

represented as

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH CHEMISTRY Volume 12 Issue 5 Version 1.0 Year 2012 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Conductance and Solvation Behavior of Some Onium Dichromates in Aqueous-Ethanol Mixtures

By V Radhika, M. Narsimha Reddy & P Manikyamba

Kakatiya University, Warangal

Abstract - The paper explores solvation behaviour of Nicotinium, Pyridinium and Quinolinium dichromates at 283K – 313K in ethanol, water and varying compositions (v/v) of water-ethanol mixtures. Analysis of conductance data to obtain Λ° is on the lines of Kraus-Bray and Shedlovsky equations. Λ° , the limiting molar ,varies with the composition of the solvent mixture. This is used in the interpretation of the preferential / discriminating solvation of cations by ethanol. The influence of mixed solvent composition on the solvation of ions is discussed in tune with the composition dependence of Walden product. The influence of the mixed solvent composition on the solvation of ions has been discussed with the help of 'R'-factor.

Graphical abstract : In solution, the free ions are always in equilibrium with the ion-pairs. This is

 $2XH^{+} + Cr_2O_7^{2-} \stackrel{K_A}{=} [XHCr_2O_7] + XH^{+}$

 $(XH^+ = onium ion (XNH^+))$

Keywords : ion-pair association constant / ion-pair dissociation constant / solvation number / Rfactor/ limiting molar conductance/ thermodynamic parameter.

GJSFR-B Classification : FOR Code: 030505

CONDUCTANCE AND SOLVATION BEHAVIOR OF SOME ONIUM DICHROMATES IN AQUEOUS-ETHANOL MIXTURES

Strictly as per the compliance and regulations of :

© 2012. V Radhika, M. Narsimha Reddy & P Manikyamba. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conductance and Solvation Behavior of Some Onium Dichromates in Aqueous-Ethanol Mixtures

V Radhika ^a, M. Narsimha Reddy ^a & P Manikyamba ^p

Abstract - The paper explores solvation behaviour of Nicotinium, Pyridinium and Quinolinium dichromates at 283K – 313K in ethanol, water and varying compositions (v/v) of water-ethanol mixtures. Analysis of conductance data to obtain Λ° is on the lines of Kraus-Bray and Shedlovsky equations. Λ° , the limiting molar ,varies with the composition of the solvent mixture. This is used in the interpretation of the preferential / discriminating solvation of cations by ethanol. The influence of mixed solvent composition on the solvation of ions is discussed in tune with the composition dependence of Walden product. The influence of the mixed solvent composition on the solvation of ions has been discussed with the help of 'R'-factor.

Graphical abstract : In solution, the free ions are always in equilibrium with the ion-pairs. This is represented as

$$2XH^{+} + Cr_2O_7^{2-} \stackrel{K_A}{=} [XHCr_2O_7] + XH^{+}$$

 $(XH^+ = onium ion (XNH^+))$

Keywords : ion-pair association constant / ion-pair dissociation constant / solvation number / R-factor/ limiting molar conductance/ thermodynamic parameter.

I. INTRODUCTION

uinolinium dichromate is a stable oxidant which was prepared and analvzed bv Balasubramanian and coworkers [1]. This was used as an oxidant in the kinetic studies of oxidation of different functional groups [2-4]. Solvation behavior of this oxidant in Aq-DMF was presented in our earlier paper [5]. Pyridinium dichromate is a stable oxidant which was prepared and analyzed by Corey E J and Schmidt G[6], It is a very useful and versatile oxidant which can be used in many applications [7-9]. Nicotinium dichromate is a stable oxidant [10], which was prepared and analyzed by Lopez C and coworkers [11]. Though a large body of literature is available on kinetic aspects of these three oxidants, no information on the conductance behavior of these dichromates is these dichromates is available. Density, viscosity and dielectric constant of the medium, ion-solvent and

dielectric constant of the medium, ion-solvent and solvent-solvent interactions influence the conductance behaviour of electrolytes in binary solvent mixtures. Ionsolvent interactions stabilize the ion by solvating it which is substantiated through vast information [12-21]. The present paper details the observations on conductance behaviour of Quinolinium, Pyridinium and Nicotinium dichromates in binary solvent mixtures of aqueousethanol.

II. EXPERIMENTAL SECTIONS

a) Chemicals Used

Quinolinium. Pyridinium and Nicotinium dichromates are prepared on the lines of the literature methods [1,6,11]. A stock solution of the reagent is prepared by dissolving a known weight of the sample in water and is standardized by iodometric method. A conductivity bridge (ELICO model-180) equipped with a glass conductivity cell of cell constant 1.103 cm⁻¹ is used to measure the conductance of the solution. Conductivity cell is calibrated using 0.1M KCl solution. Deionised water is distilled and used for the preparation of the solution. The precision of the conductivity bridge used is ± 0.05 mS. Temperature is kept constant during the experiment using a thermostat with an accuracy of $\pm 0.1^{\circ}$ C. To maintain the temperature below room temperature an ice bath equipped with a mechanical stirrer is used. Spectroscopic grade sample of acetone is procured from Sd-fine Chemicals Ltd., Bombay, India.

III. THEORY/CALCULATION

The solutions of Quinolinium, Pyridinium and Nicotinium dichromates are diluted to different concentrations in the range 0.1M to 5.0×10^{-3} M using different volumes of solvent / solvent mixture and their conductance is measured at 283-313K. The solvent systems used in this study have conductance values between 0.029 - 0.0315mS. The conductance values are found to be reproducible with $\pm 0.1\%$ error. The solvent conductance values are deducted from the conductance of the solution to get the conductance of the solute. The molar conductance is calculated using the relation $\Lambda = 1000 \times \text{ K/C}$ where K is the specific conductance and C is the molarity of the solute in the solution The same procedure is followed at different

Author α : Varadha Reddy College of Engineering, JNTU, Warangal, India. E-mail : veeratiradhika@yahoo.co.in

Author o : Department of EHS in Hetero Labs Limited (Unit-1), IDA-Kazipally, Medak, India.

Author ρ : Department of Chemistry, Kakatiya University, Warangal 506009, India.

compositions of solvent mixtures and at different temperatures.

To find out the limiting molar conductance of Pyridinium dichromate two models, Kraus- Bray model [22], and Shedlovsky model [23] have been used. Kraus-Bray equation, Eq. 1, takes into consideration the dissociation constant (K_c) of the partially dissociated electrolyte and correlates molar conductance (Λ_m) and the limiting molar conductance (Λ^0) as

$$\frac{1}{\Lambda_m} = \frac{1}{\Lambda^0} + \frac{1}{K_C \Lambda^{0^2}} (\Lambda_m C) \tag{1}$$

Shedlovsky equation, Eq. 2, considers the association constant of the ion-pair formed from the dissociated electrolyte into consideration and correlates the molar and limiting molar conductance values according to the equation

$$\frac{1}{S\Lambda_m} = \frac{1}{\Lambda^0} + \frac{K_A}{{\Lambda^0}^2} (Sf_{\pm}^2\Lambda_m C)$$
(2)

where $\Lambda_{\rm m}\,$ is molar conductance of the solute in the solution at concentration C,

 Λ_{\circ} is the limiting molar conductance

K_A is the association constant of the ion- pair,

K_c is the dissociation constant,

 f_{\pm} is the mean ionic activity coefficient,

S is a factor given by

$$S = \left[\frac{\beta\sqrt{C\Lambda}}{4\Lambda^{0} 3/2} + \sqrt{1 + \frac{\beta^{2}C\Lambda}{4\Lambda^{0} 3}}\right]^{2}$$
(3)

$$\log f_{\pm} = \left[\frac{-1.8246 \times 10^{6} (C\alpha)^{1/2} / (\varepsilon T)^{3/2}}{1 + 50.24 \times 10^{8} q (C\alpha)^{1/2} (\varepsilon T)^{1/2}}\right]^{2} \quad (4)$$

$$\alpha = \frac{S\Lambda}{\Lambda^0} \tag{5}$$

$$\beta = \frac{8.20 \times 10^5 \Lambda^0}{(\varepsilon T)^{3/2}} + \frac{82.5}{\eta (\varepsilon T)^{1/2}}$$
(6)

Where q is Bjerrum's critical distance q given by

$$q = \frac{e^2}{2\varepsilon kT} = \frac{Z_+ Z_- e^2}{2\varepsilon kT}$$
(7)

ε is dielectric constant of the medium and η is viscosity of the solvent, Z₊e and Z₋e are the charges on the ions. k is Boltzmann's constant, T is the temperature in degrees Kelvin. S is calculated using Λ^o obtained from the Onsager model using the plot of Λ_m against √C. The least square analysis of the data (Λ_m and C)

using the above two eqs. 1, 2 is satisfactory with linear correlation coefficients in the range 0.95-0.97.

IV. Results and Discussion

a) Limiting molar conductance

The limiting molar conductance values Λ° thus obtained with the two equations (eq. 1 and eq. 2) are presented in Table 1. These values increase with increase in the temperature as expected. This is attributed to increase in the mobility of the ions due to increase in the temperature. The Λ° values also depend on the composition of the binary solvent mixture. Addition of ethanol to water decreases Λ_\circ value. This may be due to decrease in the dielectric constant of the medium.

It is observed that the conductivity of the solution in each solvent system is increased with increase in the temperature. It is supposed that this variation has to follow Arrhenius relation like rate process. So the energy of activation of the conducting process is obtained from the Arrhenius relationship

i.e.,
$$\Lambda^{0} = A e^{-Ea/RT}$$
(8)

Where A is a constant

E_a is activation energy of the conducting process

R is gas constant

T is the temperature

 E_a values are obtained by correlating log Λ^0 values with 1/T by means of linear least square analysis. These values are presented in Table 2. These values indicate that they are highly dependent on the proportion of organic solvent in the medium .These values are maximum in 60% ethanol for Quinolinium dichromate and in 20% ethanol for Pyridinium dichromate. For Nicotinium dichromate the maximum E_a is observed in pure water.

b) Radii of solvated ions

The effective ionic radii(r_i) of the cation and anion in each solvent system used are calculated by using Stoke's radius equation modified by Gill [24]

$$r_{i} = \frac{0.820 |Z|}{\Lambda_{+} \eta_{o}} + 0.0103 \in + r_{y}$$
(9)

Where r_y is a parameter equal to 0.85 A^0 for non associated solvents and 1.13 A^0 for associated solvents. These values are tabulated in Table 3. These values which are radii of solvated ions vary with the solvent composition suggesting the operation of ion-solvent interactions.

c) Solvation Number

 $S_{\mbox{\scriptsize n}}\mbox{, the solvation number, which is the number of solvent molecules in the solvent cover around the$

Year 2012

V Version I

species, is calculated from the effect of dielectric constant (C) on $\Lambda^{\rm o}$. This is based on the equation

$$\log \Lambda^0 = \log \Lambda^{0^1} - \frac{Z_A Z_B e^2}{\epsilon d_{AB} k_B T}$$
(10)

Where, $\Lambda^{\mbox{\tiny O1}}$ is the limiting molar conductance in a solvent of infinite dielectric constant

 $Z_A e$, $Z_B e$ are the ionic charges

k_B is Boltzmann constant

T is the temperature

 d_{AB} is the distance between the centers of the two ions.

The plot of log Λ^0 against $1/\varepsilon$ is linear with negative slope from which, d_{AB} is calculated. S_n is computed using the relation.

$$S_n = \frac{d_{AB} - r_i}{r_{solvent}} \tag{11}$$

Where r_i is the Stokes radius of the ion calculated using Stoke's equation [25]

$$r_{i} = \frac{0.820 |Z|}{\Lambda_{o} \eta_{o}} + 0.0103 \in + r_{y}$$
(12)

Where $r_{y} = 0.85 \stackrel{0}{A}$ for dipolar unassociated

solvents and 1.13 A for protic and associated solvents. These r_i values are tabulated in Table 3.

In order to understand the extent molecular interactions occurring in the solutions, solvation number was calculated.

Solvation numbers thus determined at 293K - 303K are presented in Table 4.

The variable solvation number indicates that the ion-pair is solvated to different extents depending on the composition of the solvent which reflects variable ionsolvent interactions.

d) Ionic conductances and Ion-solvation

As suggested by Hammamy [26] the ionic conductances Λ^0_+ and Λ^0_- of the onium ion and the dichromate ion are computed in all the solvent systems used and presented in Table 3. Λ^0_+ is maximum in 100% water and decreases due to the addition of ethanol attaining a slight higher value in 100% ethanol. The ionic conductance of the anion slightly increases due to the initial addition of ethanol and gradually decreases attaining a minimum value in 100% ethanol. This variation in the ionic conductance suggests that the specific solvation of the anion is by water while ethanol from the solvent mixture selectively solvates the cation. The solvation behavior of the ions in mixed solvent systems can be better understood in terms of the ionic

Walden products, $\eta\,\Lambda^0_\pm$, of the electrolytes. The calculated values of these ionic Walden products are presented in fig. 1(A,B). These values are maximum in water and decrease gradually due to the addition of organic component in each system. According to Morinaga and coworkers [27] the ratio (R),

$$R = \frac{\eta \Lambda_{\pm}^{0}(solvent)}{n \Lambda^{0}(water)}$$

 $\eta \Lambda_{\pm}(water)$ can be used to obtain information on the nature of solvation of an electrolyte and its constituent ions in aqueous solvent mixtures. The calculated values of these factors for both the ions are shown in Table 3. This ratio for the cation is less than one and decreases sharply with the increase in the proportion of organic component. According to Morinaga [27] this is a strong indication of selective solvation of the ion by the ethanol. Thus it may be concluded that the cation is more solvated by acetone from the solvent system. The 'R' factor of the dichromate ion increases up to 80% (v/v), indicating that the anion is selectively hydrated from the aqueous solvent mixture. The addition of organic solvent breaks the structure of water and makes the water molecules available for hydration of the anion. This type of behavior is observed by Morinaga [27] for alkali metal ions in water rich regions of water-acetonitrile and water-DMSO mixtures.

V. Conclusions

Among the three dichromates studied higher solvation number is observed for Pyridinium ion compared to Quinolinium and Nicotinium ions. This may be attributed to smaller size of the Pyridinium ion which increases the charge density.

VI. Acknowledgements

The authors (V. Radhika & M Narsimha Reddy) thanks the Head, Department of Chemistry, Kakatiya University, Warangal, India, for providing facilities to carry out this work.

LITERATURE CITED

- K. Balasubramanian, V. Prathiba, Quinolinium Dichromate, A. New Reagent for Oxidation of Alcohols, Indian. J. chem 25B (1986) 326-327.
- K. Aruna, P. Manikyamba, E.V. Sundaram, Oxidation of α-hydrox acids with Quinolinium dichromate-A kinetic study. *Collect.* Czech .Chem. Commun 58 (1993).
- K. Aruna, P. Manikyamba, E.V. Sundaram, Oxidation of Benzaldehydes by Quinolinium Dichromate-A kinetic study, Asian. J. of Chemistry (1993) 542-548.
- 4. K. Aruna, P. Manikyamba, E.V. Sundaram, Nonlinear Hammett's plot in the oxidation of Benzyl

alcohols by CDC-A kinetic study, Indian. J. Chem (1994).

- V. Radhika, P. Manikyamba, Conductance and Solvation Behavior of Quinolinium Dichromate in Binary Mixtures of Water with *N*,*N*-Dimethyl Formamide, J Chem Eng Data 53 (2008) 2766-2769.
- E. J. Corey, G. Schmidt, Useful procedures for the oxidation of alcohols involving pyridinium dichromate in approtic media, Tetrahedron Letters, 20 (1979) 399-402.
- S. Czerncki, C. Georgoulis, C. L. Stevens, Vijayakumaran, Tetrahedron Letters 26 (1985) 1699-1702.
- 8. E. J. Parish, T.Y. Wei, Synthetic Communications, 17 (1987) 1227-1230.
- 9. S. Kabilan, S. R. Girija, Joao, A.P. Carlo, Manuel, Segulado, D. Jaime, Comegde oliveira. J. Chem.Soc. Perkin Transactions 2 (2000)115.
- 10. D. S. Bhuvaneshwari, K.P. Elango, Int. J. Chem. Kinet 38 (2006) 166.
- 11. C. Lopez, A. Gonzalez, F. P. Cossio, C. Palomo, Synthetic Communications, 15 (1985) 1197-1199.
- P. Rajasekhar, K.S. Reddy Excess Thermodynamic properties for mixtures of water and *N*,*N*-Dimethyl formamide at 303.15 K, J. Thermochim. Acta, 117 (1987) 379–383.
- W. Haijum, Z. Chao, C. Mingzhi, L. Hulin, Excess volumes of (polar liquid + an aromatic hydrocarbon) at the temperature 298.1 K, J. Chem. Thermodyn. 27, (1995) 991–996.
- J. Zielkiewicz, Excess Molar Volumes and Excess Energies in N-Methyl Formamide + Water, or + Methanol, or + Ethanol at the Temperature 303.3 K. J. Chem. Eng. Data 43 (1998) 650–652.
- H. Ioukhani, J.B. Parsa, J. B. Saboury, Excess Molar Enthalpies of Binary Mixtures Containing N,N-Dimethyl Formamide + Six 2-Alkanols (C3-C8) at 300.15 K. J. Chem. Eng. Data, 45 (2000) 1016– 1018.
- 16. Rattan, V. K.; Kapoor, S.; Tochigi, K.: Viscosities and Densities of Binary Mixtures *N*,*N*-Dimethyl

Acetamide with Methanol, Ethanol 1-Butanol, and 2-Propanol at (298.15-323) K. J. Chem. Eng. Data 47 (2002) 1182–1184.

- 17. Gill, D. S., Chauhan, M. S.: Preferential salvation of ions in Mixed solvents. Zeitschrift filr Physikolische Chemie Neue folge 140.S, (1984) 149–156.
- V. Radhika, P. Manikyamba, Conductance and solvation behavior of Benzimidazolium dichromate in dimethyl sulphoxide-water mixture, Indian J Chem 47A (2008) 1814-1817.
- G. Ritzoulis, A. Fidantsi, Relative Permittivities, Refractive Indices and Densities for the Binary Mixtures N,N-Dimethyl Acetamide with ethanol, Ethanol, 1-Butanol, and 2-Propanol at 298.15 K, J. Chem. Eng. Data 45 (2000) 207–209.
- H. Zoukhani, R. Ghorbani, Volumetric properties of N,N-dimethyl formamide with 1,2-alkanodiols at 200 °C, J. Solution Chem 27 (1998) 141–149.
- N. Mohondas Singh, Th. David Singh, Yaipaba, N. Rajmuhan Singh, Ion Pair Formation and Thermodynamics of Glycine Bis-1-Amidino-O-Methylurea Cobalt (III) Halides in Water + Methanol Mixed Solvents, Asian J. Chem 20, 1750– 1760 (2008).
- 22. C.A. Kraus, W. C. Bray, J. Am. Chem. Soc, 35, (1913) 1315-1318.
- 23. T. Shedlovsky, J. Franklin Inst 225 (1938) 739-741.
- 24. D.S Gill, N. Kumari, M.S. Chauhan, Preferential solvation of ions in mixed solvents. Part 4-Preferential solvation of Cu+ in acetone + acetonitrile and *N*,*N*-dimethylacetamide + acetonitrile mixtures using conductance measurements, J Chem. Soc. Faraday Trans. 1. 80 (1985) 687-693.
- 25. R.A. Robinson, R. H. Stokes, Electrolyte Solutions, Butterwort Scientific, London, 1959.
- 26. N. H. El-Hammamy, M. F. Amira, S. A. Abou El Enien, F. M. El Halim, Indian J. Chem, 23 (1984) 43-48.
- 27. K. Morinaga, K. Miyaji, Denki. Kaigaku, 50 (1982) 736-741.

Table 1 : Limiting molar conductance (Λ°) values in S cm² mol⁻¹ of Quinolinium , Pyridinium and Nicotiniumdichromates in aqueous mixtures of ethanol at different temperatures.

ſ	Т (К)	0% Et	hanol	20% E	thanol	40% E	thanol	60% E	thanol	80% E	thanol	100% E	thanol
		1	2	1	2	1	2	1	2	1	2	1	2
	283	121.66	122.27	101.03	10.614	80.45	80.24	64.19	64.17	76.91	77.32	45.73	44.53
	293	143.89	138.02	128.21	126.94	109.15	108.83	98.06	98.31	92.66	93.07	46.96	48.74
	303	154.66	154.93	146.91	139.55	125.52	139.30	115.94	116.93	98.54	98.62	49.49	49.33
	313	196.67	196.40	159.95	160.66	167.67	154.71	156.67	147.51	124.84	123.57	55.38	55.04

Quinolinium dichromate

	-				,							
T(K)	0% E	thanol	20%E	thanol	40% E	Ethanol	60% E	thanol	80% E	Ethanol	100% I	Ethanol
	1	2	1	2	1	2	1	2	1	2	1	2
283	205.55	205.67	126.06	132.50	108.5	108.41	95.50	95.35	75.05	78.58	69.61	69.85
293	221.58	222.80	176.98	175.56	140.35	137.35	112.05	112.25	95.80	90.65	72.08	71.73
303	253.42	259.61	225.41	226.76	159.62	158.32	122.84	123.24	104.34	98.09	76.24	76.61
313	303.43	307.27	252.61	254.71	219.88	219.19	158.29	159.57	128.85	121.30	85.42	84.81

Pyridinium dichromate

Nicotinium dichromate

T(K)	0% Et	hanol	20% E	thanol	40% E	thanol	60% E	Ethanol	80% E	Ethanol	100% E	Ethanol
	1	2	1	2	1	2	1	2	1	2	1	2
283	127.77	127.27	115.03	113.14	98.45	97.24	84.19	84.17	79.91	79.32	48.31	47.86
293	154.66	154.93	138.21	136.94	119.15	118.83	108.06	108.31	99.66	97.07	55.56	55.75
303	173.71	179.40	156.76	155.53	145.52	139.30	123.94	123.93	104.76	104.56	60.24	60.25
313	313 199.66 198.50		169.49	169.57	158.67	158.51	151.51	154.84	124.42	132.56	67.11	67.24
1 = Kraus-Bray Model							2 = She	edlovsky	model			

Table 2 : K_A and K_C values of Quinolinium, pyridinium and Nicotinium dichromates in aqueous-ethanol mixtures Quinolinium dichromate

Т	0% E	thanol	20% E	thanol	40% E	thanol	60% E	thanol	80% E	thanol	100%E	thanol
(K)	K _A	К _с	K _A	K _c								
283	54.67	0.02	31.60	0.03	21.12	0.05	35.33	0.04	35.57	0.03	61.65	0.02
293	70.07	0.01	22.03	0.06	20.55	0.04	21.39	0.09	29.69	0.03	54.90	0.02
303	28.24	0.02	13.56	0.04	19.90	0.05	16.20	0.13	29.86	0.05	45.61	0.02
313	21.89	0.05	45.14	0.23	19.41	0.05	18.70	0.16	29.10	0.04	44.91	0.02

					Pyridiniu	m dichro	mate					
Т	0% E	thanol	20% E	Ethanol	40% E	thanol	60% E	thanol	80% E	thanol	100%	Ethanol
(K)	K _A	Kc	K _A	Kc	K _A	Kc	K _A	Kc	K _A	Kc	K _A	Kc
283	7.58	0.13	4.07	0.21	19.10	0.05	7.00	0.14	8.76	0.13	13.89	0.03
293	15.20	0.11	6.73	0.15	19.88	0.05	6.59	0.16	10.29	0.12	7.73	0.03
303	37.65	0.28	8.91	0.11	12.66	0.08	38.09	0.26	8.40	0.15	31.08	0.03
313	38.61	0.27	4.77	0.21	19.23	0.08	50.00	0.19	10.64	0.12	36.11	0.03

Nicotinium dichromate

T	0% Et	hanol	20% Ethanol		40% Ethanol		60% Ethanol		80% Ethanol		100% Ethanol	
(K)	K _A	K _c	K _A	Kc	K _A	K _c	K _A	Kc	K _A	K _c	K _A	K _c
283	11.95	0.059	10.98	0.091	11.33	0.077	9.09	0.11	10.98	0.092	17.30	0.057
293	10.78	0.091	11.24	0.081	12.00	0.088	8.89	0.12	15.87	0.082	32.80	0.031
303	12.77	0.077	12.55	0.079	8.75	0.113	15.43	0.066	12.5	0.07	30.1	0.033
313	5.76	0.174	6.34	0.1	12.01	0.084	11.33	0.088	13.16	0.075	33.82	0.030

 K_{A} = Association constant from Shedlovsky equation. K_{C} = Dissociation constant from Kraus-Bray equation.

Table 3 : Computed Values of E_a for Quinolinium, pyridinium and Nicotinium dichromates at different compositions(v/v) of aqueous-ethanol mixtures.

				lonnato		
	0% Ethanol	20% Ethanol	40% Ethanol	60% Ethanol	80% Ethanol	100% Ethanol
E _a	9.12	11.06	17.68	19.74	10.75	4.77

Quinolinium dichromate

Pyridinium dichromate

	0% Ethanol	20% Ethanol	40% Ethanol	60% Ethanol	80% Ethanol	100% Ethanol
E _a	9.12	17.06	16.12	11.83	10.08	4.88

Nicotinium dichromate

	0% Ethanol	20% Ethanol	40% Ethanol	60% Ethanol	80% Ethanol	100% Ethanol
E _a	9.12	14.03	15.44	17.01	12.37	8.45

Table 4: Computed change in free energy (ΔG_a) and transfer (ΔG_t) Quinolinium, Pyridinium and Nicotinium dichromate in aqueous mixtures of ethanol at different temperatures in kJ mol⁻¹.

Т (К)	0% Et	hanol	20% E	thanol	40% E	thanol	60% E	thanol	80% E	thanol	100% E	Ethanol
	ΔG_a	ΔG_t	ΔG_a	ΔG_t	ΔG_a	ΔG_t	ΔG_a	∆G _t	ΔG_a	ΔG_t	ΔG_a	ΔG_t
283	-4.76	-	-3.89	0.87	-5.73	-0.18	-4.92	-0.030	-4.51	0.05	-5.34	0.58
293	-4.03	-	-5.15	1.47	-10.08	0.09	-5.21	0.25	-4.73	0.34	-5.69	-0.17
303	-9.15	-	-5.39	3.76	-6.54	2.61	-5.68	0.60	-5.21	0.68	-5.44	0.64
313	-9.51	-	-5.92	3.59	-6.89	2.62	-5.89	0.61	-5.86	0.61	-6.38	0.52

Qunolinium dichromate

Pyridinium dichromate

Т (К)	0% Et	hanol	20% E	thanol	40% E	thanol	60% E	thanol	80% E	thanol	100% E	thanol
	ΔG_a	∆G _t	ΔG_a	ΔG _t	ΔG _a	∆G _t	ΔG_a	∆G _t	ΔG_a	ΔG _t	ΔG_a	ΔG_t
283	-4.94	-	-8.03	-0.16	-8.05	-3.02	-8.46	-2.69	-13.05	9.27	-9.41	-1.94
293	-8.07	-	-7.74	-3.86	-8.06	2.30	-6.94	-2.69	-8.95	-1.41	-8.68	-1.68
303	-7.99	-	-7.48	-2.01	-7.18	-1.22	-7.37	-1.03	-7.51	-0.89	-7.18	-1.22
313	-8.74	-	-7.24	-2.60	-5.77	-2.24	-7.07	-2.14	-7.90	-0.12	-10.23	2.21

Nicotinium dichromate

Т (К)	0% Et	hanol	20% E	thanol	40% E	thanol	60% E	Ethanol	80% E	Ethanol	100%	Ethanol
	ΔG_a	∆G _t	ΔG_a	∆G _t	ΔG_a	ΔG_t	ΔG_a	∆G _t	ΔG_a	∆G _t	ΔG_a	ΔG _t
283	-4.760	-	-5.52	-0.758	-8.17	-2.65	-8.24	-2.54	-8.24	-3.48	-5.57	-0.81
293	-4.032	-	-9.13	-5.10	-8.59	-4.56	-8.51	-3.27	-8.51	-4.48	-5.88	-1.85
303	-9.151	-	-10.25	-1.10	-8.57	+0.58	-9.33	-0.18	-9.90	-0.75	-5.91	+3.24
313	-9.513	-	-9.63	-0.12	-6.70	+2.81	-9.21	+0.30	-8.91	+0.60	-8.91	+0.60

Table 5 : Ionic conductances and radii of solvated ions of Quinolinium, pyridinium and Nicotinium dichromate in aqueous-ethanol mixtures. Qunolinium dichromate

		T = 293K				
Composition (v/v) ethanol	$\Lambda^{\! 0}_{\scriptscriptstyle +}$ (S cm²mol⁻¹)	$\Lambda^{\! 0}_{-}$ (S cm²mol⁻¹)	$r_+(A^0)$	$r-(A^0)$	$r_+ + r(A^0)$	
0%	48.98	94.94	3.11	2.71	5.82	
20%	44.87	82.07	3.83	2.36	6.19	
40%	32.43	76.72	3.67	2.57	6.24	
60%	31.32	66.74	3.99	1.42	5.41	
80%	29.72	62.94	5.27	1.38	6.65	
100%	10.63	36.32	2.07	0.95	3.02	

T = 303K

Composition (v/v)ethanol	$\Lambda^{\!0}_{\scriptscriptstyle +}$ (S cm²mol⁻¹)	$\Lambda^{\! 0}_{-}$ (S cm²mol¹)	$r_+(A^0)$	$r-(A^0)$	$r_+ + r(A^0)$
0%	59.74	94.92	3.09	2.82	5.83
20%	50.60	88.17	2.99	2.52	6.23
40%	37.52	87.99	3.62	2.24	5.86
60%	33.33	82.65	3.38	2.24	7.07
80%	33.78	64.76	5.06	3.20	5.87
100%	3.91	45.59	7.31	2.95	10.36

Pyridinium dichromate

T = 293K $r_+(A^0)$ $r_{+} + r_{-}(A^{0})$ $r_{-}(A^{0})$ Composition $\Lambda^{\! 0}_{-} \, \text{(S cm}^{2}\text{mol}^{\text{-1}}\text{)}$ Λ^0_+ (S cm²mol⁻¹) (v/v) ethanol 0% 126.64 94.94 2.52 2.71 5.23 20% 94.91 82.07 2.53 2.36 6.33 40% 60.63 76.72 2.61 2.57 4.89 60% 45.51 66.74 3.15 1.42 4.57 80% 27.71 62.94 1.65 3.03 1.38 100% 35.41 36.32 1.85 0.95 3.68

Composition (v/v)ethanol	$\Lambda^0_{_+}$ (S cm²mol⁻¹)	Λ^0_{-} (S cm ² mol ⁻¹)	$r_+(A^0)$	$r-(A^0)$	$r_+ r(A^0)$
0%	164.69	94.92	2.14	2.82	4.96
20%	137.24	88.17	2.07	2.52	4.59
40%	60.32	87.99	2.62	2.24	4.86
60%	33.59	82.65	3.08	2.24	5.32
80%	33.33	64.76	1.57	3.20	4.77
100%	30.65	45.59	1.96	2.95	4.91

		T = 293K			
Composition (v/v) ethanol	$\Lambda^{\! 0}_{\scriptscriptstyle +}$ (S cm²mol⁻¹)	$\Lambda^{\! 0}_{-}$ (S cm²mol⁻¹)	$r_+(A^0)$	$r_{-}(A^{0})$	$r_+ + r(A^0)$
0%	59.72	94.94	1.02	2.71	3.73
20%	54.14	82.07	1.23	2.36	3.59
40%	42.43	76.72	1.32	2.57	3.89
60%	52.09	66.74	1.66	1.42	3.08
80%	45.12	62.94	1.69	1.38	3.07
100%	19.24	36.32	2.02	0.95	2.97

Nicotinium dichromate

= 303K	
--------	--

		T = 303K			
Composition (v/v)ethanol	Λ^{0}_{+} (S cm ² mol ⁻¹)	$\Lambda^{\!0}_{-}$ (S cm²mol⁻¹)	$r_+(A^0)$	$r-(A^0)$	$r_+ + r(A^0)$
0%	78.79	94.92	2.03	2.82	4.85
20%	68.59	88.17	1.64	2.52	4.16
40%	57.53	87.99	1.61	2.24	3.85
60%	41.29	82.65	1.55	2.24	3.79
80%	40.00	64.76	1.17	3.20	4.37
100%	14.65	45.59	1.05	2.95	4.00

Table 6 : Solvation number values of Quinolinium, Pyridinium and Nicotinium dichromates in aqueous-ethanol mixtures at 293 and 303K.

Quinolinium dichromate

T(K)	0% Ethanol	20% Ethanol	thanol 40% Ethanol 60% E		80% Ethanol	100% Ethanol
293	5.02	4.78	4.48	4.38	4.34	3.19
303	5.93	5.83	5.31	4.70	4.63	2.59

Pyridinium dichromate

	T(K)	0% Ethanol	20% Ethanol	40% Ethanol	60% Ethanol	80% Ethanol	100% Ethanol
	293	6.34	5.86	5.44	5.36	4.52	3.63
ĺ	303	6.15	5.84	5.62	4.65	4.42	3.72

Nicotinium dichromate

T(K)	0% Ethanol	20% Ethanol	40% Ethanol	60% Ethanol	80% Ethanol	100% Ethanol
293	0.79	1.06	1.01	1.49	1.23	1.02
303	1.64	1.39	1.90	1.78	1.37	1.32

Table 7 : Computed change in free energy of solvation (ΔG_{i-s}^+) and (ΔG_{i-s}^-) for Quinolinium, P yridinium and
Nicotinium dichromate in aqueous-ethanol mixtures at 293,303K in kJ mol⁻¹.

Т (К)	0% Ethanol		20% E	thanol	40% E	thanol	60% E	ithanol	80% E	thanol	100% E	Ethanol
	ΔG_{i-s}^+	∆G _{i-s} -	∆G _{i-s} +	ΔG _{i-s} -	ΔG_{i-s}^+	∆G _{i-s} -	ΔG_{i-s}^+	∆G _{i-s} -	∆G _{i-s} +	ΔG _{i-s} -	ΔG_{i-s}^+	∆G _{i-s} -
293	3.1	3.2	2.6	4.3	3.3	4.7	3.9	10.8	3.9	14.8	30.8	18.0
303	3.0	3.0	3.7	3.9	3.6	4.3	4.8	5.9	4.4	7.3	4.7	16.4

T (K)	0% Ethanol		20% E	thanol	40% E	thanol	60% E	thanol	80% E	ithanol	100% 8	Ethanol
	ΔG_{i-s}^{+}	ΔG_{i-s}	ΔG_{i-s}^+	ΔG_{i-s}	ΔG_{i-s}^{+}	ΔG_{i-s}	∆G _{i-s} +	∆G _{i-s} -	ΔG_{i-s}^{+}	ΔG_{i-s}	ΔG_{i-s}^+	∆G _{i-s} -
293	3.4	3.2	4.0	4.3	4.7	4.7	4.9	10.8	6.9	14.8	17.8	18.0
303	4.2	3.2	5.2	4.3	5.0	4.7	5.3	10.9	14.0	14.8	17.6	18.0

Т (К)	0% Ethanol		20% Ethanol		40% Ethanol		60% Ethanol		80% Ethanol		100% Ethanol	
	$\Delta G_{i\text{-s}}^{+}$	∆G _{i-s} -	ΔG_{i-s}^+	ΔG_{i-s}	∆G _{i-s} +	∆G _{i-s} -	ΔG_{i-s}^+	∆G _{i-s} -	∆G _{i-s} +	ΔG_{i-s}	ΔG_{i-s}^+	∆G _{i-s} -
293	4.1	3.20	5.95	4.30	7.30	4.74	11.67	10.80	20.03	14.80	32.42	17.98
303	4.4	3.89	6.64	4.27	8.04	5.79	10.50	7.30	18.75	16.40	33.00	11.71