

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS AND DECISION SCIENCES Volume 12 Issue 14 Version 1.0 Year 2012 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

On Coefficient Estimates and Neighbourhood Problem for Generalized Sakaguchi Type Functions

By B. Srutha Keerthi & S. Chinthamani

Sri Venkateswara College of Engineering Sriperumbudur, Chennai

Abstract - In the present investigation, we introduce a new class $k - U^m(\rho, \beta, \lambda, \mu, \gamma, t)$ of analytic functions with negative coefficients. The various results obtained here for this function include coefficient estimate and inclusion relationships involving the neighbourhoods of the analytic function.

Keywords : Analytic function, uniformly starlike function, coefficient estimate, neighbourhood problem.

GJSFR-F Classification : MSC 2010: 11B65, 05A10

ON COEFFICIENT ESTIMATES AND NEIGHBOURHOOD PROBLEM FOR GENERALIZED SAKAGUCHI TYPE FUNCTIONS

Strictly as per the compliance and regulations of :

© 2012. B. Srutha Keerthi & S. Chinthamani. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Notes

On Coefficient Estimates and Neighbourhood Problem for Generalized Sakaguchi Type Functions

B. Srutha Keerthi^a & S. Chinthamani^o

Abstract - In the present investigation, we introduce a new class $k - U^m(\rho, \beta, \lambda, \mu, \gamma, t)$ of analytic functions with negative coefficients. The various results obtained here for this function include coefficient estimate and inclusion relationships involving the neighbourhoods of the analytic function.

Keywords and Phrases : Analytic function, uniformly starlike function, coefficient estimate, neighbourhood problem.

I. INTRODUCTION

Let A denote the family of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

that are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. Denote by S the subclass of A of functions that are univalent in \mathcal{U} .

For $f \in A$ given by (1.1) and g(z) given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n \tag{1.2}$$

their convolution (or Hadamard product), denoted by (f * g), is defined as

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g * f)(z) \quad (z \in \mathcal{U})$$
 (1.3)

Note that $f * g \in A$.

A function $f \in A$ is said to be in $k - \mathcal{U}S(\gamma)$, the class of k-uniformly starlike functions of order γ , $0 \leq \gamma < 1$, if satisfies the condition

Year 2012

Author α σ : Department of Applied Mathematics, Sri Venkateswara College of Engineering Sriperumbudur, Chennai - 602105, India. E-mails : sruthilaya06@yahoo.co.in, chinvicky@rediff_mail.com

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > k\left|\frac{zf'(z)}{f(z)} - 1\right| + \gamma \quad (k \ge 0)$$

$$(1.4)$$

and a function $f \in A$ is said to be in $k-\mathcal{U}C(\gamma)$, the class of k-uniformly convex functions of order γ , $0 \leq \gamma < 1$, if satisfies the condition

$$Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > k\left|\frac{zf''(z)}{f'(z)}\right| + \gamma \quad (k \ge 0)$$

$$(1.5)$$

Uniformly starlike and uniformly convex functions were first introduced by Goodman [8] and then studied by various authors. It is known that $f \in k-\mathcal{U}C(\gamma)$ or $f \in k-\mathcal{U}S(\gamma)$ if and only if $1 + \frac{zf''(z)}{f'(z)}$ or $\frac{zf'(z)}{f(z)}$, respectively, takes all the values in the conic domain $\mathcal{R}_{k,\gamma}$ which is included in the right half plane given by

$$\mathcal{R}_{k,\gamma} = \{ w = u + iv \in C : u > k\sqrt{(u-1)^2 + v^2} + \gamma, \beta \ge 0 \text{ and } \gamma \in [0,1) \}.$$
(1.6)

Denote by $\mathcal{P}(P_{k,\gamma})$, $(\beta \geq 0, 0 \leq \gamma < 1)$ the family of functions p, such that $p \in \mathcal{P}$, where \mathcal{P} denotes well-known class of caratheodary functions. The function $P_{k,\gamma}$ maps the unit disk conformally onto the domain $\mathcal{R}_{k,\gamma}$ such that $1 \in \mathcal{R}_{k,\gamma}$ and $\partial \mathcal{R}_{k,\gamma}$ is a curve defined by the equality

$$\partial \mathcal{R}_{k,\gamma} = \{ w = u + iv \in C : u^2 = (k\sqrt{(u-1)^2 + v^2} + \gamma)^2, \beta \ge 0 \text{ and } \gamma \in [0,1) \}.$$
(1.7)

where $0 \leq \alpha < 1$, $|t| \leq 1$, $t \neq 1$. Note that $S_S(0, -1) = S_s$ and $S_s(\alpha, -1) = S_s(\alpha)$ is called Sakaguchi function of order α .

Let us define the linear multiplier differential operator $D_{\lambda,\mu}^{m} f$ [11] which is shown as follows:

$$D^m_{\lambda,\mu}f(z) = z + \sum_{n=2}^{\infty} \phi^m(\lambda,\mu,n)a_n z^n$$
(1.8)

where

Year 2012

Global Journal of Science Frontier Research (F) Volume XII Issue XIV Version I

$$\phi^{m}(\lambda,\mu,n) = [1 + (\lambda\mu n + \lambda - \mu)(n-1)]^{m}, \qquad (1.9)$$

 $0 \le \mu \le 1$ and $m \in N_0 = N \cup \{0\}$.

It should be remarked that the operator $D_{\lambda,\mu}^m$ is a generalization of many other linear operators considered earlier. In particular, for $f \in A$ we have the following:

- $D_{1,0}^m f(z) \equiv D^m f(z)$ the operator investigated by Salagean (see [14]).
- $D_{\lambda,0}^m f(z) \equiv D_{\lambda}^m f(z)$ the operator studied by Al-Oboudi (see [1]).

Now, by making use of he differential operator $D^m_{\lambda,\mu}$, we define a new subclass of functions belonging to the class A.

Ref.

Definition 1.1. A function $f(z) \in A$ is said to be in the class $k - \mathcal{U}^m(\rho, \beta, \lambda, \mu, \gamma, t)$ if for all $z \in \mathcal{U}$,

$$Re \left\{ \frac{(1-t)[(\rho\beta z^{3}(D_{\lambda,\mu}^{m}f(z))'' + (2\rho\beta + \rho - \beta)z^{2}(D_{\lambda,\mu}^{m}f(z))'' + z(D_{\lambda,\mu}^{m}f(z))'}{\{\rho\beta z^{2}[(D_{\lambda,\mu}^{m}f(z))'] - t^{2}(D_{\lambda,\mu}^{m}f(tz))'] + (\rho - \beta)z[(D_{\lambda,\mu}^{m}f(z))'}{-t(D_{\lambda,\mu}^{m}f(tz))'] + (1-\rho + \beta)[D_{\lambda,\mu}^{m}f(z) - D_{\lambda,\mu}^{m}f(tz)]\}} \right\}$$

$$\geq k \left| \frac{(1-t)[(\rho\beta z^{3}(D_{\lambda,\mu}^{m}f(z))'' + (2\rho\beta + \rho - \beta)z^{2}(D_{\lambda,\mu}^{m}f(z))'' + z(D_{\lambda,\mu}^{m}f(z))'}{\{\rho\beta z^{2}[(D_{\lambda,\mu}^{m}f(z))'' - t^{2}(D_{\lambda,\mu}^{m}f(tz))''] + (\rho - \beta)z[(D_{\lambda,\mu}^{m}f(z))'}{-t(D_{\lambda,\mu}^{m}f(z))'] + (1-\rho + \beta)[D_{\lambda,\mu}^{m}f(z) - D_{\lambda,\mu}^{m}f(tz)]\}} - 1 \right| + \gamma$$

for $\lambda \ge \mu \ge 0$, $m, k \ge 0$, $|t| \le 1$, $t \ne 1$, $0 \le \beta \le \rho \le 1$.

Furthermore, we say that a function $f(z) \in k \cdot \mathcal{U}^m(\rho, \beta, \lambda, \mu, \gamma, t)$ is in the subclass $k - \mathcal{U}^m(\rho, \beta, \lambda, \mu, \gamma, t)$ if f(z) is of the following form:

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \quad (a_n \ge 0, n \in N)$$
 (1.10)

The aim of this paper is to study the coefficient bounds and certain neighbourhood results of the class $k \cdot \tilde{\mathcal{U}}^m(\rho, \beta, \lambda, \mu, \gamma, t)$.

This subclass was motivated by Murat Cagler and Halit Orhan See [17].

Definition 1.2. A function $f(z) \in A$ is said to be in the class $k-\mathcal{U}^m(\rho,\lambda,\mu,\gamma,t)$ if for all $z \in \mathcal{U}$

$$Re\left\{\frac{(1-t)[\rho z^{2}(D_{\lambda,\mu}^{m}f(z))''+z(D_{\lambda,\mu}^{m}f(z))']}{(1-\rho)[D_{\lambda,\mu}^{m}f(z)-D_{\lambda,\mu}^{m}f(tz)]+\rho z[(D_{\lambda,\mu}^{m}f(z))'-t(D_{\lambda,\mu}^{m}f(tz))']}\right\}$$
$$\geq k\left|\frac{(1-t)[\rho z^{2}(D_{\lambda,\mu}^{m}f(z))''+z(D_{\lambda,\mu}^{m}f(z))']}{(1-\rho)[D_{\lambda,\mu}^{m}f(z)-D_{\lambda,\mu}^{m}f(tz)]+\rho z[(D_{\lambda,\mu}^{m}f(z))'-t(D_{\lambda,\mu}^{m}f(tz))']}-1\right|+\gamma$$

for $\lambda \ge \mu \ge 0$, $m, k \ge 0$, $|t| \le 1$, $t \ne 1$, $0 \le \rho \le 1$.

Remark 1.1. When $\beta = 0$ in the class $k \cdot \mathcal{U}^m(\rho, \beta, \lambda, \mu, \gamma, t)$, we get the class $k-\mathcal{U}^m(\rho,\lambda,\mu,\gamma,t)$ as in Definition 1.2.

Definition 1.3. A function $f(z) \in A$ is said to be in the class $k - \mathcal{U}C^{m}(\lambda, \mu, \gamma, t)$ if for all $z \in \mathcal{U}$,

$$Re\left\{\frac{(1-t)[z^{2}(D_{\lambda,\mu}^{m}f(z))''+z(D_{\lambda,\mu}^{m}f(z))']}{z[(D_{\lambda,\mu}^{m}f(z))'-t(D_{\lambda,\mu}^{m}f(tz))']}\right\}$$
$$\geq k\left|\frac{(1-t)[z^{2}(D_{\lambda,\mu}^{m}f(z))''+z(D_{\lambda,\mu}^{m}f(z))']}{z[(D_{\lambda,\mu}^{m}f(z))'-t(D_{\lambda,\mu}^{m}f(tz))']}-1\right|+\gamma$$

[17]

Ref.

)

for $\lambda \ge \mu \ge 0$, $m, k \ge 0$, $|t| \le 1$, $t \ne 1$.

Definition 1.4. A function $f(z) \in A$ is said to be in the class $k \cdot \mathcal{U}^m(\alpha, \lambda, \mu, \gamma, t)$ if for all $z \in \mathcal{U}$,

$$Re\left\{\frac{(1-t)[\alpha z^{3}(D_{\lambda,\mu}^{m}f(z))'' + (1+2\alpha)z^{2}(D_{\lambda,\mu}^{m}f(z))'' + z(D_{\lambda,\mu}^{m}f(z))']}{\alpha z^{2}[(D_{\lambda,\mu}^{m}f(z))'' - t^{2}(D_{\lambda,\mu}^{m}f(tz))''] + z[(D_{\lambda,\mu}^{m}f(z))' - t(D_{\lambda,\mu}^{m}f(tz))']}\right\}$$
$$\geq k\left|\frac{(1-t)[\alpha z^{3}(D_{\lambda,\mu}^{m}f(z))'' + (1+2\alpha)z^{2}(D_{\lambda,\mu}^{m}f(z))'' + z(D_{\lambda,\mu}^{m}f(z))']}{\alpha z^{2}[(D_{\lambda,\mu}^{m}f(z))'' - t^{2}(D_{\lambda,\mu}^{m}f(tz))''] + z[(D_{\lambda,\mu}^{m}f(z))' - t(D_{\lambda,\mu}^{m}f(tz))']} - 1\right| + \gamma$$

Notes

for $\lambda \ge \mu \ge 0$, $m, k \ge 0$, $|t| \le 1$, $t \ne 1$, $0 \le \alpha \le 1$.

Remark 1.2. When $\rho = 1$ in the class $k \cdot \mathcal{U}^m(\rho, \lambda, \mu, \gamma, t)$ and when $\alpha = 0$ in the class $k \cdot \mathcal{U}^m(\alpha, \lambda, \mu, \gamma, t)$, we get the class $k \cdot \mathcal{U}^m(\lambda, \mu, \gamma, t)$ as in Definition 1.3.

II. COEFFICIENT BOUNDS OF THE FUNCTION CLASS

$$k - \tilde{\mathcal{U}}^{m}(\rho, \beta, \lambda, \mu, \gamma, t)$$

Firstly, we, shall need the following lemmas.

Lemma 2.1. Let w = u + iv. Then

Re $w \ge \alpha$ if and only if $|w - (1 + \alpha)| \le |w + (1 - \alpha)|$.

Lemma 2.2. Let w = u + iv and α, γ are real numbers. Then

Re
$$w > \alpha |w - 1| + \gamma$$
 if and only if $Re\{w(1 + \alpha e^{i\theta}) - \alpha e^{i\theta}\} > \gamma$.

Theorem 2.1. The function f(z) defined by (1.10) is in the class $k \cdot \tilde{\mathcal{U}}^m(\rho, \beta, \lambda, \mu, \gamma, t)$ if and only if

$$\sum \phi^{m}(\lambda,\mu,n) |n(k+1) - u_{n}(k+\gamma)| |n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1|a_{n} \le 1 - \gamma,$$
(2.1)

where $\lambda \ge \mu \ge 0$, $m, k \ge 0$, $|t| \le 1$, $t \ne 1$, $0 \le \gamma < 1$, $0 \le \beta \le \rho \le 1$, $u_n = 1 + t + \dots + t^{n-1}$. The result is sharp for the function f(z) given by

$$f(z) = z - \sum_{n=2}^{\infty} \frac{1 - \gamma}{\phi^m(\lambda, \mu, n) |n(k+1) - u_n(k+\gamma)| |n(n-1)\rho\beta + (\rho - \beta)(n-1) + 1|} z^n$$

Proof. By Definition 1.1 and by Lemma 2.2, we have,

$$Re\left\{\frac{(1-t)[\rho\beta z^{3}(D_{\lambda,\mu}^{m}f(z))^{\prime\prime\prime}+(2\rho\beta+\rho-\beta)z^{2}(D_{\lambda,\mu}^{m}f(z))^{\prime\prime}+z(D_{\lambda,\mu}^{m}f(z))^{\prime}](1+ke^{i\theta})}{\{\rho\beta z^{2}[(D_{\lambda,\mu}^{m}f(z))^{\prime\prime}-t^{2}(D_{\lambda,\mu}^{m}f(tz))^{\prime\prime}]+(\rho-\beta)z[(D_{\lambda,\mu}^{m}f(z))^{\prime}-t(D_{\lambda,\mu}^{m}f(tz))^{\prime}]}{+(1-\rho+\beta)[D_{\lambda,\mu}^{m}f(z)-D_{\lambda,\mu}^{m}f(tz)]\}}-ke^{i\theta}\right\}\geq\gamma,$$

© 2012 Global Journals Inc. (US)

where $-\pi < \theta < \pi$, or equivalently

$$Re\left\{\frac{F(z)}{E(z)}\right\} \ge \gamma$$
 (2.2)

where

$$\begin{split} F(z) &= (1-t)[\rho\beta z^3 (D^m_{\lambda,\mu} f(z))'' + (2\rho\beta + \rho - \beta) z^2 (D^m_{\lambda,\mu} f(z))'' \\ &+ z (D^m_{\lambda,\mu} f(z))'](1 + k e^{i\theta}) - k e^{i\theta} \{\rho\beta z^2 [(D^m_{\lambda,\mu} f(z))'' - t^2 (D^m_{\lambda,\mu} f(tz))''] \\ &+ (\rho - \beta) z [(D^m_{\lambda,\mu} f(z))' - t (D^m_{\lambda,\mu} f(tz))'] + (1 - \rho + \beta) [D^m_{\lambda,\mu} f(z) - D^m_{\lambda,\mu} f(tz)] \} \end{split}$$

and

Notes

$$E(z) = \rho \beta z^{2} [(D_{\lambda,\mu}^{m} f(z))'' - t^{2} (D_{\lambda,\mu}^{m} f(tz))''] + (\rho - \beta) z [(D_{\lambda,\mu}^{m} f(z))' - t (D_{\lambda,\mu}^{m} f(tz))'] + (1 - \rho + \beta) [D_{\lambda,\mu}^{m} f(z) - D_{\lambda,\mu}^{m} f(tz)]$$
(2.3)

By Lemma 2.1, (2.2) is equivalent to

$$|F(z) + (1 - \gamma)E(z)| \ge |F(z) - (1 + \gamma)E(z)|$$
 for $0 \le \gamma < 1$

But

$$\begin{split} |F(z) + (1-\gamma)E(z)| \\ \geq |1-t| \left\{ \begin{array}{l} (2-\gamma)|z| \\ -\Sigma\phi^m(\lambda,\mu,n)|n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1||n+u_n(1-\gamma)|a_n|z|^n \\ -k\Sigma\phi^m|n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1||n-u_n|a_n|z|^n \end{array} \right\} \end{split}$$

Also,

$$|F(z) - (1+\gamma)E(z)| \le |1-t| \left\{ \begin{array}{l} \gamma|z| \\ +\Sigma\phi^{m}(\lambda,\mu,n)|n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1||n-u_{n}(1+\gamma)|a_{n}|z|^{n} \\ +k\Sigma\phi^{m}(\lambda,\mu,n)|n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1||n-u_{n}|a_{n}|z|^{n} \end{array} \right\}$$

and so

$$\begin{split} |F(z) + (1 - \gamma)E(z)| &- |F(z) - (1 + \gamma)E(z)| \\ & \geq \left\{ \begin{array}{l} 2(1 - \gamma)|z| \\ & -\sum_{n=2}^{\infty} 2\phi^m(\lambda, \mu, n)|n(k+1) - u_n(k+\gamma)||n(n-1)\rho\beta + (\rho - \beta)(n-1) + 1|a_n|z|^n \\ & \geq 0 \end{array} \right\} \\ & \geq 0 \end{split}$$

or

$$\Sigma \phi^m(\lambda,\mu,n) | n(k+1) - u_n(k+\gamma) | | n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1 | a_n \le (1-\gamma)$$

Conversely, suppose that (2.1) holds, then we must show that (2.2) is true upon choosing the values of z on the positive real axis where $0 \le z = r < 1$, the above inequality reduces to

$$Re\left\{\frac{(1-\gamma) - \Sigma\phi^{m}(\lambda,\mu,n)[n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1][n(k+1) - u_{n}(k+\gamma)]a_{n}z^{n-1}}{1 - \Sigma\phi^{m}(\lambda,\mu,n)[n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1]u_{n}a_{n}z^{n-1}}\right\} \ge 0$$

Since $Re(-e^{i\theta}) \ge -|e^{i\theta}| = -1$, the above inequality reduces to

$$Re\left\{\frac{(1-\gamma) - \sum_{n=2}^{\infty} \phi^m(\lambda,\mu,n)[n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1][n(k+1) - u_n(k+\gamma)]a_n r^{n-1}}{1 - \Sigma \phi^m(\lambda,\mu,n)[n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1]u_n a_n r^{n-1}}\right\} \ge 0$$

Letting $r \to 1^-$, we have desired concluison.

Corollary 2.1. Let $\beta = 0$ in (2.1) then we have the result for the class defined in Definition 1.2 as

$$\sum \phi^m(\lambda, \mu, n) |n(k+1) - u_n(k+\gamma)| |\rho(n-1) + 1| a_n \le (1-\gamma)$$

where $\lambda \ge \mu \ge 0$, $m, k \ge 0$, $|t| \le 1$, $t \ne 1$, $0 \le \gamma < 1$, $0 \le \rho \le 1$, $u_n = 1 + t + \dots + t^{n-1}$.

Corollary 2.2. Let $\rho = 1$, $\beta = 0$ in (2.1) then we have the result for the class defined in Definition 1.3 as

$$\sum \phi^m(\lambda,\mu,n)|n(k+1) - u_n(k+\gamma)|na_n \le (1-\gamma)$$

where $\lambda \ge \mu \ge 0$, $m, k \ge 0$, $|t| \le 1$, $t \ne 1$, $0 \le \gamma < 1$, $u_n = 1 + t + \dots + t^{n-1}$.

Theorem 2.2. The function f(z) defined by (1.10) is in the class $k \cdot \tilde{\mathcal{U}}^m(\alpha, \lambda, \mu, \gamma, t)$ if and only if

$$\sum \phi^{m}(\lambda, \mu, n) |n(k+1) - u_{n}(k+\gamma)| |\alpha(n-1) + 1| a_{n} \le 1 - \gamma$$

where $\lambda \ge \mu \ge 0$, $m, k \ge 0$, $|t| \le 1$, $t \ne 1$, $0 \le \gamma < 1$, $0 \le \alpha \le 1$, $u_n = 1 + t + \dots + t^{n-1}$.

The result is sharp for the function f(z) given by

$$f(z) = z - \sum_{n=2}^{\infty} \frac{1 - \gamma}{\phi^m(\lambda, \mu, n) |n(k+1) - u_n(k+\gamma)| |\alpha(n-1) + 1|} z^n$$

Proof. The same procedure is followed as in Theorem 2.1 to prove this result. Corollary 2.3. Take $\alpha = 0$, then we get the result as in Corollary 2.2.

III. NEIGHBOURHOOD OF THE FUNCTION CLASS

Following the earlier investigations (based upon the familiar concept of neighbourhoods of analytic functions) by Goodman [7], Ruscheweyh [12], Altintas et al. ([2, 3]) and others including Srivastava et al. ([15, 16]), Orhan ([9]), Deniz et al. [6], Catas [4].

Definition 3.1. Let $\lambda \ge \mu \ge 0$, $m, k \ge 0$, $|t| \le 1$, $t \ne 1$, $0 \le \gamma < 1$, $\alpha \ge 0$, $u_n = 1 + t + \dots + t^{n-1}$ we define the α -neighbourhood of a function $f \in A$ and denote by $N_{\alpha}(f)$ consisting of all functions $g(z) = z - \sum_{n=2}^{\infty} b_n z^n \in S$ $(b_n \ge 0, n \in N)$ satisfying

$$\sum \frac{\phi^m(\lambda,\mu,n)|n(k+1) - u_n(k+\gamma)||n(n-1)\rho\beta + (\rho-\beta)(n-1) + 1|}{1 - \gamma} |a_n - b_n| \le \alpha$$

 ${
m R}_{
m ef.}$

Year 2012

 $k - \mathcal{U}^{m}(\rho, \beta, \lambda, \mu, \gamma, t)$

Theorem 3.1. Let $f \in k \cdot \tilde{\mathcal{U}}^m(\rho, \beta, \lambda, \mu, \gamma, t)$ and for all real θ , we have $\gamma(e^{i\theta} - 1) - 2e^{i\theta} \neq 0$. For any complex number ϵ with $|\epsilon| < \alpha \ (\alpha \ge 0)$, if f satisfies the following condition:

$$\frac{f(z) + \epsilon z}{1 + \epsilon} \in k - \tilde{\mathcal{U}}^m(\rho, \beta, \lambda, \mu, \gamma, t),$$

then $N_{\alpha}(f) \subset k \cdot \tilde{\mathcal{U}}^m(\rho, \beta, \lambda, \mu, \gamma, t).$

 N_{otes}

Proof. It is obvious that $f \in k - \tilde{\mathcal{U}}^m(\rho, \beta, \lambda, \mu, \gamma, t)$ if and only if

$$\left|\frac{u(z)(1+ke^{i\theta}) - (ke^{i\theta} + 1 + \gamma)v(z)}{u(z)(1+ke^{i\theta}) + (1-ke^{i\theta} - \gamma)v(z)}\right| < 1 \quad (-\pi < \theta < \pi)$$

where

$$\begin{split} u(z) &= (1-t)[\rho\beta z^3 (D^m_{\lambda,\mu}f(z))'' + (2\rho\beta + \rho - \beta) z^2 (D^m_{\lambda,\mu}f(z))'' + z (D^m_{\lambda,\mu}f(z))'] \\ v(z) &= \rho\beta z^2 [(D^m_{\lambda,\mu}f(z))'' - t^2 (D^m_{\lambda,\mu}f(tz))''] + (\rho - \beta) z [(D^m_{\lambda,\mu}f(z))' - t (D^m_{\lambda,\mu}f(tz))'] \\ &+ (1-\rho + \beta) [D^m_{\lambda,\mu}f(z) - D^m_{\lambda,\mu}f(tz)] \end{split}$$

for any complex number S with |S| = 1, we have

$$\frac{u(z)(1+ke^{i\theta})-(ke^{i\theta}+1+\gamma)v(z)}{u(z)(1+ke^{i\theta})+(1-ke^{i\theta}-\gamma)v(z)} \neq S$$

In other words, we must have

$$(1-S)u(z)(1+ke^{i\theta}) - (ke^{i\theta} + 1 + \gamma - S(ke^{i\theta} - 1 + \gamma))v(z) \neq 0$$

which is equivalent to

$$\frac{\left\{\Sigma\phi^{m}(\lambda,\mu,n)(\rho\beta(n(n-1)) + (\rho-\beta)(n-1) + 1)\right\}}{\times((n-u_{n})(1+ke^{i\theta}-Ske^{i\theta}) - S(n+u_{n}) - u_{n}\gamma(1-S))\right\}}a_{n}z^{n}\neq 0$$

However,
$$f \in k - \tilde{\mathcal{U}}^m(\rho, \beta, \lambda, \mu, \gamma, t)$$
 if and only if $\frac{(f * h)(z)}{z} \neq 0, z \in \mathcal{U} - \{ 0 \}$
where $h(z) = z - \sum_{n=2}^{\infty} c_n z^n$ and
 $\{ \sum \phi^m(\lambda, \mu, n) (\rho \beta(n(n-1)) + (\rho - \beta)(n-1) + 1)$

$$c_n = \frac{\left(\sum i^{(n)} (i, p, n)(p)(n(n-1)) + (p-1)(n-1) + (p-1)(n-1)\right)}{\gamma(S-1) - 2S}$$

we note that

$$|c_n| \le \frac{\sum \phi^m(\lambda, \mu, n) |\rho\beta(n(n-1)) + (\rho - \beta)(n-1) + 1| |n(1+k) - u_n(k+\gamma)|}{1 - \gamma}$$

Year 2012

53

(3.1)

Notes

Since
$$\frac{f(z) + \epsilon z}{1 + \epsilon} \in k \cdot \tilde{\mathcal{U}}^m(\rho, \beta, \lambda, \mu, \gamma, t)$$
, therefore
 $z^{-1}\left(\frac{f(z) + \epsilon z}{1 + \epsilon} * h(z)\right) \neq 0$ which is equivalent to
 $\frac{(f * h)(z)}{(1 + \epsilon)z} + \frac{\epsilon}{1 + \epsilon} \neq 0$

Now suppose that $\left|\frac{(f*h)(z)}{z}\right| < \alpha$. Then by (3.1), we must have

$$\left|\frac{(f*h)(z)}{(1+\epsilon)z} + \frac{\epsilon}{1+\epsilon}\right| \ge \frac{|\epsilon|}{|1+\epsilon|} - \frac{1}{|1+\epsilon|} \left|\frac{(f*h)(z)}{z}\right| > \frac{|\epsilon| - \alpha}{|1+\epsilon|} \ge 0$$

this is a contradiction by $|\epsilon| < \alpha$ and however, we have $\left|\frac{(f*h)(z)}{z}\right| \ge \alpha$. If $g(z) = z - \sum_{\alpha}^{\infty} b_n z^n \in N_{\alpha}(f)$, then $\alpha - \left| \frac{(g * h)(z)}{z} \right| \le \left| \frac{((f - g) * h)(z)}{z} \right| \le \sum_{n=0}^{\infty} |a_n - b_n| c_n |z^n|$ $<\sum_{n=0}^{\infty} \frac{\phi^{m}(\lambda,\mu,n)|\rho\beta(n(n-1)) + (\rho-\beta)(n-1) + 1||n(1+k) - u_{n}(k+\gamma)|}{1-\gamma}|a_{n} - b_{n}| \le \alpha$

Corollary 3.1. When $\beta = 0$ in Theorem 3.1, we get the result for the class $k - \mathcal{U}^m(\rho, \lambda, \mu, \gamma, t).$

Corollary 3.2. When $\rho = 1$, $\beta = 0$ in Theorem 3.1, we get the result for the class $k - \tilde{\mathcal{U}}C^m(\lambda, \mu, \gamma, t)$.

Remark 3.1. Using the similar procedure, we can prove the result as in Theorem 3.1 for the class $k \cdot \tilde{\mathcal{U}}^m(\alpha, \lambda, \mu, \gamma, t)$ in which $\alpha = 0$ implies the result for the class $k - \tilde{\mathcal{U}}C^m(\lambda, \mu, \gamma, t)$.

IV. Acknowledgement

The first author thanks for the support given by Science and Engineering Research Board, New Delhi - 110 016, Project No. SR|S4|MS:716/10 with titled "On certain analytic univalent functions and sakaguchi type functions".

References Références Referencias

- [1] Al-Oboudi, F. M. On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 27, 1429-1436, 2004.
- [2] Altintas, O. and Owa, S. Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. and Math. Sci. 19, 797-800, 1996.

2012

- [3] Altinta, O., Ozkan, E. and Srivastava, H. M. Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Let. 13, 63-67, 2000.
- [4] Catas, A. Neighborhoods of a certain class of analytic functions with negative coefficients, Banach J. Math. Anal., 3 (1), No. 1, 111-121, 2009.
- [5] Deniz, E. and Orhan, H. The Fekete Szego problem for a generalized subclass of analytic functions, Kyungpook Math. J. 50, 37-47, 2010.
- [6] Deniz, E. and Orhan, H. Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator, Czechoslovak Math. J., 60 (135), 699-713, 2010.
- [7] Goodman, A. W. Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, 598-601, 1957.
- [8] Goodman, A. W. On uniformly starlike functions, J. Math. Anal. Appl. 155, 364-370, 1991.
- [9] Orhan, H. On neighborhoods of analytic functions defined by using hadamard product, Novi Sad J. Math., 37 (1), 17-25, 2007.
- [10] Owa, S., Sekine, T. and Yamakawa, R. On Sakaguchi type functions, Appl. Math. Comput. 187, 356-361, 2007.
- [11] Raducanu, D. and Orhan, H. Subclasses of analytic functions defined by a generalized differential operator, a Int. Journal of Math. Analysis 4 (1), 1-15, 2010.
- [12] Ruscheweyh, S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (4), 521-527, 1981.
- [13] Sakaguchi, K. On a certain univalent mapping, J. Math. Soc. Japan 11, 72-75, 1959.
- [14] Salagean, G. S. Subclasses of univalent functions, Complex analysis-Proc. 5th Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math. 1013, 362-372, 1983.
- [15] Srivastava, H. M. and Aouf, M. K. A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II, J. Math. Anal. Appl., 171, 1-13, 1992; J. Math. Anal. Appl., 192, 673-688, 1995.
- [16] Srivastava, H. M. and Owa, S. (Eds.), Univalent Functions, Fractional Calculus, and their Applications (Hal- sted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, place State New York, 1989).
- [17] Murat Caglar and Halit Orhan, On Coefficient Estimates and Neighborhood Problem for Generalized Sakaguchi type Functions, arxiv: 1204.4546v1, [math.cv] 20 Apr. 2012.