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k -U m (ρ, β, λ, µ, γ, t

(

Let A denote the family of functions of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

that are analytic in the open unit disk U = {z : |z | < 1} . Denote by S the subclass of A

of functions that are univalent in U .

For f ∈ A given by (1.1) and g(z) given by

g(z) = z +
∞∑
n=2

bnz
n (1.2)

their convolution (or Hadamard product), denoted by (f ∗ g), is defined as

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n = (g ∗ f)(z) (z ∈ U) (1.3)

Note that f ∗ g ∈ A.

A function f ∈ A is said to be in k - U S (γ), the class of k -uniformly starlike functions of
γ, 0 ≤ γ < 1, if satisfies the conditionorder

Notes
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Ref.

Re

{
zf ′(z)

f(z)

}
> k

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣+ γ (k ≥ 0) (1.4)

and a function f ∈ A is said to be in k-UC (γ), the class of k-uniformly
convex functions of order γ, 0 ≤ γ < 1, if satisfies the condition

Re

{
1 +

zf ′′(z)

f ′(z)

}
> k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣+ γ (k ≥ 0) (1.5)

Uniformly starlike and uniformly convex functions were first introduced
by Goodman [8] and then studied by various authors. It is known that

f ∈ k-UC (γ) or f ∈ k-US (γ) if and only if 1+
zf ′′(z)

f ′(z)
or
zf ′(z)

f(z)
, respectively,

takes all the values in the conic domain Rk,γ which is included in the right
half plane given by

Rk,γ = {w = u+ iv ∈ C : u > k
√

(u− 1)2 + v2 + γ, β ≥ 0 and γ ∈ [0, 1)}.
(1.6)

Denote by P (Pk,γ), (β ≥ 0, 0 ≤ γ < 1) the family of functions p, such
that p ∈ P , where P denotes well-known class of caratheodary functions.
The function Pk,γ maps the unit disk conformally onto the domain R k,γ such
that 1 ∈ R k,γ and ∂R k,γ is a curve defined by the equality

∂Rk,γ = {w = u+iv ∈ C : u2 = (k
√

(u− 1)2 + v2+γ)2, β ≥ 0 and γ ∈ [0, 1)}.
(1.7)

where 0 ≤ α < 1, |t| ≤ 1, t 6= 1. Note that SS(0,−1) = Ss and Ss(α,−1) =
Ss(α) is called Sakaguchi function of order α.

Let us define the linear multiplier differential operator Dm
λ,µf [11] which

is shown as follows:

Dm
λ,µf(z) = z +

∞∑
n=2

φm(λ, µ, n)anz
n (1.8)

where

φm(λ, µ, n) = [1 + (λµn + λ− µ)(n− 1)]m, (1.9)

0 ≤ µ ≤ 1 and m ∈ N0 = N ∪ {0}.
It should be remarked that the operator Dm

λ,µ is a generalization of many
other linear operators considered earlier. In particular, for f ∈ A we have
the following:

• Dm
1,0f(z) ≡ Dmf(z) the operator investigated by Salagean (see [14]).

• Dm
λ,0f(z) ≡ Dm

λ f(z) the operator studied by Al-Oboudi (see [1]).

Now, by making use of he differential operator Dm
λ,µ, we define a new subclass

of functions belonging to the class A.

[8]
G
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A
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ly
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On Coefficient Estimates and Neighbourhood Problem for Generalized Sakaguchi Type Functions

Definition 1.1. A function f(z) ∈ A is said to be in the class
k-U m(ρ, β, λ, µ, γ, t) if for all z ∈ U ,

Re


(1− t)[(ρβz3(Dm

λ,µf(z))′′′ + (2ρβ + ρ− β)z2(Dm
λ,µf(z))′′ + z(Dm

λ,µf(z))′{
ρβz2[(Dm

λ,µf(z))′′ − t2(Dm
λ,µf(tz))′′] + (ρ− β)z[(Dm

λ,µf(z))′

−t(Dm
λ,µf(tz))′] + (1− ρ+ β)[Dm

λ,µf(z)−Dm
λ,µf(tz)]

}


≥ k

∣∣∣∣∣∣∣∣∣
(1− t)[(ρβz3(Dm

λ,µf(z))′′′ + (2ρβ + ρ− β)z2(Dm
λ,µf(z))′′ + z(Dm

λ,µf(z))′{
ρβz2[(Dm

λ,µf(z))′′ − t2(Dm
λ,µf(tz))′′] + (ρ− β)z[(Dm

λ,µf(z))′

−t(Dm
λ,µf(tz))′] + (1− ρ+ β)[Dm

λ,µf(z)−Dm
λ,µf(tz)]

} − 1

∣∣∣∣∣∣∣∣∣+ γ

for λ ≥ µ ≥ 0, m, k ≥ 0, |t| ≤ 1, t 6= 1, 0 ≤ β ≤ ρ ≤ 1.

Furthermore, we say that a function f(z) ∈ k-Um(ρ, β, λ, µ, γ, t) is in the
subclass k-Ũm(ρ, β, λ, µ, γ, t) if f(z) is of the following form:

f(z) = z −
∞∑
n=2

anz
n (an ≥ 0, n ∈ N) (1.10)

The aim of this paper is to study the coefficient bounds and certain
neighbourhood results of the class k-Ũm(ρ, β, λ, µ, γ, t).

This subclass was motivated by Murat Cagler and Halit Orhan See [17].

Definition 1.2. A function f(z) ∈ A is said to be in the class
k-Um(ρ, λ, µ, γ, t) if for all z∈ U

Re

{
(1− t)[ρz2(Dm

λ,µf(z))′′ + z(Dm
λ,µf(z))′]

(1− ρ)[Dm
λ,µf(z)−Dm

λ,µf(tz)] + ρz[(Dm
λ,µf(z))′ − t(Dm

λ,µf(tz))′]

}

≥ k

∣∣∣∣∣ (1− t)[ρz2(Dm
λ,µf(z))′′ + z(Dm

λ,µf(z))′]

(1− ρ)[Dm
λ,µf(z)−Dm

λ,µf(tz)] + ρz[(Dm
λ,µf(z))′ − t(Dm

λ,µf(tz))′]
− 1

∣∣∣∣∣+ γ

for λ ≥ µ ≥ 0, m, k ≥ 0, |t| ≤ 1, t 6= 1, 0 ≤ ρ ≤ 1.

Remark 1.1. When β = 0 in the class k-Um(ρ, β, λ, µ, γ, t), we get the class
k-Um(ρ, λ, µ, γ, t) as in Definition 1.2.

Definition 1.3. A function f(z) ∈ A is said to be in the class
k-UCm(λ, µ, γ, t) if for all z ∈ U ,

Re

{
(1− t)[z2(Dm

λ,µf(z))′′ + z(Dm
λ,µf(z))′]

z[(Dm
λ,µf(z))′ − t(Dm

λ,µf(tz))′]

}

≥ k

∣∣∣∣∣(1− t)[z2(Dm
λ,µf(z))′′ + z(Dm

λ,µf(z))′]

z[(Dm
λ,µf(z))′ − t(Dm

λ,µf(tz))′]
− 1

∣∣∣∣∣+ γ

[1
7]
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for λ ≥ µ ≥ 0, m, k ≥ 0, |t| ≤ 1, t 6= 1.

Definition 1.4. A function f(z) ∈ A is said to be in the class
k-Um(α, λ, µ, γ, t) if for all z ∈ U,

Re

{
(1− t)[αz3(Dm

λ,µf(z))′′′ + (1 + 2α)z2(Dm
λ,µf(z))′′ + z(Dm

λ,µf(z))′]

αz2[(Dm
λ,µf(z))′′ − t2(Dm

λ,µf(tz))′′] + z[(Dm
λ,µf(z))′ − t(Dm

λ,µf(tz))′]

}

≥ k

∣∣∣∣∣ (1− t)[αz3(Dm
λ,µf(z))′′′ + (1 + 2α)z2(Dm

λ,µf(z))′′ + z(Dm
λ,µf(z))′]

αz2[(Dm
λ,µf(z))′′ − t2(Dm

λ,µf(tz))′′] + z[(Dm
λ,µf(z))′ − t(Dm

λ,µf(tz))′]
− 1

∣∣∣∣∣+ γ

for λ ≥ µ ≥ 0, m, k ≥ 0, |t| ≤ 1, t 6= 1, 0 ≤ α ≤ 1.

Remark 1.2. When ρ = 1 in the class k-Um(ρ, λ, µ, γ, t) and when α = 0 in
the class k-Um(α, λ, µ, γ, t), we get the class k-UCm(λ, µ, γ, t) as in Definition
1.3.

k - Ũm( ρ, β, λ, µ, γ, t )

Firstly, we, shall need the following lemmas.

Lemma 2.1. Let w = u+ iv. Then

Re w ≥ α if and only if |w − (1 + α)| ≤ |w + (1− α)|.

Lemma 2.2. Let w = u+ iv and α, γ are real numbers. Then

Re w > α|w − 1|+ γ if and only if Re{w(1 + αeiθ)− αeiθ} > γ.

Theorem 2.1. The function f(z) defined by (1.10) is in the class
k-Ũm(ρ, β, λ, µ, γ, t) if and only if

Σφm(λ, µ, n)|n(k+ 1)−un(k+γ)||n(n−1)ρβ+ (ρ−β)(n−1) + 1|an ≤ 1−γ,
(2.1)

where λ ≥ µ ≥ 0, m, k ≥ 0, |t| ≤ 1, t 6= 1, 0 ≤ γ < 1, 0 ≤ β ≤ ρ ≤ 1,
un = 1 + t+ · · ·+ tn−1. The result is sharp for the function f(z) given by

f(z) = z−
∞∑
n=2

1− γ
φm(λ, µ, n)|n(k + 1)− un(k + γ)||n(n− 1)ρβ + (ρ− β)(n− 1) + 1|

zn

Proof. By Definition 1.1 and by Lemma 2.2, we have,

Re


(1− t)[ρβz3(Dm

λ,µf(z))′′′ + (2ρβ + ρ− β)z2(Dm
λ,µf(z))′′ + z(Dm

λ,µf(z))′](1 + keiθ){
ρβz2[(Dm

λ,µf(z))′′ − t2(Dm
λ,µf(tz))′′] + (ρ− β)z[(Dm

λ,µf(z))′ − t(Dm
λ,µf(tz))′]

+(1− ρ+ β)[Dm
λ,µf(z)−Dm

λ,µf(tz)]
} − keiθ

 ≥ γ,

Notes
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On Coefficient Estimates and Neighbourhood Problem for Generalized Sakaguchi Type Functions

where −π < θ < π, or equivalently

Re

{
F (z)

E(z)

}
≥ γ (2.2)

where

F (z) = (1− t)[ρβz3(Dm
λ,µf(z))′′′ + (2ρβ + ρ− β)z2(Dm

λ,µf(z))′′

+ z(Dm
λ,µf(z))′](1 + keiθ)− keiθ{ρβz2[(Dm

λ,µf(z))′′ − t2(Dm
λ,µf(tz))′′]

+ (ρ− β)z[(Dm
λ,µf(z))′ − t(Dm

λ,µf(tz))′] + (1− ρ+ β)[Dm
λ,µf(z)−Dm

λ,µf(tz)]}

and

E(z) = ρβz2[(Dm
λ,µf(z))′′ − t2(Dm

λ,µf(tz))′′] + (ρ− β)z[(Dm
λ,µf(z))′

− t(Dm
λ,µf(tz))′] + (1− ρ+ β)[Dm

λ,µf(z)−Dm
λ,µf(tz)] (2.3)

By Lemma 2.1, (2.2) is equivalent to

|F (z) + (1− γ)E(z)| ≥ |F (z)− (1 + γ)E(z)| for 0 ≤ γ < 1

But

|F (z) + (1− γ)E(z)|

≥ |1− t|

 (2− γ)|z|
−Σφm(λ, µ, n)|n(n− 1)ρβ + (ρ− β)(n− 1) + 1||n+ un(1− γ)|an|z|n
−kΣφm|n(n− 1)ρβ + (ρ− β)(n− 1) + 1||n− un|an|z|n


Also,

|F (z)− (1 + γ)E(z)|

≤ |1− t|

 γ|z|
+Σφm(λ, µ, n)|n(n− 1)ρβ + (ρ− β)(n− 1) + 1||n− un(1 + γ)|an|z|n
+kΣφm(λ, µ, n)|n(n− 1)ρβ + (ρ− β)(n− 1) + 1||n− un|an|z|n


and so

|F (z) + (1− γ)E(z)| − |F (z)− (1 + γ)E(z)|

≥


2(1− γ)|z|

−
∞∑
n=2

2φm(λ, µ, n)|n(k + 1)− un(k + γ)||n(n− 1)ρβ + (ρ− β)(n− 1) + 1|an|z|n


≥ 0

or

Σφm(λ, µ, n)|n(k+1)−un(k+γ)||n(n−1)ρβ+(ρ−β)(n−1)+1|an ≤ (1−γ)

Conversely, suppose that (2.1) holds, then we must show that (2.2) is true
upon choosing the values of z on the positive real axis where 0 ≤ z = r < 1,
the above inequality reduces to

Re

{
(1− γ)− Σφm(λ, µ, n)[n(n− 1)ρβ + (ρ− β)(n− 1) + 1][n(k + 1)− un(k + γ)]anz

n−1

1− Σφm(λ, µ, n)[n(n− 1)ρβ + (ρ− β)(n− 1) + 1]unanzn−1

}
≥ 0

Since Re(−eiθ) ≥ −|eiθ| = −1, the above inequality reduces to

Re

{
(1− γ)−

∑∞
n=2 φ

m(λ, µ, n)[n(n− 1)ρβ + (ρ− β)(n− 1) + 1][n(k + 1)− un(k + γ)]anr
n−1

1− Σφm(λ, µ, n)[n(n− 1)ρβ + (ρ− β)(n− 1) + 1]unanrn−1

}
≥ 0

Notes
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Ref.

Letting r → 1−, we have desired concluison.

Corollary 2.1. Let β = 0 in (2.1) then we have the result for the class
defined in Definition 1.2 as∑

φm(λ, µ, n)|n(k + 1)− un(k + γ)||ρ(n− 1) + 1|an ≤ (1− γ)

where λ ≥ µ ≥ 0, m, k ≥ 0, |t| ≤ 1, t 6= 1, 0 ≤ γ < 1, 0 ≤ ρ ≤ 1,

un = 1 + t+ · · ·+ tn−1.

Corollary 2.2. Let ρ = 1, β = 0 in (2.1) then we have the result for the
class defined in Definition 1.3 as∑

φm(λ, µ, n)|n(k + 1)− un(k + γ)|nan ≤ (1− γ)

where λ ≥ µ ≥ 0, m, k ≥ 0, |t| ≤ 1, t 6= 1, 0 ≤ γ < 1, un = 1 + t+ · · ·+ tn−1.

Theorem 2.2. The funciton f(z) defined by (1.10) is in the class
k-Ũm(α, λ, µ, γ, t) if and only if∑

φm(λ, µ, n)|n(k + 1)− un(k + γ)||α(n− 1) + 1|an ≤ 1− γ

where λ ≥ µ ≥ 0, m, k ≥ 0, |t| ≤ 1, t 6= 1, 0 ≤ γ < 1, 0 ≤ α ≤ 1,

un = 1 + t+ · · ·+ tn−1.

The result is sharp for the function f(z) given by

f(z) = z −
∞∑
n=2

1− γ
φm(λ, µ, n)|n(k + 1)− un(k + γ)||α(n− 1) + 1|

zn

Proof. The same procedure is followed as in Theorem 2.1 to prove this result.

Corollary 2.3. Take α = 0, then we get the result as in Corollary 2.2.

k -Um ( ρ, β, λ, µ, γ, t)

Following the earlier investigations (based upon the familiar concept of
neighbourhoods of analytic functions) by Goodman [7], Ruscheweyh [12],
Altintas et al. ([2, 3]) and others including Srivastava et al. ([15, 16]), Orhan
([9]), Deniz et al. [6], Catas [4].

Definition 3.1. Let λ ≥ µ ≥ 0, m, k ≥ 0, |t| ≤ 1, t 6= 1, 0 ≤ γ < 1, α ≥ 0,

un = 1 + t + · · · + tn−1 we define the α-neighbourhood of a function f ∈ A

and denote by Nα(f) consisting of all functions g(z) = z −
∞∑
n=2

bnz
n ∈ S

(bn ≥ 0, n ∈ N) satisfying∑ φm(λ, µ, n)|n(k + 1)− un(k + γ)||n(n− 1)ρβ + (ρ− β)(n− 1) + 1|
1− γ

|an−bn| ≤ α

[6]
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On Coefficient Estimates and Neighbourhood Problem for Generalized Sakaguchi Type Functions

Theorem 3.1. Let f ∈ k-Ũm(ρ, β, λ, µ, γ, t) and for all real θ, we have

γ(eiθ − 1) − 2eiθ 6= 0. For any complex number ε with |ε| < α (α ≥ 0), if f
satisfies the following condition:

f(z) + εz

1 + ε
∈ k − Ũ m(ρ, β, λ, µ, γ, t),

then Nα(f) ⊂ k-Ũm(ρ, β, λ, µ, γ, t).

Proof. It is obvious that f ∈ k-Ũm(ρ, β, λ, µ, γ, t) if and only if∣∣∣∣u(z)(1 + keiθ)− (keiθ + 1 + γ)v(z)

u(z)(1 + keiθ) + (1− keiθ − γ)v(z)

∣∣∣∣ < 1 (−π < θ < π)

where

u(z) = (1− t)[ρβz3(Dm
λ,µf(z))′′′ + (2ρβ + ρ− β)z2(Dm

λ,µf(z))′′ + z(Dm
λ,µf(z))′]

v(z) = ρβz2[(Dm
λ,µf(z))′′ − t2(Dm

λ,µf(tz))′′] + (ρ− β)z[(Dm
λ,µf(z))′ − t(Dm

λ,µf(tz))′]

+ (1− ρ+ β)[Dm
λ,µf(z)−Dm

λ,µf(tz)]

for any complex number S with |S| = 1, we have

u(z)(1 + keiθ)− (keiθ + 1 + γ)v(z)

u(z)(1 + keiθ) + (1− keiθ − γ)v(z)
6= S

In other words, we must have

(1− S)u(z)(1 + keiθ)− (keiθ + 1 + γ − S(keiθ − 1 + γ))v(z) 6= 0

which is equivalent to

z −

{
Σφm(λ, µ, n)(ρβ(n(n− 1)) + (ρ− β)(n− 1) + 1)

×((n− un)(1 + keiθ − Skeiθ)− S(n+ un)− unγ(1− S))
}

γ(S − 1)− 2S
anz

n 6= 0

However, f ∈ k-Ũm(ρ, β, λ, µ, γ, t) if and only if
(f ∗ h)(z)

z
6= 0, z ∈ U − { 0}

where h(z) = z −
∞∑
n=2

cnz
n and

cn =

{∑
φm(λ, µ, n)(ρβ(n(n− 1)) + (ρ− β)(n− 1) + 1)

×((n− un)(1 + keiθ − Skeiθ)− S(n+ un)− unγ(1− S))
}

γ(S − 1)− 2S

we note that

|cn| ≤
∑
φm(λ, µ, n)|ρβ(n(n− 1)) + (ρ− β)(n− 1) + 1||n(1 + k)− un(k + γ)|

1− γ

Notes
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Since
f(z) + εz

1 + ε
∈ k-Ũm(ρ, β, λ, µ, γ, t), therefore

z−1
(
f(z) + εz

1 + ε
∗ h(z)

)
6= 0 which is equivalent to

(f ∗ h)(z)

(1 + ε)z
+

ε

1 + ε
6= 0 (3.1)

Now suppose that

∣∣∣∣(f ∗ h)(z)

z

∣∣∣∣ < α. Then by (3.1), we must have

∣∣∣∣(f ∗ h)(z)

(1 + ε)z
+

ε

1 + ε

∣∣∣∣ ≥ |ε|
|1 + ε|

− 1

|1 + ε|

∣∣∣∣(f ∗ h)(z)

z

∣∣∣∣ > |ε| − α|1 + ε|
≥ 0

this is a contradiction by |ε| < α and however, we have

∣∣∣∣(f ∗ h)(z)

z

∣∣∣∣ ≥ α. If

g(z) = z −
∞∑
n=2

bnz
n ∈ Nα(f), then

α−
∣∣∣∣ (g ∗ h)(z)

z

∣∣∣∣ ≤ ∣∣∣∣ ((f − g) ∗ h)(z)

z

∣∣∣∣ ≤ ∞∑
n=2

|an − bn|cn|zn|

<
∞∑
n=2

φm(λ, µ, n)|ρβ(n(n− 1)) + (ρ− β)(n− 1) + 1||n(1 + k)− un(k + γ)|
1− γ

|an − bn| ≤ α

Corollary 3.1. When β = 0 in Theorem 3.1, we get the result for the class
k-Ũm(ρ, λ, µ, γ, t).

Corollary 3.2. When ρ = 1, β = 0 in Theorem 3.1, we get the result for
the class k-ŨCm(λ, µ, γ, t).

Remark 3.1. Using the similar procedure, we can prove the result as in
Theorem 3.1 for the class k-Ũm(α, λ, µ, γ, t) in which α = 0 implies the result
for the class k-ŨCm(λ, µ, γ, t).

The first author thanks for the support given by Science and Engineering
Research Board, New Delhi - 110 016, Project No. SR|S4|MS : 716/10 with
titled “On certain analytic univalent functions and sakaguchi type functions”.
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