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Abstract - The aim of this work to study the asymptotic behavior of an elasticity problem, of containing structure, in 
incompressible elastic thin oscillating layer of thickness and stiffness depending of small parameter. We use the epi-convergence 
method to approximate the limit problem modeling. 
Keywords : Limit behavior, elasticity problem, epi-convergence method, global subadditive theorem, limit 
problems. 1 

I.   INTRODUCTION 

he study of the inclusion between two elastic adherents bodies involves introducing a very thin third body, filled 
by adhesive with an oscillating boundary, between them. In general, the computation of solution using 
numerical methods is very difficult. In one hind, this is because the thickness of the adhesive requires a fine 

mesh, which in turn implies an increase of the degrees of exible than the adherents, and this produces numerical 
instabilities in the stiffness matrix. To overcame this difficulties, thanks to Goland and Reissner [4] find a limit 
problem in which the adhesive is treated on this theoretical approach, see for example A. Ait Moussa and J. 
Messaho [1], A. Ait Moussa and L. Zla ji [3], Licht and Michail [2], and Acerbi, Buttazzo and Perceivable [6]. 

This work is specially intereted in approximating  a minimization problem     where    is a small parameter 
linked to the thickness and the stiffness of the adhesive. In particular, we associate to each component of gradient 
an independent of stiffness parameter. We use epi-convergent method introduced in a paper by De Giorgi and 
Franzoni in [9],to proof a weak limit of a      - minimizing sequence with is a solution of          

This paper is organized in the following way. In section 2, we express the problem to study, and we give some 
notation and we define functional spaces for this study in the section 3. In the section 4, we study the problem (4.0). 
The section 5 is reserved to the determination of the limits problems and our main result.  
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II.

 

NOTATION AND PRELIMINARIES

 

we consider a structure, occupying a bonded domain  

 

   with Lipschitzian boundary         . It is constituted 
of two elastic bodies joined together by an incompressible rigid thin layer with oscillating boundary, the latter obeys 
to nonlinear elastic low

 

of power type. More precisely, the stress field is

 

related to the displacement's field by

 
 

 

The structure occupies the regular domain  

          

 

where                   

 

is given by 

 

and                      represent the

 

regions occupied by the thin plate and the two elastic

 

bodies, 
     meter intended to

 

approach 0, and

 

The structure is subjected to a density of forces

 

of volume
                      

and it is fixed on the

 

boundary 

 

Equations which relate the stress

 

field

 

                            ,

 

and the field of displacement 
                      

 

are
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( )Pε ε

(Pε) P).(

Ω ∈ R3 ∂Ω

σε = λ |e(uε)|−1 e(uε), λ > 0.

Ω =Bε ∪ Ωε, Bε Bε= {x = (x′, x3) / |x3| < ε
2},

ε = Ω \BεΩ ε being a positive para-
Σ = {x = (x′, x3) / |x3| = 0}.

f , f : Ω → R3 ,
∂Ω. σε, σε : Ω → R9

S , uε, uε : Ω→ R3

div(σε) + f = 0 in Ω

σεij = aijkhekh(uε) in Ωε

σε = λ|e(uε)|−1
e(uε) in Bε

div(uε) = 0 in Bε

uε = 0 on ∂Ω

(Pε)

α

 E

σ



 
Where       are the elasticity coefficients and       the

     
vector space of the square symmetrical matrices

 
of 

order three,       are the components of the
 

linearized
 

tensor of deformation
      

. In the sequel,
 

we assume that the 
elasticity coefficients      satisfy

 
to the following hypotheses :

 

 
 
 
 
 
 
 

  

 

a)

 

Notations

 

We begin by introducing some notation which

 

is used throughout the paper.

 

Where

 

And

 
 

 

In the following C

 

will denote any constant with

 

respect to       is the jump of displacement field    through    
,

 

and  

 

,     respectively the Lebesgue Hausdorff

 

measures. Also, we use the convention

 

To describe a global subadditive theorem, we consider          

 

the family of Borel bounded subsets of      and 

        

 

Euclidean distance in      , for every where                           

.                                     

A sequence                          

 

is called regular if there exist an increasing sequence of intervals                      
and a constant    independent of n

 

such that             and meas              

 

meas

 

           . The global subadd-
itive theorem is essentially based on subadditive - invariant functions.

 

A function is called subadditive    - periodic if it satisfy the following conditions:

 

(i)

 

For all                   such that                                       . 

 

(ii)

 

For all                        , all                               

 

Now, we shall see the global subadditive theorem, firstly used

 

in the setting of the calculus of variation by Licht and 
Michaille [2]
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aijkh R9
S

eij(u) e(u)

aijkh

x = (x′, x3), x′ = (x1, x2),
τ ⊗ ζ = (τiζi)1≤i,j≤3

τ ⊗s ζ =
τ ⊗ ζ + ζ ⊗ τ

2
, ∀τ, ζ ∈ R3

ε, [v] v

Σ ν H2 0.(+∞).

aijkh ∈ L∞(Ω) (2.1)

aijkh = ajikh = akhij , (2.2)

aijkhτijτkh ≥ Cτijτij , ∀τ ∈ R9
S (2.3)

III. NOTATION AND FUNCTION 

SETTING

Bb(Rd) Rd

δ . Rd A ∈ Bb(Rd), ρ(A) = sup{r ≥ 0 : ∃Br(x) ⊂ A}, Br(x) = {y ∈ Rd :

δ(x, y)≤ r}. (Bn)n∈N ⊂ Bb(Rd) In)n

⊂ Zd
(

C Bn ⊂ In In) ≤ C( Bn),∀n(

Zd

S :A ∈ Bb(Rd)→SA ∈ R Zd

A,B ∈ Bb(Rd) A ∩ B = ∅, SA∪B ≤ SA + SB .

A ∈ Bb(Rd) z ∈ Zd, SA+z = SA.

Theorem 3.1: [2; page24] Let S be a subadditive   - invariant function such that

In addition, we suppose that S satisfies the dominant property: There exists C(S), for every Borel convex subset
. Let       be a regular sequence of Borel convex subsets of         with                              

Then exists and is equal to

We have the following stability result for epiconvergence.

Zd

γ(S) = inf{ SI
meas I

: I = [a, b[, a, b ∈ Zd and ai < bi∀1 ≤ i ≤ d}

γ(S) > −∞

A ⊂ [0, 1[d, |SA| ≤ C(S) (An)n Bb(Rd) limn→+∞

ρ(An) = +∞. limn→+∞
SAn

measAn

lim
n→+∞

SAn
measAn

= inf
m∈N∗

{
S[0,m[d

md
} = γ(S)



 

Theorem 3.3

 

: 

 

[7; Theorem1:10]. Suppose that

 

(1)            admits a minimizer on      ;

 

(2)    the sequence     is   

 

relatively compact

 

(3)    The sequence     

 

epi - converges to   

 

in this

 

topology  on    

 

Then every cluster point     of the sequence      minimizer 

  

on    

 

and

 
 
 

where             

 

denotes any subsequence of       which converges to 

 

b)

 

Function setting

 

First, we introduce the space

 
 
 

        

  

we easily show that     

 

is a Banach space with respect

 

to the norm

 
 
 

IV.

 

STUDY OF PROBLEM

 

Problem     is equivalent of the minimization

 

problem

 
 
 
 

To study problem    , we will study the minimization

 

problem (4.0). The existence and uniqueness

 

of solutions 
to (4.0) is given in the following proposition.

 

Proposition 4.1 :

 

Under the hypotheses (2:1),

 

(2:2), (2:3) and for           , problem (4:0) admits

 

an unique solution.

 

Proof.

 

From (2:1) and (2:3), we show easily that

 

the energy functional in (4:0) is weakly lower

 

semicontinuous, strictly 
convex and coercive over   , Since     is not reexive, so we may not apply

 

directly result given in Dacorogna [17; 
p:48], but

 

we can follow our proof by using the compact

 

imbedding to the 

 

Sobolev space, in

 

the reflexivity
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Proposition 3.2 : [7; p:40] Suppose that    epi- convergence to    in            and that , is
          continues. Then               epi-converges to         in 

This epi-convergence is a special case of the   convergence   introduced  by   De   Giorgi  (1979) [9].
It is well suited to the asymptotic analysis  of  sequences of minimization    problems    since   one   has   the
following fundamental result.

F ε F (X, τ) G : X→ R∪ {+∞} τ−
F ε +G F +G (X, τ)

Γ-

F ε X
(uε) τ

F ε F τ. X

u∗ (uε) F X lim
ε′→0

F ε
′
(uε
′
) = F (u∗)

(uε
′
)ε′ (uε)ε u∗

V ε =

{
u ∈W 1,2

0 (Ωε,R3
s)×W 1,1(Bε,R3

s),
u = 0 on ∂Ω and div(u) = 0 in Bε

}
V ε

u→ ‖e(u)‖L2(Ωε,R9
s)

+ ‖e(u)‖L1(Bε,R9
s)
.

Pε

infv∈V ε

{ 1
2

∫
Ωε
aijhkeij(v)ehk(v)dx+

+λ
∫
Bε
|e(v)| −

∫
Ω
fvdx

}
Pε

f ∈ L∞

V ε V ε

W 1,1(Ω)

Lq(Ω), or q = 2 space
3

for more information see you Adams [14; p:95].

On the other hand, let     be a minimizing sequence for (4:0), to simplify the writing letun

F ε(v) =
1

2

∫
Ωε

aijhkeij(v)ehk(v)dx+ λ

∫
Bε

|e(v)|

−
∫

Ω

fvdx

so, we have                                . Using the coercivity of ,     we may then deduce that there exists a constant 
, independent of n, such that

then    bounded in     , therefore a subsequence of     , still denoted by     , there exists        such that         
in      . The weak lower semicontinuity and the strict convexity of     imply then the result.

Lemma 4.2. Assuming that for any sequence there exists a constant 

          

such that

          , under (2:1), (2:3) and for                                satisfies

F ε(un) → infv∈V ε F (v ) F ε

C > 0

‖un‖V ε ≤ C,

un Lq un un u0 ∈ V ε un
⇀ u0 V ε F ε

(uε)ε ⊂ V ε C > 0 F ε uε) ≤ C(

f ∈L∞(Ω,R3), (uε)ε>0



 
 

  
 
 

Then, taking advantage of the fact that        vanishes

 

on 
      

  
 
 

by       Holder and Young the inequalities, we obtain

 
 

According to (2:3) and (4:3), we have

 
 
 
 
 
 

To facilitate writing, we denote by

 
 

                                                            
We have

 
 

Then

 
 
 
 

according to the values of C,

 

•

 

If                        : we see easily the result.

 

•

 

If 
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moreover     is bounded in 

‖e(uε)‖2L2(Ωε,R9
s)
≤ C (4.1)∫

Bε

|e(uε)| ≤ C. (4.2)

uε W 1,1
0 (Ω,R3).

1

2

∫
Ωε

aijhkeij(u
ε)ehk(uε)dx+λ

∫
Bε

|e(uε)|−
∫

Ω

fuεdx ≤ C

Proof. Science               , we haveF ε(uε) ≤ C

uε ∂Ω :∫
Ω

fuεdx ≤ |f |L∞(Ω)|uε|L1(Ω) ≤ C|e(uε)|L1(Ω).

..

|e(uε)|L1(Ω) ≤ C + C‖e(uε)‖L2(Ωε) + |e(uε)|L1(Bε)

‖e(uε)‖2L2(Ωε,R9
s)

+ λ

∫
Bε

|e(uε)| ≤ C + C

∫
Ω

fuεdx

≤ C + C‖e(uε)‖L2(Ωε,R9
s)

+

∫
Bε

|e(uε)|

X1 = ‖e(uε)‖L2(Ωε,R9
s)

, and X2 =
∫
Bε
|e(uε)|

X2
1 +X2 ≤ C(X1 +X2).

(X1 −
C

2
)2 + (1− C)X2 ≤

C2

4

(1 − C) ≥ 0

(1 − C) < 0 :

(X1 −
C

4
)2 ≤ C2

4
− (1− C)X2,

this inequality means that, the tensor of deformation form a straight line on the ground in    ,below parable about    , 
which is contradicted to the situation of problem. Therefore, we will have (4:2) and (4:3). In another problem we can 
supposed that      and completed the proof.

According to (4:2) and (4:3), and for a small enough   the sequence     is bounded in

         

Bε Ωε

(1− C) > 0

ε ( uε) W 1,1
0 (Ω,R3).

Remark 4.3. The solution     of the problem (4:0) satisfy to the Lemma 4:2.
To apply the epi-convergence method, we need to characterize the topological spaces containing any 

cluster point of the solution of the problem (4:0) with respect to the used topology, therefore the weak topology to 
use is insured by the lemma 4.1. So the topological spaces characterization is given in the following proposition.

Proposition 4.4. The solution    of the problem (4.0) possess a cluster point    in

Proof. According to the Remark 4.3 and Lemma 4.2, for a small enough  , the solution     is bounded in        , since 
there is a compact embedding of       in        . Hence the result of Temam [13; p:152], there exists 

such that in
.

uε

uε u∗ BD(Ω)∩L1(Ω) .

ε uε BD (Ω),

BD(Ω) L1(ε)

u∗ ∈ L1(Ω), uε ⇀ u∗ L1(Ω).



 
 

                                                                          

  

                                                                            

 

                                                                                 

(5.1)

 
 

We design by   

 

the weak topology on the space. In the sequel, we shall

 

characterize, the epi-limit of the 
energy functional given by (5:1) in the following theorem.

 

Theorem 5.1. Under (2:2), (2:3), (2:4) and for

 

, there exists a functional   

 

:

 

                     

      such that

 
 
 
 

where     is given by

 
 
 
 

Before launching our proof of this theorem we need the following lemma

 

Lemma 5.2.

 

Let 

  

be a Lipschitizian in    

 

and            

  

(i)                      If            

 

and 

 

                    

 

with 
                   

 

then tere exists 
          such that                          

 

(ii)

 

         If 

 

               and  then there exists

 

                        

 

such that                         

 

Proof.

 

this result

 

is classical if p = 2, is less

 

well known if p = 1, thus the domain    is connected

 

lipschitizian boundary. 
We can be shown (i) and

 

(ii) such as in Tartar [10; p:29 -

 

30].
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VI. LIMIT BEHAVIOR

Let                      

          
Remark 4.5. Proposition 4.4 remains valid for any weak cluster point of a sequence      in    , that satisfies (4:2) (4:3)uε V ε

Fε(v) =

{
1
2

∫
Ωε
aijhkeij(v)ehk(v)dx+ λ

∫
Bε
|e(v)| if v ∈ V ε

+∞ if v 6∈ V ε

G(v) = −
∫

Ω

fvdx, ∀v ∈ V ε

τf

f ∈ L∞(Ω,R3) F W 1,1(Ω)→ R ∪ {+∞}

τf − lim
ε
F ε = F in W 1,1

0 (Ω)

F

F (u) =


1
2

∫
Ω
aijhkeij(u)ehk(u)dx+ λ

∫
Σ
|[u]⊗s e3|

if u ∈W 1,1
0 (Ω)

+∞ if u 6∈W 1,1
0 (Ω)

.

Ω R3 p >1 :

− ∈W−1,s′(Ω,R3) < £,Φ >= 0, ∀Φ ∈ W 1,p
0 (Ω,R3), div(Φ) = 0, q ∈ Lq′

£ = grad(q).

− q ∈ Lq
∫

Ω
q = 0, v ∈W 1,p

0 (Ω,R3), div(v) = q.

£

Proof. [theorem 5.1]
• -(a) We are now in position to describe the lower epi-limit.

Let                     and                    such that            in 

              

. If 

                              

, there is
nothing to prove, because

Otherwise,                                   , there exists a subsequence of                         

                  
        , which implies that

then              is bounded in               so for a subsequence of                                 , still denoted by 
                 we have

Form the semirespectability's inequality of
                    

and passing to the lower limit, we obtain

Ω

u ∈ W 1,1
0 (Ω) uε) ∈ V ε uε ⇀ u W 1,1

0 lim inf ε→0 F
ε(uε) = +∞)

(Ω)

1

2

∫
Ω

aijhkeij(u)ehk(u)dx+ λ

∫
Σ

|[u]⊗s e3| ≤ +∞.

lim inf ε→0 F
ε(uε) < +∞

F ε(uε) ≤ C

‖e(uε)‖2L2(Ωε,R9
s)
≤ C,∫

Bε

|e(uε)| ≤ C,

χΩεe(u
ε L2(Ω,R9

s),) χΩεe(u
ε
) χΩεe(u

ε),

χΩεe(u
ε) ⇀ e(u) in L2(Ω,R9

s).

u → 1
2

∫
Ωε
aijhkeij(u)ehk(u)dx,



 

To describe the lower limit in the domain 

 

, denote

 

by        

 

the cylinder        is the open ball

 

in

 

with radios   

 

in centered at    on  , it suffices

 

to establish for     which represents the Hausdorff

 

measure, 
almost all 

  

on

 
 
 
 

where   

 

represent the Lebesgue measure in 

  

then

 
 
 
 
 
 
 
 

Other way, let 

  

in            there exists a sequence   

 

in         such that          in        

 

when

 

          
We will use the smoothing operator      ,

 

define by

 
 
 
 
 
 

where 
 
 
 
 
 
 

And

 
 
 We denote by                              , We easily show that
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lim inf
ε→0

1

2

∫
Ωε

aijhkeij(u
ε)ehk(uε)dx

≥ 1

2

∫
Ω

aijhkeij(u)ehk(u)dx. (5.2)

B ε Cρ(x0) Sρ(x0 ) R2

ρ x0 Σ H2

x0 Σ

lim
ρ→0

ν(Cρ(x0))

H2(Sρ(x0))
≥ [u]⊗s e3,

ν L1(Ω),

ν(Cρ(x0))

H2(Sρ(x0))
= lim
ε→0

νε(Cρ(x0))

H2(Sρ(x0))

= lim
ε→0

λ

H2(Sρ(x0))

∫
Sρ(x0)×]−ε,ε[

e(uε)dx. (5.3)

u W 1,1
0 (Ω) un C∞0 un ⇀ u W 1,1

0 n→ +∞
Rε

(Ω) (Ω)

Rεu =

{
[u]
−

(x3)
2 Ψε(x) + [u]

+
(x3)

2 if |x3| < ε
2

u(x) if |x3| > ε
2

[u]
+

(x3) =
u(x′, |x3|) + u(x′,−|x3|)

2
,

[u]
−

(x3) =
u(x′, |x3|)− u(x′,−|x3|)

2
,

Ψε(x) = sign(x3) min(
|x3|
ε
, 1),

uε,n = Rεu
n

e(un) =
1

ε
[u](x0)⊗s e3 + e(un −Rε(un)). (5.4)

Otherwise, let

We have                    and

according to the Lemma 5.2, there exists

                      

such that 

                 

and

         
linearly and continuously of 

     
so there exists a constant such that

qε,n =

{
divuε,n in Bε
1

Ωε

∫
Bε

divuε,n in Ωε

qε,n ∈ L1(Ω) ∫
Ω

qε,n = 0,

vε,n ∈ W 1,1
0 (Ω,R3) qε,n = divvε vε,n

qε,n
depending 

C > 0

‖vε,n‖W 1,1
0
≤ C‖qε,n‖L1



 

Since                    

 

in      

 

so                

 

in     , it follows that                 , and as            and                
in 

  

According to the (5:3) and (5:4), we have

 

 

 

 

 

 

 

 

 

We can modify                       in the boundary of       by a function                                                            

                              
where

 
                                , for more information see you Licht

 
and Michaille [16], so that

 

 

 

 

 

 

 

 

 

Recalling (5:5), then

 

 

 

 

 

 

 

 

where                                              the subadditive

 

process
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Using that                implies                        for this result see you Roudin [15], so we have               in

Let

∫
Ω
qε,n = 0, qε,n = 0 p.p vε,n → 0 W 1,1

0 (Ω,R3).

wε,n = uε,n − vε,n.

divvε,n = divuε,n Bε, divwε,n = 0 Bε wε,n ∈ V ε uε,n ⇀ un vε,n → 0

W 1,1
0 (Ω,R3).

lim
ρ→0

lim
ε→0

λ

H2(Sρ(x0))

∫
Sρ(x0)×]−ε,ε[

|e(uε,n)|dx (5.5)

= lim
ρ→0

lim
ε→0

λ

H2(Sρ(x0))

∫
Sρ(x0)×]−ε,ε[

|e(Rε(u))−e(uε,n−Rε(u))|dx

= lim
ρ→0

lim
ε→0

λ

H2(Sρ(x0))
{∫

Sρ(x0)×]−ε,ε[
|1
ε

[u]
−

(x0)⊗se3+e(uε,n−Rε(u))|dx}.

uε,n − Rε(u) Sρ(x0)×]− ε, ε[ ϕε ∈ W 1,1
0 (Sρ(x0)×]− t(ε), t(ε

[,R3)

)

limε→0
t(ε)
ε = 1

lim
ρ→0

lim
ε→0

λ

H2(Sρ(x0))
{

∫
Sρ(x0)×]−ε,ε[

|1
ε

[u]
−

(x0)⊗s e3 + e(uε,n −Rεu)|dx}

≥

lim sup
ρ→0

lim sup
ε→0

λ

H2(Sρ(x0))
{∫

Sρ(x0)×]−t(ε),t(ε)[
|1
ε

[u]
−

(x0)⊗s e3 + e(ϕε)|dx}.

lim
ρ→0

lim
ε→0

λ

H2(Sρ(x0))

∫
Sρ(x0)×]−ε,ε[

|e(uε,n)|dx

≥

lim sup
ρ→0

lim sup
ε→0

1

|Aε|
inf{∫

Aε

[u]
−

(x0)⊗s e3 + e(ϕ)|dx : ϕ ∈W 1,1
0 (As,R3)}

Aε = 1
λSρ(x0)×]−t(ε), t(ε)[,

A→ SA =

inf{
∫
A

{[u]
−

(x0)⊗se3 +e(ϕ)|dx : ϕ ∈W 1,1
0 (A,R3)}

satisfies all the condition of the global theorem thus finally obtain

lim
ε→0

λ

H2(Sρ(x0))
{

∫
Sρ(x0)×]−ε,ε[

e(uε)dx ≥ [u]
−

(x0)⊗s e3}



 
 

  

 

 

 

 

For                          and                    , such that                in                            , Assume that

 

 

 

So there exists a constant             

 

and a subsequence

 

of                 , still de noted by            , such that

 

 

 

So    

 

verifies the following evaluation (4.2) and

 

(4.3), as 

 

in                        thanks to the Remark

 

4.5 we have     

what         contracdicts the

 

fact that                                                     

 

  consequently we

 

have

 

 

•

 

_  (b) We are now in position to determine the

 

upper epi-limit, we have

 
 
 

which implies that

 
 
 
 

so that

 
 
 
 
 
 
 

we have

 
 

as in [8] we chow that

 
 
 

Consequently,
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u ∈W 1,1
0 (Ω) uε ∈ V ε uε ⇀ u W 1,1

0 (Ω)

lim inf
ε→0

F ε(uε) < +∞.

C > 0 F ε(uε ) F ε(uε)

F ε(uε) < C.

uε uε ⇀ u W 1,1
0 (Ω)

(Ω)

u ∈
W 1,1 u ∈ W 1,1(Ω) \W 1,1

0 (Ω),

lim inf
ε→0

F ε(uε) = +∞

F ε(wε,n) =
1

2

∫
Ωε

aijhkeij(w
ε,n)ehk(wε,n)dx+λ

∫
Bε

|e(wε,n)|

F ε(wε,n) =
1

2

∫
Ωε

aijhkeij(w
n)ehk(wn)dx+λ

∫
Bε

|e(wε,n)|

= S1 + S2

lim
ε→0

S1 = lim
ε→0

1

2

∫
Ω

χΩεaijhkeij(w
n)ehk(wn)dx

=

∫
Ω

aijhkeij(w
n)ehk(wn)dx

S2 = λ

∫
Bε

|e(wε,n)|

lim
ε→0
|e(wε,n)− 1

ε
[wn]⊗s e3|

lim sup
ε→0

F ε(wε,n) =

=
1

2

∫
Ω

aijhkeij(w
n)ehk(wn)dx+ λ

∫
Σ

|[wn]⊗s e3|.

Science                     in                   because there fore according to the classic result, digitalization's 
Lemma, see [7, p.32], there exists a real function increasing to 

    
, such that 

in                 when 

Consequently, we have

wn → u W 1,1
0 (Ω) vε,n → 0,

n(ε) : R+ → N + ∞ wε, n(ε) ⇀ u

W 1,1
0 ε→ 0.(Ω)

lim sup
ε→0

F ε(wε,n(ε)) ≤ lim sup
ε→0

lim sup
n→+∞

F ε(wε,n)

≤ 1

2

∫
Ω

aijhkeij(w
n)ehk(wn)dx+ λ

∫
Σ

|[wn]⊗s e3|.



 
 
 

  
                      

 
   

 
 
 
 
 
 
 

For                      , so for any sequence              in      , we obtain

 
 
 
 
 

Hence the proof is complete.

  

In the sequel,

 

we determine the limit problem linked to (4:0), when   

 

approaches to zero. Thanks to the epi-
convergence results, see section 2 [Theorem 3.3, and Proposition 3.2] and the theorem 5.1, according to the   

 

-

 

continuity of the functional     in            we have                                  

 

-epiconverges to       in 

 

 

 

 

 

For any                           , there

 

exists 

  

           

 

satisfies 

 

 

 

Proof.

 

Thanks to Lemma 4.2, the family     

 

is

 

bounded in

 

therefore it passess a 

  

– cluster

 

point   

 

in   

 

And thanks to a classical epiconvergence

 

method, theorem 3.3, it follows that    

 

is a so
: Find 

 

 

 

 

 

Since                                                             became
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u ∈ W 1,1
0 (Ω) uε ⇀ u L1(Ω)

lim sup
ε→0

F ε(uε) ≤ +∞

ε

τf

G W 1,1
0 (Ω), F ε+G τf F +G W 1,1

0 (Ω)

f ∈ L1(Ω,R3) u∗ ∈W 1,1
0 (Ω,R3)

uε ⇀ u∗ in W 1,1
0 (Ω,R3),

F (u∗) +G(u∗) = inf
u∈W 1,1

0 (Ω)
{F (u) +G(u)}.

Proposition 5.3.

( uε)ε L1(Ω) , τf u∗

L1(Ω). u∗ lution of the problem 

inf
u∈W 1,1

0 (Ω)
{F (u) +G(u)} (5.2)

F = +∞ on W 1,1(Ω) \W 1,1
0 (Ω), so (5.6)

inf
u∈W 1,1(Ω)

{F (u) +G(u)}.

uε τf u∗

uε ⇀ u∗ W 1,1
0 (Ω).

According to the uniqueness of solutions of problem (5:6), so     admits an unique   -cluster point   , and 
therefore             in 

VI. CONCLUSION

Using the epi-convergence method we showed that the structure, constituted of two elastic bodies joined 
together by a incompressible elastic thin oscillating layer of thickness, rigidity, and periodicity parameter depending 
on   , obeying to a nonlinearelastic law, whose parameters depend on the negative powers of e, behaves at the limit 
like an elastic body embedded on the boundary and subjected to a density of forces of volume f, according to the
powers of   , the layer behaves like a rather rigid nonlinear elastic material surface with membrane effect, too rigid 
inextensible material surface, a material surface with effect of infection or the structure is embedded on the interface  

, We found the same result of A. Ait Moussa and J. Messaho [1].

ε)

)

ε

Σ
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