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Abstract - The soft mode dynamical model has been used to study the dielectric properties of order-
disorder-type crystals. Using the model Hamiltonian proposed by Blinc [Advances in Phys, 29 (1972) 701] 
and has been modified by Bist et al [GJSFR,10,18(2010)], the expressions for the dielectric constant and 
tangent loss have been derived and discussed for order-disorder, KH2PO4 type-crystals with the help of 
double time temperature dependent Green’s function techniques and Dyson’s equation treatment. Using 
appropriate parameters given by Ganguli et al [Phys Rev. B21, 2937 (1980)] the transverse dielectric 
constant and observed dielectric constant have been calculated and compared with experimental results 
of Raman Intensity[Ferroelectrics 52, 91 (1983)], Busch [Helv. Phys. Acta. 11, 265 (1938)], Kaminow et al 
[Phys. Rev. 138A, 1539 (1963)], and Deguchi et al [J. Phys. Soc. Jpn. 49, 1887 (1980)]. The observed 
dielectric constant explains the Curie-Weiss behaviour of dielectric constant along the c-axis of KH2PO4 
crystal in the paraelectric phase. Also the temperature dependence of tangent loss in paraelectric phase 
for KH2PO4 at 9.2 GHz for field along the a-axis, and the c-axis have been calculated and compared with 
experimental results of Kaminow et al [Phys. Rev. 138A, 1539 (1963)]. It is observed that these results are 
in good agreement with each other and with the results obtained by other methods. At higher temperature 
the loss deviates from the Curie-Weiss type behaviour and increases linearly with temperature. This 
behaviour suggests that at higher temperatures the phonon anharmonicity contributes significantly in the 
observed loss.         
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Abstract

 

-

 

The soft mode dynamical model has been used to study the dielectric properties of order-disorder-type 
crystals. Using the model Hamiltonian proposed by Blinc [Advances in Phys, 29

 

(1972)

 

701] and has been modified by 
Bist et al [GJSFR,10,18(2010)], the expressions for the dielectric constant and tangent loss have been derived  and 
discussed for order-disorder, KH2PO4 type-crystals with the help of  double time temperature dependent Green’s 
function techniques and Dyson’s equation treatment. Using appropriate parameters given by Ganguli et al [Phys Rev. 
B21, 2937 (1980)] the transverse dielectric constant and observed dielectric constant have been calculated and 
compared with experimental results of Raman Intensity[Ferroelectrics

 

52, 91 (1983)], Busch [Helv. Phys. Acta. 11, 265 
(1938)], Kaminow et al [Phys. Rev. 138A, 1539 (1963)], and Deguchi et al [J. Phys. Soc. Jpn. 49, 1887 (1980)]. The 
observed dielectric constant explains the Curie-Weiss behaviour of dielectric constant along the c-axis of KH2PO4 crystal 
in the paraelectric phase. Also the temperature dependence of tangent loss in paraelectric phase for KH2PO4

 

at 9.2 GHz 
for field along the a-axis,

 

and the c-axis  have been calculated and compared with experimental results of Kaminow et al 
[Phys. Rev. 138A, 1539 (1963)]. It is observed that these results are in good agreement with each other and with the 
results obtained by other methods. At higher temperature the loss deviates from the Curie-Weiss type behaviour and 
increases linearly with temperature. This behaviour suggests that at higher temperatures the phonon anharmonicity 
contributes significantly in the observed loss. 

 

Keywords

 

:

 

Green’s function; Dyson’s equation; phonon anharmonicity; transverse and observed dielectric 
constant; and tangent loss.

 

I.

 

Introduction

 

The phase transition from ferro to non-ferroelectric (paraelectric -

 

hereafter 
referred to as PE) phase or vice versa, at the transition temperature, is associated with 
the change in crystal structure as well as anomaly in certain physical properties. In view 
of the nature of phase transition occurring at transition temperature, the ferroelectrics are 
classified in two types (i) order-disorder type, and (ii) displacive type. In order-disorder 
type, as KH2PO4, the transition is associated with the tunneling of proton through a 
barrier between two positions of minimum potential energy in the double well potential in 
the hydrogen bond at the

 

transition temperature. In the other types of transitions, which 
are called displacive type, the transition are associated with the displacement of a whole 
sublattice of ions of one type relative to other sublattice, e.g., in BaTiO3

 

and most of the 
double

 

oxide ferroelectrics.

 

The tunneling proton model has been long believed to be an established model of 
the phase transition in KH2PO4

 

and other hydrogen-bonded crystals. Experimental results 
of dielectric dispersion 1, Brillouin spectroscopy2

 

and low frequency Raman spectroscopy3

 

have shown, however, that the dynamical spectra  of polarization fluctuations in pure and 
mixed crystals KDP1-x DKDP(KD2PO4)x

 

can be well analyzed in terms of the Debye type 
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Notes



 
 

susceptibility4, which is characterized by a relaxation time. On the other hand, the origin 
of spontaneous polarization in KDP was established to be shift of P and O ions relative to 
K ions, so that the site symmetry of a PO4

 
tetrahedron was determined to be C2 below 

the transition temperature Tc. Consequently, the Debye susceptibility suggests that the 
order-disorder of PO4 dipoles with C2

 
site symmetry may be the transition mechanism of 

KDP. Raman spectroscopic studies confirm that the ferroelectric phase transition in 

KH2PO4, KD2PO4

 
and their mixed crystals is due to the “order-disorder dynamics”

 
of PO4

 dipoles5.  
 The frequency and temperature dependence of dielectric constant near the Curie 

points of several ferroelectric crystals have investigated by Kaminow6. The theoretical 
studies of temperature dependence

 
of microwave loss in Rochelle salt crystal have been 

discussed7

 
by considering PLCM model Hamiltonian with phonon anharmonocity up to 

fourth order and using double time thermal Green’s function.
 
Levitsky et al 8,on the basis 

of the model of relaxational dynamics, have shown that the two particle cluster theory 
treating the ferroelectric phase transition as a result of an instability in a deuteron 
(proton) subsystem gives a fair quantitative description of the relaxation soft mode 
dynamics of quasi-one-dimensional hydrogen bonded crystals. 

 The dielectric loss is associated with the slow establishment of polarization 
accompanied by absorption currents. In the high fields, the dielectric loss in these 
ferroelectrics is due to hysteresis. Microwave loss in the

 
KDP has studied by Kaminow6

 and Upadhyaya9. The temperature dependence of microwave tangent loss in KDP is 

empirically represented by ( ) ,2tan TTCTT γβαδ ++=− this dependence can be explained in 
terms of slowing down of a relaxational mode.   Recently

 

10,11

 

have experimentally studied 
the temperature dependence of dielectric constant and loss of KDP measured at 23 kHz 
before and after the proton irradiation. Formulae were developed to explain ferroelectric 
transitions in order-disorder

 

7,9,12,13 type crystals. 

 
In our previous studies

 

(hereafter referred to as I12, II13), we have designed the four protons 
Hamiltonian considers the third-and fourth-order phonon anharmonic interaction terms. 

Applying the double time thermal Green’s function techniques and Dyson’s equation the 
higher order correlations have been evaluated using the renormalized Hamiltonian. The 
collective mode frequencies and corresponding widths and shifts have been evaluated for 
PE phase for KDP-type ferroelectric in I. The relaxation processes

 

and ultrasonic 

attenuation in KDP –type ferroelectric have been studied in II. 

 
In the present study, we use the same Hamiltonian as in I and II, we have 

evaluated expressions for dielectric constant and tangent loss. Using model parameters 
given by Ganguli et al 14

 

the transverse dielectric constant and observed dielectric 
constants have been calculated for KH2PO4. Their temperature dependence for KH2PO4

 
have been calculated and compared with experimental results of others6,15-17 in PE phase. 
The observed

 

dielectric constant explains the Curie-Weiss behaviour of dielectric constant 
along the c-axis of KH2PO4 crystal in the PE phase. The temperature dependence of 

tangent loss of KH2PO4

 

at 9.2 GHz for field along the a-axis )(tan aδ

 

along the c-axis

 
)tan( cδ

 

have been calculated and compared with experimental results of Kaminow et al 6

 

in PE phase. 
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II.   Dielectric Susceptibility and Tangent Loss

Using double-time thermal Green’s function (see Appendix A) technique and 

Dyson’s equation, the general expressions for collective phonon mode frequencies )2~~( ±ω and 

corresponding widths ),( ωq∆ and shifts ),( ωqΓ for KDP-type ferroelectric  represented by {

Notes



    
 

  

 

equations (25), (24) and (28) respectively

 

in I . We start with acoustic phonon Green’s 
function equation (5) in II)  write its equation of motion, Fourier Transform and write it 

in the Dyson’s equation form

 

using model Hamiltonian  equation (3) in I  . In this process 
we find ),( ωq∆ and ),( ωqΓ to be the real and imaginary parts respectively of the response 

function for soft phonon mode. The response function consists of higher order Green’s 
function, which are solved my renormalized Hamiltonian  equation (27) in I . Thus 
dielectric susceptibility, dielectric constant, and dielectric loss  (see Appendix B) have 
been calculated for KDP-type ferroelectrics as. 

  

a)

 

Dielectric Susceptibility

 

Following Kuo18

 

and Zubarev19, the dielectric susceptibility is given by

 

                   

,
)](22~~2[

~22)(
ωωωω

ωµωχ
Pj

N
Γ+−

−=

   

                                        
(1)

 

The range of frequencies used in ultrasound20, Brillouin2

 

and susceptibility20 

measurement experiments are such that ωω
~~<< . Thus equation (1) can be written as

 

                                           
,

]1[2~~

~22)(
Pj

N

ωτω

ωµωχ
−

=

                                     

  

(2)

 

Where the polarization relaxation time )( Pτ is given by equation (9) in II. This 

approximation of equation (1) is equivalent to a Debye

 

relaxation susceptibility. 

Furthermore, if ,1<<Pωτ

 

which is true for KDP-system20, equation (2) can be written as 

 

                                              

),1(2~~

~22)( PjN ωτ
ω

ωµωχ +=
                             

(3)

 

Using equation (B.5) in appendix B, the expression for dielectric constant, from 
equation (1), can be written as

 
                            

,
)](2242)2~~2[(

)}](2)2~~2[{(~28

1)(

ωωωω

ωωωωωµπ

ωε

P

PjN

Γ+−

Γ−−−
=

−

                              

 

(4)

 
 

The imaginary part of which can be written as

 

                                  ,
)(2242)2~~2(

)(2~28
)(''

ωωωω

ωωωµπ
ωε

P

PN

Γ+−

Γ
−=

                              

(5)

 

and the real part as
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}

}}

}}

,
)(2242)2~~2(

)2~~2(~28
1)('

ωωωω

ωωωµπ
ωε

P

N

Γ+−

−
−=−

                               

(6)

            

Notes



   

 
 

                                      

  

 

for the experimental range of frequencies, ωω
~~<<

 

and ( 1<<pωτ

 

for KDP), equation (6) 

reduced to )1'( >>ε

 

                                               
2~~

~28
222~~

~28
)('

ω

ωµπ

τωω

ωµπ
ωε

N

P

N
=

+
=

                             
(7)

                                     

where 2~~
±

ω and ω~

 

(represented by equation (6) and (7) respectively in II). The +ω
~~

 

mode and −ω
~~ mode are described in II. 

 
 

b)

 

Tangent Loss

 

The dielectric tangent loss )(tanδ for the dissipation of power in a dielectric sample 

is given by equation (17) in II. For experimental values of the applied field frequencyω ,

 

one has 1<<pωτ

 

for KDP system, can

 

be approximated {given by equation (18) in II}.

 

III.

 

Numerical Calculations

 

By using Blinc-de Gennes model parameter values for KH2PO4 crystal as given by 

Ganguli et al

 

14 (see table 1), we have  calculated transverse dielectric constant[ )0(aε ],

 

observed dielectric constant [ )0(cε ] in PE phase for KH2PO4, and tangent loss )(tanδ of 

KH2PO4 at 9.2 GHz for fields along the a-axis )(tan aδ , and c-axis )(tan cδ are calculated 

using respective equations (see table 2). 

 

Table 1 :

 

Blinc de Genns model parameters for KDP as given by Ganguli et al

 

14

 

Ω

 

J

 

(cm-1)

 

)cm(' 1−J

 

)K(CT

 

CkTV

 

82

 

334

 

440

 

123

 

0.299

 

Table 2 :

 

Calculated values

 

for KDP crystal in PE phase.

 

Temperature (K)

 

)0(aε

 

)0(cε

 

aδtan

 

cδtan

 

125

 

63

 

35714

 

0.00297

 

0.068

 

130

 

62

 

6144

 

0.0048

 

0.033

 

135

 

61

 

2286

 

0.00393

 

0.0279

 

140

 

60

 

874

 

0.0039

 

0.0253

 

145

 

59

 

486

 

0.00393

 

0.0247

 

150

 

58

 

359

 

0.00297

 

0.0241

 
 

IV.

 

TEMPERATURE DEPENDENCE OF )0(aε , AND )0(cε

 

FOR KH2PO4

 

The results for transverse dielectric constant )0(aε obtained from integrated 
intensity of Raman spectroscopy20

 

and those measured by Busch16

 

and Kaminow et al

 

6, 
together with the theoretical result of Havlin, Litov and Uehling21. Their temperature 

dependence is shown in figure 1.

 

This indicates that the low frequency +ω
~~

 

E(x, y) mode
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}}

}

}

from the density of states due to the local disorder above Tc but from one of the collective 
modes at the centre of the Brillouin zone. It should be mentioned here that the low 
frequency E - mode continuous appears also in a deuterated KDP (DKDP), although the 
intensity is about one-third of that of KDP22, which indicates the possibility that the 

spectrum is due to the hydrogen collective motion. Using equation (6) given in I, for +ω
~~

mode, it can be seen that the E-mode collective hydrogen motion has a characteristics 

Notes

is closely related to the macroscopic dielectric constant '
aε . This also suggests that the 

E-mode Raman spectrum originates neither from the second order Raman scattering nor 



    
 

  

 

 

 

  
agrees with the observations of Kaminow et al

 

6. The present results agree with the 
behaviour of the observed E -

 

mode Raman spectrum in the following aspects:

 

(i) +ω
~~

  

does not change appreciably as CTT →

 

in PE phase, 

 

        

(ii) )( +Γ ωP

 

is weakly dependent on temperature, 

 

(iii) Because of the factor )2~~2( ωω − in the numerator of equation (6), the susceptibility 
derived   changes the corresponding spectrum from a simple overdamped form to a 
more flat one, like the E-mode Raman spectrum of KH2PO4

 

23 .

 
  

 

Fig.1

 

:

 

Temperature dependence of Transverse dielectric constant )0(aε for KH2PO4 

obtained from Raman intensity 15 (shown by ο

 

ο

 

ο), Busch 16(shown by ∆

 

∆

 

∆), Kaminow 

et al

 

6(shown by∗∗∗) and solid line represents the present theoretical results.
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}

}

The observed dielectric constant )( cε of KH2PO4along c -axis are shown in figure 2.

The −ω
~~ B2 (z)  mode may  be assigned for the  observed  temperature dependence of cε . 

As from equation (23b) in I, )(2~~
CTT −∝−ω , the real part of the dielectric constant 

associated with this mode, from equation (7), can be expressed as   given by equation (15) 

in II , which explains the Curie -Weiss behaviour of dielectric constant along the c-axis of 

KH2PO4 crystal in the PE phase observed by Deguchi et al 17, Busch16 and Kaminow et al 

shown in figure 2. For temperature cTT → , 'cε tends to maximum value, which is 

consistent with the theory of Hill and Ichiki24 for TGS and KDP crystals. While Mason

monodisperse theory gives 0' →cε as cTT → .The origin of this difference in the 

}

}
}

}

temperature dependence of 'cε is easily traced back in monodisperse theory, the critical 
slowing down of the relaxation time has a dominant effect over the Curie-Weiss law of 
static dielectric constant, while the Hill-Ichiki24 theory of distribution function of 

Notes

damping factor which slowly increases as the temperature approaches Tc, while that of 

−ω
~~ B 2(z)  soft mode the damping factor slowly decreases down to a finite value, which 

, 

6



   
 

 

  

 

 
  

 

 
 

 

relaxation time makes contribution to finite 0≠τ

 

to 'cε

 

more dominant. There are

 

actually, however, many cases in which 'cε

 

takes a minimum of finite value at cTT =

 

being 

neither zero as in Mason’s theory nor maximum as in Hill and Ichiki theory. 

 
 

 

Fig.2

 

:

 

Temperature dependence of observed dielectric constant )0(cε

 

for KH2PO4 

obtained by Busch 16(shown by ο

 

ο

 

ο),  ∆

 

Deguchi et al

 

17(shown by ∆

 

∆

 

∆), Kaminow et 
al

 

6(shown by∗∗∗) and solid line represents the present theoretical results.
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V. Temperature Dependence of Tangent Loss of KH2PO4.

From equations (18) and (9) in II. The +ω
~~ mode gives the contribution for weakly 

temperature dependent transverse relaxational behaviour of the observed transverse 

tangent loss ( aδtan ) and −ω
~~ mode contributes to the longitudinal relaxational behaviour 

of the observed longitudinal tangent loss ( cδtan ) of KH2PO4 are shown in figure 3. Under 
the assumption that the proton moves in a double well potential the dielectric property of 
KDP - type ferroelectrics in the transition region may be due to the relaxation processes 
or due to tunneling mode. An interpretation of equation (19) given in II, for experimental 

data, is remarkable for temperature region cTT > and suggests that the relaxation mode is 
possible in PbHPO4.

The tangent loss is associated with damping parameter Γ, given by equation (17) 
in II and equation (28) in I. Damping can be understood as the creation of a virtual 
polarization mode excited by the transverse electromagnetic radiation and its subsequent 
decay into the real phonons by scattering from crystal defects, higher order phonon 
anharmonicities, etc. At higher temperature the loss deviates from the Curie-Weiss type 
behaviour and increases linearly with temperature. This behaviour suggests that at higher 
temperatures the phonon anharmonicity contributes significantly in the observed loss. 

Notes

,  



    
 

  

 

 

 

 

 
 

 
 
 

 

Fig.3

 

:

 

Temperature dependence of tangent loss of KH2PO4

 

at 9.2 GHz solid line for fields 

along the a-axis )(tan aδ 6 , along the c-axis,

 

)(tan cδ 6 , (ο) represent the present theoretical 

results.

 
 

VI.

 

Conclusion

 

Present study reveal that four cluster Hamiltonian alongwith third and fourth-
order anharmonities for the KDP-type ferroelectrics, explains well the temperature 
dependence of transverse dielectric constant, observed dielectric constant and tangent 
loss. The present results reduce to the results of others 25,26
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neglected. Many workers27,28 used four proton cluster model but could not explain most of 
the features of KDP-system except the difference between the Curie and Curie-Weiss 
temperature. Vaks and Zinenko 29 and Havlin and Sompolinsky 30 performed extensive 
calculations for the static thermodynamics behaviour in the four-particle cluster 
approximation and found satisfactory agreement with the experimental data, but they 
could not explain the observed relaxational behaviour of dielectric properties and 
ultrasonic attenuation explicitly. Ganguli et al 14 modified Ramakrishnan and Tanaka31 

theory by considering anharmonic interaction. Their treatment explains many features of 
order-disorder ferroelectrics. However, due to insufficient treatment of anharmonic 
interactions, they could not obtain quantitatively good results and could not describe 
some interesting properties, like dielectric, ultrasonic attenuation, etc. Our Theoretical 
results fairly agree with the experimental results of others10,11.

The method of double time temperature dependent Green’s function and Dyson’s 
equation formalism have been found convenient and systematic to give the static and 
dynamical properties on a single framework of KDP-type system. The dielectric properties 
and ultrasonic attenuation strongly depend on the relaxational mode behaviour of 
stochastic motion of −

4PO2H group in KDP-type ferroelectrics.
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Appendix A: Green’s Function

 
 

Green’s functions of statistical mechanics are the appropriate generalization of the 
concept of correlation functions. As in quantum field theory three different types of 
Green’s functions can be defined in terms of the average value of the T-product of 
operators, namely, causal retarded and advanced Green’s functions. Here we shall use only 
the retarded double-time Green’s functions.

 
 

A.1. The

 

double-time thermal Green’s function

 

For any pair of operators, the retarded Green’s function is defined as 

 

[ ]><−−=

>><<=

)(,)()(
)(;)(),(

''

''

tBtAtti
tBtAttG

θ (A.1)

 

Where  )(tA

 

and

 

)( 'tB are Heisenberg operators, i.e,.

 



tHitHi

AeetA
−

=)(                        (A.2)

 

H

 

being Hamiltonian of the system. The square bracket denotes the commutator or 

anticommutator  of the operators

 

[ ] 1;, ±=−= ηηBAABBA

 

(A.3)

 

 

η

 

is +1,if A

 

and B

 

are Bose operators, and -1 if they are Fermi operators. Since in 
the present work we shall be dealing with phonons, these operators are always Bose 

operators and the square brackets will be commutator. The angular bracket ......

 

denotes 
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an ensemble average described by the Hamiltonian, namely for any operator 0 it is given 
by    

)(
)0(0 H

H

eTr
eTr

β

β

−

−

= (A.4)

Where Tr stands for the trace of the expression and 1)( −= TKββ , βK being the 

Boltzmann constant and T the absolute temperature. )(tθ is the Heaviside step function 
having the property 

0for0
0for1)(
<=
>=

t
ttθ

(A.5)

The retarded Green’s functions give much detailed dynamical information, because 
they are expectation values of the ensemble and contain all the statistical mechanical 

information. For example, the one-particle Green’s function has a direct physical 
interpretation as a particle propagator. It describes the motion of one particle added to 
the many-particle system.

    
     

 

A.2. Equation for Green’s function
The equation of motion for any operator A(t)  in Heisenberg representation is 

[ ] HAAHHtAtA
dt
di −== )),()( (A.6)

The right hand side of this equation can be evaluated using the explicit form of the 
Hamiltonian and the commutation relation for the operators. The equation of motion for 

the Green’s function defined by (A.1), can be obtained by differentiating it with respect 

to time t

Notes



    
 

 

  

 
 

  

 

 
 

  

  

[ ]
[ ] >><<+

><−=

)(;)),(

)(),()(),(

'

'''

tBHtA

tBtAtt
dt
dttG

dt
di θ

(A.7)

 

In Heisenberg representation ),( 'ttG

 

depends upon the difference of the arguments

 

t

and 't .  The step function   )(tθ

 

can be expressed in terms of the  δ

 

-function of  t   as

 

                            
∫
∞

∞−
→

= ''

0

'

)(lim)( dtett tε

ε
δθ

                       
(A.8)

 

With the help of equation (A.8), the equation of motion for the Green’s function G 
becomes

 

[ ]
[ ] >><<+

><−=−

)(;)),(

)(),()()(

'

'''

tBHtA

tBtAttttG
dt
di δ

(A.9)

 
 

The second term in the right hand side of the above equation, in general, involves 

Green’s Functions of higher order than the original Green’s function >><< )();( 'tBtA , 
except for the trivial case of noninteracting systems when exact solution can be obtained. 
In general the exact solution is very difficult. One is immediately forced to write equation 

of motion of the kind (A.9) for the Green’s function appearing on the right hand side 
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Dielectric Properties of Order-Disorder Type Crystals

which in turn leads to a hierarchy of coupled equations for Green’s functions. One sees 

that at every time the order of the Green’s function increases. In order to get some 
physical result one must cut off the endless chain at certain stage by decoupling the 

higher order Green’s functions into simpler double-time Green’s functions using some 
suitable decoupling schemes. The type of decoupling of hierarchy of coupled equations 
generally depends upon the nature of the problem.

A.3. Time Correlations
The experimental study of various dynamical properties is usually carried out by 

measuring the response of the phonon system to different applied external disturbances. 
Different types of experiments (e.g., ultrasonic attenuation, inelastic neutron scattering 
and optical measurements) may be described in a unified way by a single phonon 
correlation function. In general, physical quantities of interest in many problems are time 
correlation functions or related to them. We define the correlation function as the thermal 
expectation value of the product of two Heisenberg operators )(tA and )( 'tB at difference 
times, namely

)()(),( '' tAtBttFBA =< (A.10a)

>=< )(),(),( '' tBtAttFAB (A.10b)

On the attainment of the thermal equilibrium, these correlation functions depend 

only on the difference of their time arguments as do the Green’s functions. Equal time 'tt =
correlation functions are called the auto-correlation functions and they give the average 
value of the product of the operators,

  
 

><=>=< )0()0()()()0( ABtAtBFBA (A.11a)

><=>=< )0()0()()()0( BAtBtAFAB (A.11b)

Notes



   

 
 

 

 

 

 

 
 

  

  

 

 

  

  

 

  

  

 

A.4. Spectral Representations

 

In order to evaluate the correlation functions (A.10) with the help of the Green’s 
functions, it is convenient to introduce the spectral representations for them. These 
spectral representations supplement the necessary boundary conditions. We will now 

obtain the spectral representations for the time correlation functions   ABF   and  BAF    .

 

Let   n   and  nE   be the eigenstates  and eigenvalues of the Hamiltonian  H,  i.e., 
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The time correlation functions also satisfy the same equation of motion as the 

Green’s function in Eq. (A.9) except the omission of discontinuous factor )( 'tt−δ , i.e., 

[ ] >>=<− )(),()( '' tBHtAttF
dt
di AB (A.12a)

[ ] >=<− HtAtBttF
dt
di BA ),()()( '' (A.12b)

nEnH n= (A.13)

Using the definition of thermal average, the time correlation function BAF    
can be written 

nE

n
BA entAtBnzttF β−− ∑=− )()()( '1'

(A.14)

Where     is the partition function given by )( HeTrz β−= .  By virtue of the 
completeness of the eigenstates, the expression Eq. (A.14) can be written as 

         

n

mn
E

mn

ttEEi

BA enAmmBnezttF β−
−−−

− ∑ ×=−
,

)()(
1'

'

)( 

       

(A.15)

Similarly      

                

n

mn
E

mn

ttEEi

AB enBmmAnezttF β−
−−−

− ∑ ×=−
,

)()(
1'

'

)(  (A.16)

manipulation, we can write (A.15) and (A.16) in the form

        
ωω ω deJttF tti

BA ∫
∞

∞−

−−=− )(' '

)()(
     

(A.17a)

                        

ωω ωωβ deJettF tti
AB

)(' '

)()( −−
∞

∞−
∫=− 

                
(17b)

)(ωJ   is called the spectral density of the function  )( 'ttFBA − and is given by 

)()(
,

1


mn

mn

E EE
nAmmBnezJ n

−
−×= ∑ −− ωδω β

(A.18)

Equation (A.17) are the required spectral representations for the time correlation 
functions. 

z

    
     

 

Notes

Interchanging the summation indices n and m in (A.16) and doing slight 

The values of the correlation functions can be evaluated directly by integration of
Eq. (A.12) using the boundary conditions. However, it is more convenient to evaluate 
them indirectly by first calculating the Green’s function from (A.9). This method is 
considerably simpler, sine it makes it easier to satisfy the boundary conditions using the 
spectral theorems.



    
 

  

 

  

 

 
 

                       
 

 

  

 

  
  

 

 

A.5. Spectral representation for Green’s functions

 

The spectral representation for the retarded Green’s Function Eq. (A.1) can easily 
be obtained by means of the spectral representations,  (A.17a)  and (A.17b), for the time 

correlation functions. Let  )(ωG

 

be the Fourier transform of the Green’s function  )( 'ttG −   
then 

 

)()(
2
1)( ')(' '

ttdettGG tti −−= −
∞

∞−
∫ ω

π
ω

  

(A.19)

 

ωω ω deGttG tti )(' '

)()( −−
∞

∞−
∫=−

  

(A.20)

 

Substituting Eq. (A.1) into Eq. (A.19) we get
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[ ])()()()(

)()(
2
1)(

''

')(' '

tAtBtBtA

ttettd
i

G tti

<−><×

−−= −
∞

∞−
∫

η

θ
π

ω ω

(A.21)

Using the spectral representations (A.17a) and (A.17b) for the time correlation 
function, we obtain

tietdtdJe
i

G )('' ''

)()()(
2
1)( ωωωβ θωωη
π

ω −
∞

∞−

∞

∞−
∫ ∫−= 

      
(A.22)

Time integration in (A.22) can be carried out by using the integral representations 

for )(tδ and )(tθ ,  namely 

                  
∫
∞

∞−

= dxet ixt

π
δ

2
1)(

            
(A.23)

and

                                                 
∫
∞

∞−

−

+
= dx

ix
eit

ixt

επ
θ

2
)(

   
(A.24)

The result is

∫
∞

∞− +−
−

=
εωω

ηωω
π

ω
ωβ

i
eJdG '

'' )()(
2
1)(

'

           

(A.25)

So far we have considered   ω   to be a real quantity. Assuming ω    to be complex, we 
have 

       
∫
∞

∞− −
−=

)(
1)()(

2
1)( '

'' '

ωω
ωηω

π
ω ωβ JedG 

                     

(A.26)

Where  ω   is having a small imaginary part, is understood. This shows that the 

function )(ωG   can be considered to be analytic in the upper half of the complex ω - plane 
with a singularity on the real axis. In the similar manner, expression for the advanced 

Green’s function is obtained except that the small positive quantity  )0( +→ε   is changed by 
negative sign in the expression (A.25). We can say that the Fourier transform of the 

advanced Green’s function is analytic in the lower half plane. 

The spectral density function  )(ωJ can be immediately calculated if the function 

)(ωG is known. For this we have 

−=−−+ ∫
∞

∞−

ηωω
π

εωεω ωβeJdiGiG '' ))((
2
1)()(

'

Notes
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(A.27)

 

Using the relation

 

     
  









+
−

−
=

εεπ
δ

ixixi
x 11

2
1)(

 

   
(A.28)

 

We arrive at 
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           )()()()(
'

ωηεωεω ωβ JeiiGiG −−=−−+ 

         (A.29)
or

)(Im
)(

2)(lim
0

εω
η

ω ωβε
iG

e
J +

−
−=

→ 

Where  0→ε is implied and  Im stands for the imaginary part. 

This relation is very important. Once the retarded Green’s function is known, the 
spectral density function can be obtained the help of (A.29) and taking the requisite 
Fourier transforms (A.17), one can get the correlation functions at all times and at all 
temperatures. This enables us to calculate the physical properties of a crystal in terms of 
one set of functions. 

 

 

    
     

 

Notes



    
 

  
 

 

   

 

 

 

 

  

 

  
 

 

 

   

 
 

 

 

Where

 

N

  

is the number of unit cells in the sample

 

and µ

 

is the effective dipole 
moment per unit cell, and

 

                                 
)('')('

)'(');()(

ωω

εω

jGG

t
q

AtqAjmnG

−=

>>=<<+

 

           

 

(B.4)
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Dielectric Properties of Order-Disorder Type Crystals

Where )(''and)(' ωω GG are real and imaginary parts of the Green’s function. The 
dielectric constant can be evaluated using the relation

                                                )('')('41)( ωεωεπχωε j−=+=                   (B.5)   

Where )(''and)(' ωεωε are real and imaginary parts of the dielectric constant. The 
real part of the dielectric constant can be expressed as

               

 

),('281)(' ωµπωε GN−=−             (B.6)

and the imaginary part

                     ),(''28)('' ωµπωε GN−=                     (B.7)

The dielectric loss ( δtan ),

 

for the dissipation of power in the dielectric crystal is 
defined as the ratio of imaginary and real parts of the dielectric constant, i.e.,

                           )('
)(''

)('
)(''tan

ω

ω

ωε

ωε
δ

G

G
==

,                      
(B.8)

  
 

 

 
 

 

Notes

  

Appendix B: Dielectric Constant and Tangent Loss

General formulation
The response of a dielectric field is conveniently described by the dielectric 

susceptibility. Following Kuo28 and Zubarev29, the general expression for complex dielectric 

susceptibility tensor )(ωχmn can be expressed as

                         
),(2lim

0
)( εωπ

ε
ωχ jmnGmn +−

→
=

          
(B.1)

Where )(ωmnG the Fourier transform of the retarded double-time thermal Green’s 
function between the mth and nth components of the crystal dipole moment operators )(tM



in the Heisenberg representation and is defined as

=− )'( ttmnG << )();( 'tMtM nm >>

                                   = ><−− )]'();([)'( tnMtmMttjθ                    (B.2)

Where )'( tt −θ is the Heaviside step function and the angular brackets >−−<
denote the thermal ensemble average. The crystal dipole moment )(tM


depends on the 

ionic co-ordinates, like potential energy, i.e., on the lattice configurations and can be 

expanded in a Taylor’s series in terms of ionic displacements. Because of the periodic 
boundary conditions, i.e., symmetry considerations, imposed on the ionic motions, only 
the low lying relaxational modes have non-zero polarization associated with them. Thus 
only the expansion coefficients which correspond to lowest frequency mode, i.e., ),( jqM



{where q = 0 for ferroelectrics, and j relates the modes of spectrum) contribute to the 
dielectric susceptibility, significantly.

    

Thus we can write the dielectric susceptibility as

                        
),(22lim

0ε
)( εωµπωχ jmnGNmn +−

→
=

         
(B.3)
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