The initial
parameter values of the specific process of L-lyzin bio-
synthesis are presented in Table 2, line 1.

The minimum of functional (2) is found by using
of an optimization method of the adaptive random
search [7]. As a result of the parametrical identification,
such numeric values of the parameters of the specific
process of L-lyzin biosynthesis are obtained, which are
physically acceptable and warrant a minimum of the
root- mean-square criterion (the values of the
parameters are represented in Table 2, line 2). In Table 1
the theoretical values of the biomass, sugar and lyzin
concentrations at the different periods of time marked
by "T" are obtained exactly for such values of the
parameters whose functional (2) has a minimum.

It can be seen from Table 1 that the deviation of
the smoothed experimental data from the theoretically
obtained values is by a negligible margin, which
suggests the conclusion that the proposed nonlinear
system with concentrated parameters (1) describes the
actual biotechnological process in a sufficiently accurate
way.

In a qualitative aspect the phase portraits in the
planes (X, §) and (L, S are identical, since in the
proposed model (1) a proportional dependence of the
change of the L-lyzin concentration (L) from the change
of the biomass concentration (X)  exists.
This circumstance gives a possibility the autonomous
system (1) to be investigated in the phase plane (X, S)
qualitatively by substituting of the obtained numerical
values of the parameters pm, Ks, Yxs, YLx init. (Tab. 2).

The nonlinear system (1) has two fixed points
whose coordinates are:

1st - fixed point— X, =0, S;,=5°=19

~#yKsD* + 4 DS® — 1, D*S°

2nd - fixed point — X, =

aDu, —aD?
S, _ KD _ 0.8432, (3)
/um_D

Table 2 : First Line — Parameters Initial Values, Second Line — Parameter Values Obtained at the Parametrical
|dentification.

No Hm Ks Yxs YL x
1. 0.1 1.0 1.0 1.0
2. 0.2333 7.0258 0.7439 2.1705

For every fixed point the local coordinates may
be introduced by using of the formulae:

E=X-X,, n,=5-S, j=1+2,

i.e. every fixed point with coordinates (Xj, Sj) in the
coordinate system (X, S) is transformed at the beginning
of new coordinate system (& 7).

dé; OF /o o oF
@ A s ng
dr, oF, /o o oF
_dtj zgj_aXZ(xj,sj)+ 2

In order to study system (4) qualitatively the
linearization theorem should be taken into account.
It reads: if the nonlinear system has a simple fixed
point with coordinates (0,0), then in the
neighbourhood of this fixed point the phase
portraits of the nonlinear system and its

771.6—8(x'j,s;)Jr Rz(gj +X 1, +s;j= F, (7).

In (1) the differential equations' right-hand parts
for X and S are expanded into a Taylor series in some
neighbourhood of every fixed point (Xj, Sj) j =1+ 2
Passing to local coordinates system (1) is transformed
into:

UJE<XJ'SJ')+R1(§J + X +Sjj: R (&),

linearization are equivalent qualitatively only if the
fixed point of the linearized system is not a centre
[8].

The first requirement of the linearization
theorem is executed since the matrices
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Have simple fixed points (X7, S;)j=1+2
(further on this is seen from (5)).

After linearization of system (1) the only solution
of the matrix equations, A;Y;=0 is

SHIHES

p|® bi|_| 01453 00000
c, d | [-0.22900 —0.0250 |

The second requirement of the linearization
theorem reads that a qualitative equivalence between
the nonlinear system (1) and its linearization (4) exists
only if the fixed points of the linearized system are not a
centre. This requirement is executed since the matrices
A, j=1+2: have different and real proper values. The

fixed points can be from centre type, if the matrices Aj

3= 0.1453 0.0000

1

0.0000 —-0.0250

For the first fixed point the proper values are 4,
= 0.1453 and 1" = — 0.0250 respectively. In this case
the proper values have real numbers with converse
signs so this fixed point generates a saddle at the
beginning of the phase plane coordinates (& #). For
the second fixed point the proper values are negative
real numbers — 4,?) = — 0.0250, /,*) = 0.4806, and thus
this fixed point generates stable node at the beginning
of the phase plane coordinates (& 7). For the exact
construction of the full phase portrait of the nonlinear
system (1) it is necessary to be found the vertical (dX/dt
= 0) and horizontal (dS/dt = 0) isoclinals additionally. The
biomass and sugar concentrations have real positive
values. As a result it is necessary to be constructed the
full phase portrait of nonlinear system (1) only for the 1%
— quadrant of the phase plane (X, S). Passing from local
coordinates (& #) to real coordinates (X, S) and taking
into consideration the linearization theorem.

[1I. MATHEMATICAL MODEL WITH
DISTRIBUTED PARAMETERS OF L-LYZIN
B1OosSYNTHESIS PROCESS DURING
CONTINUALLY CULTIVATION OF THE
BREVIBACTERIUM FrLAvUM TYPE
H MICROBIAL POPULATION

At the qualitative investigation of the model with
distributed parameters it is accepted that the space is
one-dimensional in which the different reactions of the
biosynthesis are carried out. In this special case the

Global Journal of Science Frontier Research (A) Volume XII Issue III Version I E April 2012
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A, =

Thus system (1) has two simple fixed points
transformed at the beginning of the coordinates of the

phase plane (5,77). In the concrete case system (1)
has the following matrices Aj, j=1+2:

El 1 él 1
! 6F2 an
_X_

(X.8)=(X}.8}).i=1+2

a, b,| | 00000 0.3576

: (%)
c, d,| |[-0.0336 —0.5056

have complex proper values. For the nonlinear system
(1) the conditions of the linearization theorem are ex-
ecuted, which makes possible further on at the phase
analysis its linearized version (4) to be used.

After the canonization of system (4) the Jordan
forms J; of the matrices A; are obtained in the form of:

~10.0250  0.0000
Vo —

0.0000 -0.4806

bioreactor is considered as long and narrow tube of
which the one end is opened and through its pass
substratum (sugar) with concentration (S°). For the
model with distributed parameters it is necessary to be
investigated the stability of the space similar stationary
solutions (3). This investigation will be carried out taking
into consideration the following limiting conditions:

oxX| oX|  os|  oS]
ar |r:0 - ar |r=R ’ ar |r=0 - ar |r=R ’

Where r=0 and r= R = 5m are the coordinates
of the beginning and end sections of the bioreactor.

Accounting for the diffusion processes in the
specific process of L-lyzin biosynthesis the model with
distributed parameters has the following form:

dx s %X

Ll X-DX+D, 22
dt MK +S *or?
ds &%

S _S i +D(S°~S)+Dy =2,
dt Yy s Ks+S or

Where Dy and Ds are coefficients of the
biomass and sugar diffusions respectively.

In order to be stable the distributed system
(7), it is necessary small disturbances of the forces
acting upon the system to provoke small deviations



from its stationary solutions (3). The investigation of
the stability is carried out on the basis of the linear
distributed system analysis:
2
0°¢;

%a & +bn +D, —
at 1°] 1) X arz (8)
on. o%n,
o B
Where &(t, r) and 5j(t, 1), j = 1 + 2, are small
deviations from the space similar solutions (X;, S;), and
a, by, ¢, dj, j= 1+ 2, are the values of the coefficients
obtained in (5).
At the limiting conditions (6) the solution of
system (8) is searched in the form of:

[0 —a,+(22/ 2) D, | p ~d, + (221 4)' D | =byc;,

where:
A —wave length;
u = (2r/2)? — wave number.

g (t.r) =Ae pitg i2r/2, ; (tr)= B.e pig i2eri2

©)

Where A; and B;, j=1- 2, are constants.

By substituting of the solutions (9) in system (8)
it is obtained:

dé, 27\’
—== a-—Dx(Tj S +byny,

dn, 2z )
_J:ngj—i_ dj_Ds(Tj U

From system (10) for the complex frequency (p)
the following characteristical polynomial is obtained:

(10)

(11)

It is established experimentally that for the specific process of L-lyzin biosynthesis the diffusion coefficients

have the following values: Dy = Dg= 1.

For the first fixed point p®; , is defined from the equality (11) by the formulae:

12 —

where: p;® =-0.0250—u, p,'¥ =—-0.1453—u.

@ _9s

2 -

22 272
where: p,®=-0.4806—u, p,®=-0.0250-u.

As a result the stability of system (7) at different
wave lengths can be investigated by the help of the
quadratic equation (11) and its solutions.

For the first fixed point the characteristical
equation (11) has two real roots: p,"Y < 0 for all 4 values,

2
2r 1
ul,Z = =
;{1,2 2DX DS

In the concrete case for A, = 16.4751 < A < o0 and
0<u<u,=0.1453 (if A > 0 =>u, = 0) system (7) have
a fixed point of saddle type, and the space periodical
and independent of time solutions (dissipative structure)
can arise. The stability of the stationary solution of the
first fixed point has not be studied, since this fixed point
can not be reached from a physical point of view. For
the specific process of L-lyzin biosynthesis the biomass
concentration (X) is changed from 3 to 15 [g¢/l], and the
sugar concentration (S) — from 0.5 to 19 [g/l]. The limits

+d u
p® ——312 L-(D, +D;)5

%[U(Dx —DS)—(ai—dl)],

Analogous for the second fixed point p@, ; has the form

of
—(Dy +DS)E+1\/[U(DX —DS)+d2]2+4b2C2,

pY > 0 for A > 1, = 16.4751 and u < u, = 0.1453. In this
case at small deviations &t r) and #5( r) in the
immediate proximity of X’; and S’; the linear distributed
system have a fixed point of saddle type. The limits of
wave numbers (u), at which this fixed point generates a
saddle, are given with the equality:

[(aiDS +0,D, )+/(aD; +d,D, )’ ~4D, D, (ad, —blcl)}.

of these concentrations are determined depending on
the specific technology of the microorganisms
cultivation.

For all 4 values of the second point p,;”» < 0 and
p.? < 0. This shows that in the immediate proximity of
this fixed point (X, S;) a stable node is generated, and
at small deviations from it the stationary solution of the

second fixed point for all wave length (1) values is
stable.
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As a final result of the analysis two variants are possible:

a) If 1 > 1, = 16.4751 then in system (7) stable or
unstable space periodical and independent of time
solutions (dissipative structure) can arise. This
possibility is ignored since the first fixed point can not
be reached from a physical point of view.

b) If 2 <1, =16.4751 it is obviously that system (7) is
stable and space periodical and independent of time
solutions can not arise in it.

IV. CONCLUSION

In the proposed work the obtained results show
that at definite conditions space periodical and
independent of time solutions (dissipative structure) can
arise. The carried out phase analysis gives an answer to
the question for the stability of the stationary solutions of
the systems with concentrated and distributed
parameters. It has to be noted that the wave length (4, =
16.4751 m) and the bioreactor length (R = 5 m) are of
one and the same order. If Dx and Ds tend to zero, A,
tends to zero too. In this case the considered nonlinear
system is unstable regarding all kinds disturbances. The
meaning of this fact is simple: at zero diffusion
coefficients in the one-dimensional bioreactor with
length (r) there is a copulation of identity cells, the
symmetrical states of which are unstable [9]. When
there is a diffusion the stability of the solutions
describing the symmetrical states increases at small
disturbances. This is naturally since the simultaneous
exchange of the substratum and the product makes
difficult the switching over of two neighbouring cells in
different regimes. As a result the neighbouring cells are
switched over in the regime of the second fixed point at
the product diffusion. When the substratum
concentration decreases the same cells are switched
over in a converse direction at the substratum diffusion.
In this way the regime of one or other cell is determined
depending on the competition of two kind influences —
specific (by product diffusion) and nonspecific (by
substratum diffusion). If the concentration of the cells (X)
becomes critical (effect of the "narrowness') it is
possible to be reached to the first fixed point from a
physical point of view, at the condition that the
biotechnological process is not terminated. In
conclusion this analysis shows that the space periodical
and independent of time solutions (dissipative structure)
in the distributed system can arise when there exists
conditions guaranting the relaying invariant regarding
time.
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