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[ INTRODUCTION

In 1987, Inayat-Hussain [1, 2] introduced generalization form of Fox’s H-function,

which is popularly known as H-function. Now H-function stands on fairly firm footing
through the research contributions of various authors [1, 2, 3, 9, 10, 14, 15, and 16].

H -function is defined and represented in the following manner [10].

—mn —mn (aJ’aJ;AJ )m '(aj'aj )n+1,p 1 7
BT o), ). 2 (1

where

[Ire, - ol [r(-a +ag)y”
$(&)=—4 = (1.2)
[T{ra-b+ Y [1T@ - é)

j=m+1 j=n+1

It may be noted that the &(5) contains fractional powers of some of the gamma

are positive real

function and mn,p,g are integers such that 1<m<qgi1<n<p (a/ )w‘(ﬂ/ )m

numbers and (4,), (5, )m+1qmay take non-integer values, which we assume to be positive

for standardization purpose. (e, )w and (B, )w are complex numbers.
The nature of contour £, sufficient conditions of convergence of defining integral

(1.1) and other details about the H -function can be seen in the papers [9, 10]
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The behavior of the H-function for small values of |z| follows easily from a result
given by Rathie [3]:

Hoa [2]=0(1z["); Where

b,
a=min Re{—’}|z—>0 (1.3)
1<j<m a/

m q n q
Q=181+ Y 165 |-YlaAl- Y |A]>0 0<z|<w
/=1 =1 J=n+1 (14)

J=m+1 J

2012

The following function which follows as special cases of the H-function will be
required in the sequel [10]

— {(a/,a/;/l/ )1,,0‘

7%
p¥q (b/,ﬂ/;B/ )w

= H | -2 (-8,a,4), (1.5)
(0,1),(1—b/,ﬂ/;B,)M7

[Eny
E

The general class of polynomials S "[x] will be defined and represented as
follows [6, p.185, eqn. (7)]:

ndm) tndm s (=p1,), /
My, _ ili i
sor= 2 8 104 (16)
4=0 /=0 =1 i
where n,..,n =012..;m,..m, are arbitrary positive integers, the coefficients
A, ,(n./,20) are arbitrary constants, real or complex. S

,

m,

"[x] yields a number of known

polynomials as its special cases. These includes, among other, the Jacobi polynomials, the
Bessel Polynomials, the Lagurre Polynomials, the Brafman Polynomials and several
others [8, p. 158-161].

(F) Volume XII Issue III Version I

% The following formulas [12, p.77, Ens. (3.1), (3.2) & (3.3)] will be required in our
2 investigation.
8 " 2 p-1
S| (ax+—j +c| ox= Jr — fp+i/2)
5 g X 2a(4ab +c)’ I(p+1) (a>0b=0,c+4ab>0Re(p)+1/2>0) (1.7)
; Ti [ax +2j2 +C - ax = Jx Lp+1/2)
: ¢ X° X 2b(4ab+c)”*"* T(p+1)  (a=0b>0,c+4ab>0Re(p)+1/2>0) (1.8)
E © 2 -
S, I[‘%%J (ax+2j vo| axe— T — Hp+1/2) (1.9)
— % X X (4ab +c)? Lo+l (a>0b>0,c+4ab>0Re(p)+1/2>0) \™
- [I. MAIN THEOREMS

In our investigation following result [11, p. 75] is also required.
. a+f-y . . _ > r

If (1-y)"" A(2a2B2r )= ay

(2.1)
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then

2
Let X stands for (8X+£j +c

First Theorem:

0 k - mn
[x7,F (aﬁ;7+%;)(j 25[7 —a.y =By +%in5§‘._"be” [H%X”" }HM [2X Jax
d i=1

Notes

\/7 o mim] I /me] k=1, ) 1 (7/)/8,
— X
(4ab+C =0 /=0 //FO e /_. y’ (4ab+c)—f+ﬂ,/, [ 1]
y+=
2 r
o B (1/2—/1+r—z ul 51) (a.2:4),, (a.),.,
Hpﬂ‘qﬂ

(4ab+c) (6,.8),,(6,8:8),., (~4+r- X uh.e)

The above result will be converge under the following conditions

1. a>0b20c+4ab>0and w >0820.

. b, 1
1. RelA+d8 min +—>0
1<j<m ﬂ/ 2

iii. |argz|<%§27r, where Q is given by equation (1.4)

1v. —%<(a—ﬁ—;/)<§

Second Theorem:

o 1 o 1 1 o k . |Tma _5
J.FX * 12E[aaﬂ;7+§;xj25(7/—0{:7—ﬂ;7+E;X}S‘nﬁiﬂk |:H)/,X h:|Hp’q |:ZX é:|dX
5 /=1

\/; o [m/m] [ /el k (_n/)m/, , 1 (7) a,
= —”/4 )’ -
2b(4ab+c)l+1/2 o R /)(Z:;) 1/:!: /,I ', (y/) (4ab+c)—f+/l/// (7/+1j X
2 r
— .+ z (1/2_1+r_Zfﬂ'u/‘/"'&;‘])’(a"a‘;/") ’(a/’a/‘)nﬂ‘p
p+1g+1

3D+ | (b,5,), (6,.8:8)),.,, (-4+r -2 ml.61)

The above result will be converge under the following conditions

i. a20b>0c+4ab>0and u >00620,

.. [ b 1
ii. RelA+dmin|—=L||+=>0
1</<m ﬂ/ 2

(2.2)

(2.3)

(2.4)
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iii. |argz|<%Q7z, where Q is given by equation (1.4)

1v. —%<(a—ﬂ—7)<%

Third Theorem:

[ K —mn .
(v L) wprsdin i r-r-prodon oo [y e oo Notes
0 X /=1
: Vi ewm g (), 1 (g
== /1/4 X r
28(4ab+c)4+1/2 = = /kz;a 1/:!: //| .l (y/) (4ab+0)_f+”/// (}/-'-1] X
2 r
] :
—m,n+1 Z (1 / 2—A+r- Z/’:1 ,u///.,é'ﬂ),(a/ ,0!/;/4/ )m ’(a/’a/ )/7+1,,U
Hp+1‘q+1

(4ab+c) (6,.8),,(6,8:8)),,. (~4+r =X ul.e) (2.5)

The above result will be converge under the following conditions

i. a>0b>0c+4ab>0and u >0620

iii. |argz|<%§2;z, where Q is given by equation (1.4)
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iv. —%<(a—ﬁ—y)<%

Proof :

To prove the first theorem, using the result given by equation (2.2) and express H
-function occurring on the L.H.S. of equation (2.3) in terms of Mellin-Barnes type of
contour integral given by equation (1.1) and the general class of polynomials S [x] in

series form with the help of equation (1.6) and then interchanging the order of
integration and summation we get:

Frontier Research

w [m/m] (ndm] k (—n,)m/

Aty A s O T e )
pIDIN I | pd ww( T #e)27| [[[aJre |
it ;/—i— L 0

r=0 /4=0 /=0 /=1 |

Further using the result (1.7) the above integral becomes

Global Journal of Science

o [m/m]  [nglme] k (—/’I, )m }/ a[

Z Z H i1, An/"// (y/ )/, ( )r x

r=0 /=0 =0 7=1 //' ! (}/ + 1]

2
. r
k

37 Jx (s Bl o) .7
2rl oa(4ab + c)“”z,k:w”///*&”Q F(/l —r+ Z; wl + &+ 1) .
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Then interpreting with the help of (1.1) and (2.7) provides first integral.

Proceeding on the same parallel lines, theorems second and third given by (2.4)
and (2.5) can be obtained by using the results (1.8) and (1.9) respectively.

Special Cases :
(8.1) If we put A =8,=1 H-function reduces to Fox’s H-function (7, p. 10, Eqn.
(2.1.1)], then the equation (2.3), (2.4) and (2.5) takes the following form.

% 1 1 my, mn -
fXl12'[__1(0!,/3§7+§;X)25(7—0!,7—ﬁ§7+2 )S ” {H%X”}Hp,é [ Jax

0

o [m/m]  [ng/me] k —/7/- m a,

= Jr T41/2 Z H( )///An L) L ) (7/)[ X
2a(dab+oy P = = U A A LY T (dab o) (y A ]
2),

B (1/2—/1+r—25_ /,,v//.,5;1),(a.,a/ ).,

m,n+1
p+l1,q+1 L o (311)
a6+ | (0,,), (-2+r- 2 ul.01)
2 k
J.%X“ﬁ[aﬂwr X) 5(7 ay—ﬂ7+—;X]SZ‘_;;;T{Hy,X”}qu”[zx‘s]dx
0 /=1
o lnim (ndm e (=11;) 1 7) a
_LW Z H L A‘n/‘/, (y/)// il ( )[ X
2b(4ab +c) =0 /=0 =0 =1 /! (4ab+c) " [7/+1j
2),
1/2-2+r=-3" wi,s1)(a.«
m,n+1 4 ( Z ) ( /)1’ (312)

P9 (4ab + c) (b/_,ﬂ/) (,1+r > ul, 51)

¢ 1 1 my,...,m, x -4, m,n -5
j[a+—]X - F[aﬂwz Xjgﬁ[y—a,y—ﬂ;y+§;X}9mfi'ﬁj{H%X "}Hp,ﬁ; [ 20 o
0

/=1

o [m/m] [ /me] k —/7/ m
I 30 | LY

a2
2a(4ab+c)""" = 1 = a1

1 (7),a y
(4ab +c) " ( 1 j
vt 5

o o |(ve=aer=Xr uhs)(aa),

Y 3.1.3
PRI (4ab+c)’ (b/ﬁ/)m,(—,1+r—2f:1#///_,5;1) ( )

The Conditions of validity of (3.1.1), (3.1.2) and (3.1.3) easily follow from those
given in (2.3), (2.4) and (2.5) respectively.

(3.2) By applying the our results given in (2.3), (2.4) and (2.5) to the case of
1
5 \/*} in  which

My s My =231, =Mk =1V, =v,y, =y, A = (-1), we have the following interesting results.

Hermite  polynomials  [4, 5] by setting  g2(x)— x"2H, [

SERERE}
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[x ﬂ1gﬁ(a,ﬂ;ﬁ?XJZE(V—aw—ﬂ;wE;Xj(JfX “) AR
0

n/2

\/_ i[ﬁ/Z] (_n)zl (_1 / (y)/ (7/)/ a’ %
2a(dab +c)"? = & (4ab+c)" (y il J
2 r

ﬁm n+1 Z
Pt (4ab +c)’

=

[n/2] (_

o0
l+1/2 Z

(1/2=2+r-pl.50)(a,a,4) (a9)

(b/’ﬁ/)m’(b/'ﬁ/;

B, )mﬂq (=A+r—pl,5;1)

< 1 _i-1 . 1 . 1 "y nl2
[ X TR @By giX A r—ar =B+ [(x)

v a

- b(4ab +C)

r=0 /=0

ﬁm,nﬂ Z
7 (ab+ o)

O 3
VY
Q

/7)2/ (_1 /
/1

(1/2=2+r-ul51)(a.a.:4) (a.)

(6,8)),, (6,88,

(4ab+c) ( 1]
v+ 5

B, )m+1,q (=A+r—ul,5)

b o L 1 _ . \1/2
+FJX A125(“’@7*5*)25[7—a,7—ﬂ;y+5;xj(yx VUH, -

)

(r),a

ﬁm,nﬂ Z
o aab+ oy

The Conditions of validity of (3.2.1), (3.2.2) and (3.2.3) easily follow from those

(4ab +o)y ( 1j

+7
Ty

(1/2—l+f _ﬂ/,é‘;‘l),(a/,a/;A/ )m ‘(a/'a/ )'7*1/0]

(b/"B/ )w ’(b/

BB, )m+m (=A+r = pul,81)

given in (2.3), (2.4) and (2.5) respectively.

(3.3) By applying the our results given in (2.3), (2.4) and (2.5) to the case of

Lagurre polynomials 4,
my,..m.=tn,...n =mk=1v,=v,y,
results.

r\)l_n

5] by setting
n+a' 1
—yA = 0
yv il ( n J(a|+1)/

()

—m,n

Hog [zx ]d

X
2\ y

n+lp :|

—m,n

Hoy [zX ]d

Hﬂ[1 [x*
2\ y

ﬁ+1p]

- mn

X/l
2y

S2(x) > L9x]  in

, we have the following interesting

j (y wr-pre: jL(n‘”)[yX”}ﬁgg[zX‘s}dx

(Us)

-n), (n+a 1 .
/! n )(a'+1), (4ab+c)" [7+1j

(3.2.2)

H pa [zx ]c/

(3.2.3)
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(1/2—/1+r—y/,5;1),(a/.,a/;A/ )m ,(a/,a/ )Mp

—m,n+1 Z
H +1,9+ - <
o [(4ab+c)"

(6.8),,(6.8:8 )mﬂ‘q,(—/1+f—,u/,5;1) (3.3.1)
o0 1 1 a —u —m.n _
E‘)'_2 -2 F(aﬂ}/—i—z)(j F(}/—a,}/_ﬂ;)/+§,X)LE7)[yX :|Hp,q|:ZX 5:'01)(
LRI (e 1 ) (A
2b(dab+c)y P =5 N n )(a'+), (dab+c) ( 1)
7+§
ﬁm‘nﬂ Z (1/2—/7,-1-/’—#/,5;1),(3/‘,0!/;/4/ )Tﬂ '(a/"a/ )nﬂ,p
pHlg+t| ————
(4ab+e) | (b,8,), (6,88, (~A+r-u.51) (33.2)

z[[a+£2j)("2F1(a,ﬂ;;ur%;)(]25(7—a,7—ﬂ;y+%;)()ﬂn“)[y)(”}ﬁ;ﬂf:[z)("]dx
f = [0/2] n+a' 1 vy 7). &
E S ) s

n)(a'+1), (4ab+c)y"* (y 1)

(1/2=2+r-ul&N)(a.a;4) (a.a)
(bf’ﬂ/ )1,m ’(b/’ﬂ/‘;Bf' )m+1,q ,(—/1+f—,u/,5;1)

—m,n+1 Z
H g+l | T
P 1{(4&@ +cy
(3.3.3)
The Conditions of validity of (3.3.1), (3.3.2) and (3.3.3) easily follow from those
given in (2.3), (2.4) and (2.5) respectively.
(3.4) If we putn=pm=1g=g+1b6=0p=1a =1-a,b, =1-b,, then the H-function
reduces to generalized wright hypergeometric function [17] ie.

ﬁ]fm{ (1 a,a A) ) ] p_q|:(a a'A)

(01)( _b/’ﬂ/’B/ 1g (b ﬁ B)
the following form.

2 a 1 Lo lemem YTy x| & [ax-
Jx 1zﬁ(a,ﬁ:HE;Xj25(7—a,y—ﬁ;7+§:X}%ii';n’/{H%X ”’]p%f’a[ZX " Ja
i=1

0 =

i ] the equations (2.3), (2.4) and (2.5) takes

Jz o ngm) (ngmd k(=) ) 1 (7),a
== —HA ) -
28(4ab+c)4+1/2 ~ ; /}(Z:;) 1/:!: /,I i, (y/) (4ab+c)—r+,u,/, (7/+1j X
2 r
(1/2_/1+f_Z;”///'m)'(a/'a/3’4/)w‘p -z
R0 aab o)
p+1¥ g+ (b/,ﬁ/;B/ )10/ y(_j,+r—Z:j;y/.//,é‘;‘]) (4ab+0)5 (341)

© k —
jlz)( -t F(aﬁ7+ Xj F[y—a,y—ﬂ;y%;)(}fn”j‘f_“ﬁ {H%X”’}pwq[zx‘;]dx
0

/=1

_ \/; o [m/m] [”fk]ﬁ -1, y) 1 (7/)[ af y
2b(4ab+c)""* = 4=0 =0 =1 /! " (4ab+ C)J”h/’ (7/ T 1j
2 r
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(V2-a+r=-X  whisi)a.aiA),
(b/,,ﬁ/;B/,)m,(—l+f—2f:1y/,//,,5;1) '(4ab+c)5

pﬂl/lqﬂ

(3.4.2)

f b - L 1 my....m, s - - -
j(a+7])( * 12/—'1(0:,/3;7+§;Xj2/-_1(7—0:,7—[3:7+§;X}9”11-_‘;kk {Hy,)( ”/}py/q [zX J]dx
0

/=1

Jz o lnym] ngm) k(=) ) 1 (r) a,
- Nt - A R L
23(4ab+c)’“1/2 == //(Z::O ]/:!: //| n;l; (y/) (48b+0)_r+ﬂ/// (}/—’_1) X
2 r
_ (1/2—/1+f—Z;ﬂ///v531)’(a/’“/?’4/)1p -z
pﬂl//qﬂ i s 3.4.3
(b/"ﬁ/;B/)m‘(_/1+r_2f=1ﬂ"//’5;1) abe) ( o )

The Conditions of validity of (3.4.1), (3.4.2) and (3.4.3) easily follow from those
given in (2.3), (2.4) and (2.5) respectively.

(3.5) If we put @ =y, in the main theorem, the value of a, in (2.1) comes out to be

ﬂf

equal to = and the result (2.3), (2.4) and (2.5) gives the following interesting integral.
r

TX’H F (a,ﬁ;a + l;X}Sﬁ;;’k”k {ﬁy,)(‘”/ }ﬁfﬁ,‘; [ZX’E]O’X
=1

0

N

i Jz - [nfd wﬁuﬁ(— ) ) 1 (@), (B), «
2a(dab+c)"* = = = " (4ab+c)"H (a+1j /1

—m,n+1 Z

(1V2=2+r=-30 whot(a.a:4), (a.a)

n+lp

o |2 (3.5.1)
b0 | (6,5, (5:8:8),., (-4+r =20 1)

I 1 | . 1 ey u —H, o -0

J.FX ZE a:ﬂxa"—ElX Myl Hy/X / Hp‘q [ZX :|dX

5 /=1

\/; o [m/m] [ me] Kk (_n/)m/ / 1 (a) ('B)
. ) Ry r r
2b(4ab+c)l+v2 ~ Azo Z;J 1:!: //| n .l (y/) (4ab+c)—/+,u/// (a+1) rlX
2)
k . .
_Zﬁ;ﬂ P (1/2—/1+r—Z/:Wy//,,éj),(a/,a/,A/)m,(a/ﬂ/)m,p (352)

4ab +c)’ . K :
L ,/77, i 'm+‘qv A+l = j=1 5
( "1 (6.8, (6,88, -2+ r=3 wh.6)
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T K —m,n o
J [‘9 * %J XTTLF (a,ﬂ;a + %;X anf”,‘.f‘."ni"k {H%X “ }Hp,’q [2x ]
0 /=1

N (@),

T (4ab+c) T & ped H 2 (4ab +c) " (a+1j ﬂx
2) "
Notes —m.n+1 z (1 [2=A+r~ Z; #/'//"5;1)’(8/'“/;’4/ )m ,(a/.,a/ )/7+1,p
+HgH | T
o (4ab+0)b (b/"B/)wn’(b/’ﬁ/;B/)m+1q’(_14_[_211:”///'5;1) (353)

The conditions of validity of (3.5.1), (3.5.2) and (3.5.3) easily follow from those
given in (2.3), (2.4) and (2.5) respectively.

(3.6) If we put f=a+) and a=—f (fis non-negative integer) in (3.5.1), (3.5.2)
and (3.5.3), we have: 2

[ xysmm | [Tyx» |Fm] 2+ o
frenyseo i

Jr r mim) ngdmd k(= ) 1 (-7),
_WZ pIE Z [1 ) - *

/
pr R B e (4ab+c)y"5  rl

—mn+1 Z (1/2—],+f—Z:;,U///,é‘;‘]),(a/,0,’/.;/4/ )1,n'(a/’a/ )nﬂ‘p

pHlg+l | —— 361
(4ab+0)§ (b/"B/ )1,m’(b/’ﬁ/;5/ )mﬂq'(_i+f_2f:1fu//f’5;1) ( )

T%X* (1-x) g {f[ y,.)(“'}ﬁ;‘; [ 2 ok
/=1

1

B

o [m/m] [ng/m] k (=N —f
\/; H y/) 1 ( ),X

- 2b(4ab + C‘)/HV2 =0 /=0 /kzo e /_ ! (48[9 + C)—H;/,A rl

o B (1/2—ﬂ+r—z u ,/,51)( a;A), (a.e),

o ; 3.6.2
(4ab+0) (b/’ﬁ/) ( ﬂ )m+1q (_l—i_/’_zj;’u//j,an) ( )

K

T(a + %) X+ (1= X)fSn’]”j_"_,;;”* {H yXH }ﬁ;ﬂ; [ZX";]O’X
0

/=1

’ﬂ' o [m/m]  [ng/my]

K (_n/)m/ / 1 -f
WTERATD) /z BN ) (=7),

A ) X
il (y/) (4ab+c)—r+y,/, 7l

—m,n+1 Z (1/2—1+f—Zf:1/l/-//,5;1),(3/,0.’/;/4/ )1‘/7 ’(a/"a/' )n+1,p
( (b/’ﬁ/ )1‘/77 Y(b/"ﬁ/;B/ )m+1,q ’(_ﬂ e 2’21;[///’5;1)

The conditions of validity of (3.6.1), (3.6.2) and (3.6.3) easily follow from those
given in (2.3), (2.4) and (2.5) respectively.

(3.6.3)
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