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point boundary conditions, au(a) — Bu?(a) = 0, u(o?(b)) — du(n) = 0, av(a) — Bv2(a) = 0, v(c2(b)) —
5”(’7) = 0, where T is atime scales. A Guo-Krasnosel'skii fixed point theorem is applied.
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I. [NTRODUCTION

Let T be a time scale with a,c?(b) € T. Given an interval J of R, we will use
the interval notation

JT:JQT.

We are concerned with determining intervals of the parameter A (eigenval-
ues) for which there exist positive solutions for the system of dynamic equa-
tions,

WA (1) + Ap(t) [ (o(a (1)) =0, € [a, by,

v (t) + Ag(t)g(u(o(t) = 0, t € [a, ],

(1.1)

satisfying the boundary conditions
au(a) — fu(a) =0

) O
ao(@) = o (a) =0, o(o(8) = Guln) = 0 42
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where o, 3 >0, a+8>0,A>0,0<d <1, n€ [a,c?(b)], and
(Al) 1,9 € C([0,00), [0>OO)>7

(A2) p,q € C([a,o(b)]T,[0,00)), and each does not vanish identically on any

closed subinterval of [a, o(b)]T,

(A3) All of
X x
fO =1 f( )7 go ‘= 1 g( )7
z—0t X z—0t T
o T e
o Tr—r00 i ’ o T—r00 X

exist as positive real numbers.

On a larger scale, there has been a great deal of activity in studying posi-
tive solutions of boundary value problems for ordinary differential equations.
Interest in such solutions is high from a theoretical sense [9, 10, 12, 15] and
as applications for which only positive solutions are meaningful. These con-
siderations are caste primarily for scalar problems, but good attention has
been given to boundary value problems for systems of differential equations
(13, 14, 19, 21, 22].

The main tool in this paper is an application of the Guo-Krasnoselskii fixed
point theorem for operators leaving a Banach space cone invariant [10]. A
Green’s function plays a fundamental role in defining an appropriate operator
on a suitable cone.

[I.  SOME PRELIMINARIES

In this section, we state some preliminary lemmas and the well-known Guo-
Krasnosel’skii fixed point theorem.
Let G(t, s) be the Green’s function for the boundary value problem

—yA (1) =0, (2.1)
ay(a) = ByP(a) =0, y(o®(b)) — dy(n) = 0. (2.2)

which is given by

where

_J B+alo(s) —a)][0*(b) —on —t(1 =0)], o(s) <t
Gilt,s) = { 8+ alt —a)] [02(b) — 6y — o(s)(1 = 8)], t<s
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_ [ BHalo(s) = )] (0*(6) — ) + (t = 7()) (14 B — aa) b, o(s) <
Gt =[5 oty ) b o) t<s

and
d:=B(1 —0)+ a(c?*(b) —a—d(n—a)).

Lemma 2.1 For h(t) € Cla,o*(b)], the BVP

Notes

—y22(t) = h(t), t€ [a,b]T, (2.3)

ay(a) = By>(a) =0, y(o*(b)) — dy(n) =0, (2.4)
has a unique solution

aft —a) [70
o) ==Y [ 020 — oopiis) s

_ B+ O‘d(t — ) /"(n — o (s))h(s)As — / (t — o(s))h(s)As
’ ’ (2.5)
From (2.5) obviously we have that
B+at—a) [
o) < AT [0 — o(ophis)as (2.6)
and
B+an—a) [
o) 2 I [0t~ o(shis) s 2.7

Lemma 2.2 Let 0 < § < 1. If h(t) € Cla,0*(b)lT, and h > 0, then the
unique solution y of the problem (2.3), (2.4) satisfies

y(t) >0, te (a,02(b))T.

Proof: From the fact that y*2(t) = —h(t) < 0, we know that the graph of
y(t) is concave down on [a,o(b)] and y*(t) is monotone decreasing. Thus
y2(t) < y*(a) = $y(a), where 3 # 0.

Case 1. If y(a) < 0, then y2(t) < 0 for [a,0?(b)}p. Thus y is a monotone
decreasing function, that is y(t) > y(c?(b)).

1. If y(o?(b)) > 0, then y(t) > 0. So this contradicts the assertion y(t) is a
monotone decreasing function.

2. If y(o%(b)) < 0, then we have that
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() = 5y(o(B) <0,

which contradicts the assertion that y(¢) is monotone decreasing.
Case 2. If y(a) > 0, then y*(a) > 0. So y(t) is a monotone increasing on
la,a + €.
L. If y(o?(b)) > 0, then y(t) > 0 on [a, o*(b)]T-
2. If y(o?(b)) < 0, then we have that

which contradicts the assertion that the graph of y(t) is concave down on

(a, 0 (b))
If B =0, from the boundary conditions we obtain y(a) = 0.

1. If y(o?(b)) > 0, then the concavity of y implies that y(t) > 0 for ¢t €
(@, 0*(b)]-
2. If y(o2(b)) < 0, then

This contradicts with the concavity of y.

Lemma 2.3 If y22(t) <0, then y(;z(g;)) < @ < @ for all t € [, (b)]T.

Proof: Let h(t) = y(t) — 02(5)_ay(02(b)). Thus, we have h(n) > 0 and
h(o?(b)) = 0. Since hA2(t) < 0 then A(t) > 0 on [n, e*(b)]p. So U@ < U0,
For the function h(t), since h(n) > 0, h(c?(b)) = 0 and h*2(t) < 0 then the

function h(t) is decreasing on [, 0*(b)]p. So L4 < @ for all t € [n, 02 (b)] .

Lemma 2.4 Let 0 < § < 1. If h(t) € Cla,0*(b)lT, and h > 0, then the
unique solution y of the problem (2.3), (2.4) satisfies

inf t) > ,
ety y() =yl

where

N S ORt) on
I {o%b)—(sn—a(l—a)’a?(b)}‘
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Proof: By the second boundary condition we know that y(n) > y(o?(b)). Pick
to € (a,0?(b)) such that y(to) = [Jy||. If to <n < o*(b), then

min — y(t) = y(o*()),

teln,o> @)
and )
y(o=(0)) —y(m) _ y(n) — Z/(to)'
o?(b)—n —  n—to
Therefore
. d(a*(b) —n)
min t .
tefn.o> B (t) = o%(b) —dn —a(l =) lyl

If n <ty < o%(b), again we have y(c?(b)) = minte[mgz(b)],ﬂq y(t). From

Lemma 2.3, we have %’7) > %}0) Combining with the boundary condition
dy(n) = y(o?(b)), we conclude that

y(o*(b)) > y(to) > y(to) |yl

on to a2(b)  o2(b)
This is 5
. n
min t) > —— .
i, )2 S

We note that a pair (u(t),v(t)) is a solution of the eigenvalue problem (1.1),
(1.2) if, and only if,

o(b) o(b)
u(t) = )\/ G(t, s)p(s)f()\/ G(U(s),r)q(r)g(u(cr(r)))Ar) As, a <t < o*(b),

where
o(b)
v(t) = )\/ G(t,5)q(s)g(u(a(s))As, a <t <o*b).

Values of A for which there are positive solutions (positive with respect to
a cone) of (1.1), (1.2) will be determined via applications of the following fixed
point-theorem [17].

Theorem 2.5 (Krasnosel’skii) Let B be a Banach space, and let P C B be
a cone in B. Assume Q1 and Qs are open subsets of B with 0 € €y C €y C €y,
and let

T:PnN (QQ\QI) — P
be a completely continuous operator such that, either

(1) |Tul] < ||u|l, w€ PN, and ||Tul|| > ||u|, u€ P NI, or
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(i) |Tu|| > JJull, we PNoQ, and ||Tul|l < ||ull, uve P NoQ,.
Then, T has a fized point in P N (Q2\Qy).

[11. PosITIVE SOLUTIONS IN A CONE

In this section, we apply Theorem 2.5 to obtain solutions in a cone (i.e., positive
solutions) of (1.1), (1.2).

For our construction, let B = {x : [a,0?(b)|y — R} with supremum norm
||| = sup{| z(t) |: t € [a,0?(b)]T} and define a cone P C B by

P = {x €B|x(t) >0on [a,0°(b)]p, and min  x(t) > ”YHxH}

el (Dl

For our first result, define positive numbers L; and Ly by

L; :=max {

B+a(n—a) o

o(b)
e BCSOREOORS

-1

f)/

a(n—a) [°@
7% /77 (02(b) — o(5))q(s) Asgas

and

Lo :=min {

B+ a(o?
d

) o
(b) ) / (a2(b) — o (s))p(s)Asfy

Theorem 3.1 Assume that conditions (A1) — (A3) are satisfied. Then, for
each X\ satisfying

bl

ao? —a o)
Jrolo () o) / (0°(b) = o(s))a(s)Asgo

Li <A< Ly, (3.1)

there ezists a pair (u,v) satisfying (1.1), (1.2) such that u(x) > 0 and v(z) >0
on (a,0*(b))T-
Proof: Let A be as in (3.1). And let € > 0 be chosen such that

max {

-1

an—a) [°®
A= o) o plsastre - )|

n
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and

alo? —a o (®) B
B+ d(b) )/a (02(b) — o (s))p(s)As(fo + €)

|

)

Notes A <min {

ao? —a o)
B+ af d<b> ) / (02(0) — o(s))a(s) As(go + €)

Define an integral operator T : P — B by

_)\/ Glt, s)p (/ Glo ()(((r)))Ar>As,u€P

(3.2)

We seek suitable fixed points of T" in the cone P.

By Lemma 2.4, TP C P. In addition, standard arguments show that 7' is
completely continuous.

Now, from the definitions of fy and g, there exists H; > 0 such that
f(x) <(fo+e)x and g(x) < (go+e€)x, 0<uz < H,.
Let u € P with [Ju|| = H;. We first have from (2.6) and choice of ¢,

a(b)
A / Glo(s),a(r)g(ulo(r) Ar

) (o)
WD [0 0) - 0(r))atr) oo + ulr)ae

ala?(b) —a ()
AT BIZE [T 020 — otr))atr) (g + )l

< |
= H;.

As a consequence, we next have from (2.6) and choice of ¢,

o (b) a(b)
Tu(t) = A / G(t,s)p(s)f (A / G(o(s),r)q(r)g(u(a(r)))m) As
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So, || Tu|| < ||ul|. If we set
O ={zxeB:|z| < H},

then
| Tul| < ||ull, for uePnof,. (3.3)

Next, from the definitions of f. and g, there exists Ho > 0 such that

J(2) 2 (foo — )z and g(2) > (9o — )z, @ > M.
Let

H
H; = max {2H1, —2} .
v

Let u € P and ||u|| = Hy. Then,

min  w(t) > ~y||ul| > H,.
i 0l0) 2 5l = T

Consequently, from (2.7) and choice of e,

© 2012 Global Journals Inc. (US)
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a(n—a) [0
> WA= [T 020) = 0 (r))atr) g — B
=

- HQ.

And so, we have from (2.7) and choice of €,
a(n—a) [°®
Putn) > WA= T2 ) — (st
o(b)
(3 [ Gt maatutear ) as

aln—a a(b)
s\ ftralm—a / (0%(b) — o (s))p(s)

n

Hence, ||Tu|| > ||ul]|. So, if we set
QQ = {3’; e B: ”LUH < HQ},

then
|Tul| > ||ul|, for uwe P NoQ. (3.4)

Applying Theorem 2.5 to (3.3) and (3.4), we obtain that T' has a fixed
point u € P N (£22\Q4). As such, and with v being defined by

a(b)
o)) =2 [ Gt slalulo(s)s
the pair (u,v) is a desired solution of (1.1), (1.2) for the given A. The proof is
complete.
Prior to our next result, we define positive numbers L3 and L4 by
Ly = max{

-1

Y

aln—a) [
e BRC CEEROINT:

_1}7

a(n—a) [°®
O [ 0t0) ~ oteatdsa
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and

L, := min{

alo(b) — a) 7O -
B+ <d<b> ) / (0*(b) — o (5))p(5) As foc

I

Theorem 3.2 Assume that conditions (A1) — (A4) are satisfied. Then, for
each A satisfying

a(o? —a o)
S o ()=o) / (0°(b) = o (s))a(s) Asgas

L3 < A< L4, (35)

there ezists a pair (u,v) satisfying (1.1), (1.2) such that u(x) > 0 and v(z) > 0
on (a,0*(b))T-
Proof: Let A be as in (3.5). And let € > 0 be chosen such that

maX{

an—a) (7O -
e | (02(6)—0(8))p(8)A8(fo—6)] ,

afn—a) 7O -
7%/17 (02(b) — o (s))q(s)As(gy — 6)] } <A

and

A< min{

alo?(b) —a) [7® o
e = I URPIC I O I AR

)

Let T be the cone preserving, completely continuous operator that was
defined by (3.2).

From the definitions of fy and gg, there exists Hs > 0 such that

a(o?(b) —a) [°O®
P B2 ) - alsas)aslon + 9

flz) > (fo—€e)x and g(x) > (g0 —€)x, 0<z < Hs.

Also, from the definition of gy it follows that g(0) = 0 and so there exists
0 < H3 < H3 such that

H
Ag(z) < ol 3 , 0<ax<Hs.

Brale®i=a) (70 (52(p) — o(r))g(r) Ar

© 2012 Global Journals Inc. (US)
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Choose u € P with |lu|]| = Hs. Then

o(b)
A / Glo(s), P)a(r)g(ulo(r) Ar

a(t —a) 7O
ftoalt—a) / (02(b) — o (r))a(r)g(u(o(r))) Ar

alo?(b) — a o(b)
Notes <ot o) [ @) = otatlgtutotr)an
5 ﬁ+a(a§(b) a) fa(b)<0.2(b) _
T Bl 170 (52(5) — o (s))q(s) As

< Hj.

Then, by (2.7)

aln—a) [7®
pIretiza / (0(6) ~ o(s))p(s)

( 5+0‘ /n"(b )Q(U(U(T)))AT)AS
—W/ma%) (3))p(s)

afn—a) [°©
o= M= [T 4020) — o)t )glulor))Ars

Tu(n) >

aln—a) [°®
e el AR GUEE S

a(n—a) [°©
o= =D 2 020) — o(0))atr) g0 — ) rss

aln—a) [°®
> \IEAB=9 [ 020) = o (s)pls) o - Il
a(n—a) [°®
>0 EEZD [ 020) — oo} o — s
> ul

So, || Tu|| > ||ul|. If we put
Q3 ={x e B: || < Hs},

then
|Tul| > ||u|l, for uwe P nNos. (3.6)
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Next, by definitions of f. and ¢, there exists H, such that
f(@) < (foo + )z and g(2) < (goo +€)z, > Hy

Clearly, since go, is assumed to be a positive real number, it follows that
g is unbounded at oo, and so, there exists Hy > max{2Hj3, H4} such that
g(x) < g(Hy), for 0 < z < H,.
Set
J'()= sup f(s). g"(t) = sup g(s), for t 0. Notes

a<s<t a<s<t

Clearly f* and g* are nondecreasing real valued functions for which it holds

T G N 1 CO N
T—>00 x T—00 xXr

Hence, there exists Hy such that f*(x) < f*(Hy), ¢*(z) < g*(Hy), for
0<x<Hy.

Choosing u € P with ||u|| = Hy, we have

a(a?(b) —a) [°®
ru(t) < T ) — oo

a(a?(b) —a) [°®
(D [T ) — atatrlatutor)ar ) as

a(o?(b) —a) [0
S =¥ INCUREIE

a(a?(b) —a) [°®
r (AT [ ) - ot stulo ) ar ) as

- d

a(a?(b) —a) [°®
(AT 020 - ot atrlg wtotrar ) As

alo? —a a(b)
< 2ol —a) / (02(b) - o(s))p(s)

a(o?(b) —a) (7O
< A= [T 20 - oot

alo?(b) —a) [°®
r(AEAEOZD [ o200 - tatrrg 180 ) s

a(o?(b) —a o(b)
S e RGO
a(ad?(b) — a (b)
I (XB ol d(b) ) / (2(b) — (1) q(1)(goo + 6)H4Ar> As

a(o?(b) —a) [°®
S =Y I CURICIBIREARe

© 2012 Global Journals Inc. (US)
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< /\ﬂ‘f‘&(Ud(b) - @) /ag (O’Q(b) _ O'<8))p(5>(foo +€)H4AS
< H4
= [lull;

and so || Tu|| < ||lu||. For this case, if we let
Q4 = {ZE e B: ||£L’|| < H4},
then

|Tu|| < |lu|l, for uwe P Nofy. (3.7)

Application of part (i2) of Theorem 2.5 yields a fixed point u of T" belonging
to PN (§24\$23), which in turn yields a pair (u,v) satisfying (1.1), (1.2) for the
chosen value of X\. The proof is complete.
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