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Notes

u∆∆(t) + λp(t)f(v(σ(t))) = 0,

λ

v∆∆(t) +λq(t)g(u(σ(t))) = 0, for t ∈ [a, b]T
αu(a)−βu∆(a) = 0, u(σ2(b))− δu(η) = 0, −

δv(η

αv(a)− βv∆(a) = 0, v(σ2(b))
) = 0, where T

Let T be a time scale with a, σ2(b) ∈ T. Given an interval J of R, we will use
the interval notation

JT = J ∩ T.

We are concerned with determining intervals of the parameter λ (eigenval-
ues) for which there exist positive solutions for the system of dynamic equa-
tions,

u∆∆(t) + λp(t)f(v(σ(t))) = 0, t ∈ [a, b]T,

v∆∆(t) + λq(t)g(u(σ(t))) = 0, t ∈ [a, b]T,
(1.1)

satisfying the boundary conditions

αu(a)− βu∆(a) = 0, u(σ2(b))− δu(η) = 0,

αv(a)− βv∆(a) = 0, v(σ2(b))− δv(η) = 0,
(1.2)

Abstract - Values of       are determined for which there exist positive solutions of the system of dynamic equations,

Satisfying the three -

point boundary conditions, 

is a time scales. A Guo-Krasnosel'skii fixed point theorem is applied.
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II. Some Preliminaries

where α, β ≥ 0, α + β > 0, λ > 0, 0 < δ < 1, η ∈ [a, σ2(b)], and

(A1) f, g ∈ C([0,∞), [0,∞)),

(A2) p, q ∈ C([a, σ(b)]T, [0,∞)), and each does not vanish identically on any

closed subinterval of [a, σ(b)]T,

(A3) All of

f0 := lim
x→0+

f(x)

x
, g0 := lim

x→0+

g(x)

x
,

f∞ := lim
x→∞

f(x)

x
, g∞ := lim

x→∞

g(x)

x

exist as positive real numbers.

On a larger scale, there has been a great deal of activity in studying posi-
tive solutions of boundary value problems for ordinary differential equations.
Interest in such solutions is high from a theoretical sense [9, 10, 12, 15] and
as applications for which only positive solutions are meaningful. These con-
siderations are caste primarily for scalar problems, but good attention has
been given to boundary value problems for systems of differential equations
[13, 14, 19, 21, 22].

The main tool in this paper is an application of the Guo-Krasnoselskii fixed
point theorem for operators leaving a Banach space cone invariant [10]. A
Green’s function plays a fundamental role in defining an appropriate operator
on a suitable cone.

In this section, we state some preliminary lemmas and the well-known Guo-
Krasnosel’skii fixed point theorem.

Let G(t, s) be the Green’s function for the boundary value problem

−y∆∆(t) = 0, (2.1)

αy(a)− βy∆(a) = 0, y(σ2(b))− δy(η) = 0, (2.2)

which is given by

G(t, s) =
1

d

{
G1(t, s) : a ≤ s ≤ η
G2(t, s) : η ≤ σ(s) ≤ σ2(b)

where

G1(t, s) =

{
[β + α(σ(s)− a)] [σ2(b)− δη − t(1− δ)], σ(s) ≤ t
[β + α(t− a)] [σ2(b)− δη − σ(s)(1− δ)], t ≤ s

[9]
L
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G2(t, s) =

{
[β + α(σ(s)− a)] (σ2(b)− t) + (t− σ(s)) (η + β − αa) δ, σ(s) ≤ t
[β + α(t− a)] (σ2(b)− σ(s)) , t ≤ s

and
d := β(1− δ) + α(σ2(b)− a− δ(η − a)).

Lemma 2.1 For h(t) ∈ C[a, σ2(b)]T, the BVP

−y∆∆(t) = h(t), t ∈ [a, b]T, (2.3)

αy(a)− βy∆(a) = 0, y(σ2(b))− δy(η) = 0, (2.4)

has a unique solution

y(t) =
β + α(t− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))h(s)∆s

− δ(β + α(t− a))

d

∫ η

a

(η − σ(s))h(s)∆s−
∫ t

a

(t− σ(s))h(s)∆s.

(2.5)

From (2.5) obviously we have that

y(t) ≤ β + α(t− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))h(s)∆s, (2.6)

and

y(η) ≥ β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))h(s)∆s. (2.7)

Lemma 2.2 Let 0 < δ < 1. If h(t) ∈ C[a, σ2(b)]T, and h ≥ 0, then the
unique solution y of the problem (2.3), (2.4) satisfies

y(t) ≥ 0, t ∈ (a, σ2(b))T.

Proof: From the fact that y∆∆(t) = −h(t) ≤ 0, we know that the graph of

y(t) is concave down on [a, σ2(b)]T and y∆(t) is monotone decreasing. Thus

y∆(t) ≤ y∆(a) = α
β
y(a), where β ̸= 0.

Case 1. If y(a) < 0, then y∆(t) < 0 for [a, σ2(b)]T. Thus y is a monotone

decreasing function, that is y(t) ≥ y(σ2(b)).

1. If y(σ2(b)) ≥ 0, then y(t) > 0. So this contradicts the assertion y(t) is a
monotone decreasing function.

2. If y(σ2(b)) < 0, then we have that
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Positive Solutions for Systems of Three-Point Nonlinear Boundary Value Problems on Time Scales

y(η) =
1

δ
y(σ2(b)) < 0,

y(σ2(b)) = δy(η) ≥ y(η),

which contradicts the assertion that y(t) is monotone decreasing.
Case 2. If y(a) ≥ 0, then y∆(a) ≥ 0. So y(t) is a monotone increasing on

[a, a+ ϵ].
1. If y(σ2(b)) ≥ 0, then y(t) ≥ 0 on [a, σ2(b)]T.
2. If y(σ2(b)) < 0, then we have that

y(η) =
1

δ
y(σ2(b)) < 0,

y(σ2(b)) = δy(η) ≥ y(η),

which contradicts the assertion that the graph of y(t) is concave down on
(a, σ2(b))T.

If β = 0, from the boundary conditions we obtain y(a) = 0.

1. If y(σ2(b)) ≥ 0, then the concavity of y implies that y(t) ≥ 0 for t ∈
[a, σ2(b)]T.
2. If y(σ2(b)) < 0, then

y(η) =
1

δ
y(σ2(b)) < 0,

y(σ2(b)) = δy(η) ≥ y(η).

This contradicts with the concavity of y.

Lemma 2.3 If y∆∆(t) ≤ 0, then y(σ2(b))
σ2(b)

≤ y(t)
t

≤ y(η)
η

for all t ∈ [η, σ2(b)]T.

Proof: Let h(t) := y(t) − t

σ2(b)−a
y(σ2(b)). Thus, we have h(η) > 0 and

h(σ2(b)) = 0. Since h∆∆(t) ≤ 0 then h(t) ≥ 0 on [η, σ2(b)]T. So
y(σ2(b))
σ2(b)

≤ y(t)
t
.

For the function h(t), since h(η) > 0, h(σ2(b)) = 0 and h∆∆(t) ≤ 0 then the

function h(t) is decreasing on [η, σ2(b)]T. So
y(t)
t

≤ y(η)
η

for all t ∈ [η, σ2(b)]T.

Lemma 2.4 Let 0 < δ < 1. If h(t) ∈ C[a, σ2(b)]T, and h ≥ 0, then the
unique solution y of the problem (2.3), (2.4) satisfies

inf
t∈[η,σ2(b)]T

y(t) ≥ γ∥y∥,

where

γ := min

{
δ(σ2(b)− η)

σ2(b)− δη − a(1− δ)
,

δη

σ2(b)

}
.
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Positive Solutions for Systems of Three-Point Nonlinear Boundary Value Problems on Time Scales

Proof: By the second boundary condition we know that y(η) ≥ y(σ2(b)). Pick
t0 ∈ (a, σ2(b))T such that y(t0) = ∥y∥. If t0 < η < σ2(b), then

min
t∈[η,σ2(b)]T

y(t) = y(σ2(b)),

and
y(σ2(b))− y(η)

σ2(b)− η
≤ y(η)− y(t0)

η − t0
.

Therefore

min
t∈[η,σ2(b)]T

y(t) ≥ δ(σ2(b)− η)

σ2(b)− δη − a(1− δ)
∥y∥.

If η ≤ t0 < σ2(b), again we have y(σ2(b)) = mint∈[η,σ2(b)]T y(t). From

Lemma 2.3, we have y(η)
η

≥ y(t0)
t0

. Combining with the boundary condition

δy(η) = y(σ2(b)), we conclude that

y(σ2(b))

δη
≥ y(t0)

t0
≥ y(t0)

σ2(b)
=

∥y∥
σ2(b)

.

This is

min
t∈[η,σ2(b)]T

y(t) ≥ δη

σ2(b)
∥y∥.

We note that a pair (u(t), v(t)) is a solution of the eigenvalue problem (1.1),
(1.2) if, and only if,

u(t) = λ

∫ σ(b)

a

G(t, s)p(s)f

(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r

)
∆s, a ≤ t ≤ σ2(b),

where

v(t) = λ

∫ σ(b)

a

G(t, s)q(s)g(u(σ(s)))∆s, a ≤ t ≤ σ2(b).

Values of λ for which there are positive solutions (positive with respect to
a cone) of (1.1), (1.2) will be determined via applications of the following fixed
point-theorem [17].

Theorem 2.5 (Krasnosel’skii) Let B be a Banach space, and let P ⊂ B be
a cone in B. Assume Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2,
and let

T : P ∩ (Ω2\Ω1) → P

be a completely continuous operator such that, either

(i) ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω2, or

[1
7]
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III. Positive Solutions in a Cone

(ii) ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω2.

Then, T has a fixed point in P ∩ (Ω2\Ω1).

In this section, we apply Theorem 2.5 to obtain solutions in a cone (i.e., positive
solutions) of (1.1), (1.2).

For our construction, let B = {x : [a, σ2(b)]T → R} with supremum norm
∥x∥ = sup{| x(t) |: t ∈ [a, σ2(b)]T} and define a cone P ⊂ B by

P =

{
x ∈ B | x(t) ≥ 0 on [a, σ2(b)]T, and min

t∈[η,σ2(b)]T
x(t) ≥ γ∥x∥

}
.

For our first result, define positive numbers L1 and L2 by

L1 :=max

{[
γ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)∆sf∞

]−1

,

[
γ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))q(s)∆sg∞

]−1}
,

and

L2 :=min

{[
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)∆sf0

]−1

,

[
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))q(s)∆sg0

]−1}
.

Theorem 3.1 Assume that conditions (A1) − (A3) are satisfied. Then, for
each λ satisfying

L1 < λ < L2, (3.1)

there exists a pair (u, v) satisfying (1.1), (1.2) such that u(x) > 0 and v(x) > 0
on (a, σ2(b))T.

Proof: Let λ be as in (3.1). And let ϵ > 0 be chosen such that

max

{[
γ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)∆s(f∞ − ϵ)

]−1

,
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[
γ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))q(s)∆s(g∞ − ϵ)

]−1}
≤ λ,

and

λ ≤min

{[
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)∆s(f0 + ϵ)

]−1

,

[
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))q(s)∆s(g0 + ϵ)

]−1}
,

Define an integral operator T : P → B by

Tu(t) := λ

∫ σ(b)

a

G(t, s)p(s)f

(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r

)
∆s, u ∈ P .

(3.2)

We seek suitable fixed points of T in the cone P .

By Lemma 2.4, TP ⊂ P . In addition, standard arguments show that T is
completely continuous.

Now, from the definitions of f0 and g0, there exists H1 > 0 such that

f(x) ≤ (f0 + ϵ)x and g(x) ≤ (g0 + ϵ)x, 0 < x ≤ H1.

Let u ∈ P with ∥u∥ = H1. We first have from (2.6) and choice of ϵ,

λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r

≤ λ
β + α(t− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)g(u(σ(r)))∆r

≤ λ
β + α(t− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)(g0 + ϵ)u(r)∆r

≤ λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)∆r(g0 + ϵ)∥u∥

≤ ∥u∥
= H1.

As a consequence, we next have from (2.6) and choice of ϵ,

Tu(t) = λ

∫ σ(b)

a

G(t, s)p(s)f

(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r

)
∆s
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≤ λ
β + α(t− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)

f

(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r

)
∆s

≤ λ
β + α(t− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)

(f0 + ϵ)λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r∆s

≤ λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)(f0 + ϵ)H1∆s

≤ H1

= ∥u∥.

So, ∥Tu∥ ≤ ∥u∥. If we set

Ω1 = {x ∈ B : ∥x∥ < H1},

then
∥Tu∥ ≤ ∥u∥, for u ∈ P ∩ ∂Ω1. (3.3)

Next, from the definitions of f∞ and g∞, there exists H2 > 0 such that

f(x) ≥ (f∞ − ϵ)x and g(x) ≥ (g∞ − ϵ)x, x ≥ H2.

Let

H2 = max

{
2H1,

H2

γ

}
.

Let u ∈ P and ∥u∥ = H2. Then,

min
t∈[η,σ2(b)]T

u(t) ≥ γ∥u∥ ≥ H2.

Consequently, from (2.7) and choice of ϵ,

λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r

≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(r))q(r)g(u(σ(r)))∆r

≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(r))q(r)(g∞ − ϵ)u(r)∆r
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≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(r))q(r)(g∞ − ϵ)∆rγ∥u∥

≥ ∥u∥
= H2.

And so, we have from (2.7) and choice of ϵ,

Tu(η) ≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)

f

(
λ

∫ σ(b)

η

G(σ(s), r)q(r)g(u(σ(r)))∆r

)
∆s

≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)

(f∞ − ϵ)λ

∫ σ(b)

η

G(σ(s), r)q(r)g(u(σ(r)))∆r∆s

≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)(f∞ − ϵ)H2∆s

≥ λγ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)(f∞ − ϵ)H2∆s

≥ H2

= ∥u∥.

Hence, ∥Tu∥ ≥ ∥u∥. So, if we set

Ω2 = {x ∈ B : ∥x∥ < H2},

then
∥Tu∥ ≥ ∥u∥, for u ∈ P ∩ ∂Ω2. (3.4)

Applying Theorem 2.5 to (3.3) and (3.4), we obtain that T has a fixed
point u ∈ P ∩ (Ω2\Ω1). As such, and with v being defined by

v(t) = λ

∫ σ(b)

a

G(t, s)q(s)g(u(σ(s)))∆s,

the pair (u, v) is a desired solution of (1.1), (1.2) for the given λ. The proof is
complete.

Prior to our next result, we define positive numbers L3 and L4 by

L3 := max

{[
γ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)∆sf0

]−1

,

[
γ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))q(s)∆sg0

]−1}
,
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and

L4 := min

{[
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)∆sf∞

]−1

,

[
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))q(s)∆sg∞

]−1}
.

Theorem 3.2 Assume that conditions (A1) − (A4) are satisfied. Then, for
each λ satisfying

L3 < λ < L4, (3.5)

there exists a pair (u, v) satisfying (1.1), (1.2) such that u(x) > 0 and v(x) > 0
on (a, σ2(b))T.

Proof: Let λ be as in (3.5). And let ϵ > 0 be chosen such that

max

{[
γ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)∆s(f0 − ϵ)

]−1

,

[
γ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))q(s)∆s(g0 − ϵ)

]−1}
≤ λ,

and

λ ≤ min

{[
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)∆s(f∞ + ϵ)

]−1

,

[
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))q(s)∆s(g∞ + ϵ)

]−1}
.

Let T be the cone preserving, completely continuous operator that was
defined by (3.2).

From the definitions of f0 and g0, there exists H3 > 0 such that

f(x) ≥ (f0 − ϵ)x and g(x) ≥ (g0 − ϵ)x, 0 < x ≤ H3.

Also, from the definition of g0 it follows that g(0) = 0 and so there exists
0 < H3 < H3 such that

λg(x) ≤ H3

β+α(σ2(b)−a)
d

∫ σ(b)

a
(σ2(b)− σ(r))q(r)∆r

, 0 ≤ x ≤ H3.
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Choose u ∈ P with ∥u∥ = H3. Then

λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r

≤ λ
β + α(t− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)g(u(σ(r)))∆r

≤ λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)g(u(σ(r)))∆r

≤
β+α(σ2(b)−a)

d

∫ σ(b)

a
(σ2(b)− σ(r))q(r)H3∆r

β+α(σ2(b)−a)
d

∫ σ(b)

a
(σ2(b)− σ(s))q(s)∆s

≤ H3.

Then, by (2.7)

Tu(η) ≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)

f

(
λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(r))q(r)g(u(σ(r)))∆r

)
∆s

≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)

(f0 − ϵ)λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(r))q(r)g(u(σ(r)))∆r∆s

≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)

(f0 − ϵ)λγ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(r))q(r)(g0 − ϵ))∥u∥∆r∆s

≥ λ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)(f0 − ϵ)∥u∥∆s

≥ λγ
β + α(η − a)

d

∫ σ(b)

η

(σ2(b)− σ(s))p(s)(f0 − ϵ)∥u∥∆s

≥ ∥u∥.

So, ∥Tu∥ ≥ ∥u∥. If we put

Ω3 = {x ∈ B : ∥x∥ < H3},

then

∥Tu∥ ≥ ∥u∥, for u ∈ P ∩ ∂Ω3. (3.6)
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Next, by definitions of f∞ and g∞, there exists H4 such that

f(x) ≤ (f∞ + ϵ)x and g(x) ≤ (g∞ + ϵ)x, x ≥ H4

Clearly, since g∞ is assumed to be a positive real number, it follows that
g is unbounded at ∞, and so, there exists H̃4 > max{2H3, H4} such that

g(x) ≤ g(H̃4), for 0 < x ≤ H̃4.
Set

f ∗(t) = sup
a≤s≤t

f(s), g∗(t) = sup
a≤s≤t

g(s), for t ≥ 0.

Clearly f ∗ and g∗ are nondecreasing real valued functions for which it holds

lim
x→∞

f ∗
i (x)

x
= f∞, lim

x→∞

g∗i (x)

x
= g∞.

Hence, there exists H4 such that f ∗(x) ≤ f ∗(H4), g∗(x) ≤ g∗(H4), for
0 < x ≤ H4.

Choosing u ∈ P with ∥u∥ = H4, we have

Tu(t) ≤ λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)

f

(
λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)g(u(σ(r)))∆r

)
∆s

≤ λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)

f ∗
(
λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)g(u(σ(r)))∆r

)
∆s

≤ λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)

f ∗
(
λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)g∗(u(σ(r)))∆r

)
∆s

≤ λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)

f ∗
(
λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)g∗(H4)∆r

)
∆s

≤ λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)

f ∗
(
λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(r))q(r)(g∞ + ϵ)H4∆r

)
∆s

≤ λ
β + α(σ2(b)− a)

d

∫ σ(b)

a

(σ2(b)− σ(s))p(s)f ∗(H4)∆s
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