

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS AND DECISION SCIENCES Volume 12 Issue 9 Version 1.0 Year 2012 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Generalized I-convergent Difference Sequence Spaces defined by a Moduli Sequence

By M. Aiyub

University of Bahrain, Kingdom of Bahrain

Abstract - In this article we introduce the sequence space $c_0^I(F, \Delta^n)$ and $\ell_{\infty}^I(F, \Delta^n)$ for the sequence of F = (fk) and given some inclusion relations.

Keywords : Ideal, filter, sequence of moduli, difference sequence space, I-convergent sequence space.

AMS subject classication (2000) : 40C05, 46A45

GENERALIZED I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULI SEQUENCE

Strictly as per the compliance and regulations of :

© 2012. M. Aiyub. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $R_{\rm ef.}$

10. H.Kizmaz, on certain sequence spaces, Canadian Math.Bull.,24(1981), 169-176.

Generalized I-convergent Difference Sequence Spaces Defined by a Moduli Sequence

M. Aiyub

Abstract - In this article we introduce the sequence space $c_0^I(F, \Delta^n)$ and $\ell_{\infty}^I(F, \Delta^n)$ for the sequence of F = (fk) and given some inclusion relations.

Keywords and phrases : Ideal, filter, sequence of moduli, difference sequence space, I-convergent sequence space

I. INTRODUCTION AND PRELIMINARIES

Let $\omega, \ell_{\infty}, c_0$ be the set of all sequences of complex numbers, the linear spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by

$$||x||_{\infty} = \sup_{k} |x_k|,$$
where $K \in \mathbb{N} = 1, 2, 3....$

The idea of difference sequence spaces was introduced by H. Kizmaz [10]. In 1981, Kizmaz defined the sequence spaces as follow;

$$\ell_{\infty}(\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in \ell_{\infty}\},\$$
$$c(\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in c\},\$$
$$c_0(\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in c_0\},\$$

where

 $\Delta x = (x_k - x_{k+1}) \text{ and } \Delta^0 x = (x_k),$

These are Banach space with the norm

$$\|x\|_{\Delta} = |x_1| + \|\Delta x\|_{\infty}$$

Later Colak and Et [2] defined the sequence spaces:

$$\ell_{\infty}(\Delta^n) = \{ x = (x_k) \in \omega : (\Delta^n x_k) \in \ell_{\infty} \},\$$
$$c(\Delta^n) = \{ x = (x_k) \in \omega : (\Delta^n x_k) \in c \}.$$

Author : Department of Mathematics, University of Bahrain, P.O. Box-32038, Kingdom of Bahrain. E-mail : maiyub2002@yahoo.com

$$c_0(\Delta^n) = \{ x = (x_k) \in \omega : (\Delta^n x_k) \in c_0 \},\$$

where $n \in \mathbf{N}$, $\Delta^0 x = (x_k)$, $\Delta x = (x_k - x_{k+1})$, $\Delta^n x = (\Delta^n x_k) = (\Delta^{n-1} x_k - \Delta^{n-1} x_{k+1})$ and so that

$$\Delta^n x_k = \sum_{v=0}^n (-1)^v \begin{bmatrix} n \\ v \end{bmatrix} x_{k+v},$$

and so that these are Banach space with the norm

$$||x||_{\Delta} = \sum_{i=1}^{n} |x_i| + ||\Delta^n x||_{\infty}$$

The idea of modulus was defined by Nakano [15] in 1953. A function $f : [0, \infty) \to [0, \infty)$ is called a modulus if

- (i) f(t) = 0 if and only if t = 0,
- (*ii*) $f(t+u) \le f(t) + f(u)$, for all $t, u \ge 0$,
- (iii) f is increasing and
- (iv) f is continuous from the right at 0.

Let X be a sequence spaces. Then the sequence spaces X(f) is defined as

$$X(f) = \{x = (x_k) : (f(|x_k|)) \in X\}$$

for a modulus f. Maddox and Ruckle[14,16]

Kolak[11,12] gave an extension of X(f) by considering a sequence of moduli $F = (f_k)$, that is

$$X(F) = \{x = (x_k) : (f_k(|x_k|)) \in X\}$$

After then Gaur and Mursaleen[9] defined the following sequence spaces

$$\ell_{\infty}(F, \Delta) = \{ x = (x_k) : (\Delta x_k) \in \ell_{\infty}(F) \},\$$

$$c_0(F, \Delta) = \{ x = (x_k) : (\Delta x_k) \in c_0(F) \},\$$

for a sequence of moduli $F = (f_k)$.

we defined the following sequence spaces:

$$\ell_{\infty}(F, \Delta^{n}) = \{ x = (x_{k}) : (\Delta^{n} x_{k}) \in \ell_{\infty}(F) \},\$$
$$c_{0}(F, \Delta^{n}) = \{ x = (x_{k}) : (\Delta^{n} x_{k}) \in c_{0}(F) \},\$$

for a sequence of moduli $F = (f_k)$. We will give the necessary and sufficient conditions for the inclusion relations between $X(\Delta^n)$ and $Y(F, \Delta^n)$, where $X, Y = \ell_{\infty}$ or c_0 . Sequence of moduli have been studied by C.A.Bektas and R. Colak[1] and many other authours.

The notion of statical convergence was introduced by H.Fast[6]. Later on it was studied by J.A.Fridy [7,8] from the sequence space point view and linked with the summability theory.

The notion of I-convergence is a generalization of the statical convergence. It was studied at initial stage by Kostyrko, Salat and Wilezynski [13]. Later on it was studied by Salat [19], Salat, Tripathy and Ziman [20], Demric[3] 15. H.Nakano, Concave modulars, J.Math Soc. Japan., 5(1953),29-49

Let \mathbb{N} be a non empty set. Then a family of sets $I \subseteq 2^N$ (power set of \mathbb{N}) is said to be an ideal if I is additive i.e $(A, B) \in I \Rightarrow (A \cup B) \in I$ and i.e $A \in I, B \subseteq A \Rightarrow B \in I$. A non empty family of sets $\mathcal{L}(I) \subseteq 2^N$ is said to be filter on N if and only if $\Phi \notin \mathcal{L}(I)$ for $A, B \in \mathcal{L}(I)$ we have $(A \cap B) \in \mathcal{L}(I)$ and for each $A \in \mathcal{L}(I)$ and $A \subseteq B$ implies $B \in \mathcal{L}(I)$.

An ideal $I \subseteq 2^N$ is called non trivial if $I \neq 2^N$. A non trivial ideal $I \subseteq 2^N$ is called admissible if $\{(x) : x \in \mathbb{N}\} \subseteq I$. A non trivial ideal is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset. For each ideal I, there exist a filter $\pounds(I)$ corresponding to I, i.e $\pounds(I) = \{K \subseteq \mathbb{N} : K^c \in I\}$, where $K^c = N - K$.

Definition 1.1. A sequence $(x_k) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon > 0$. $\{k \in \mathbb{N} : |x_k - L| \ge \epsilon\} \in I$. In this case we write $I - \lim x_k = L$.

Definition 1.2. A sequence $(x_k) \in \omega$ is said to be I-null if L=0. In this case we write $I - \lim x_k = 0$.

Definition 1.3. A sequence $(x_k) \in \omega$ is said to be I-cauchy if for every $\epsilon > 0$, there exist a number $m = m(\epsilon)$ such that $\{k \in \mathbb{N} : |x_k - x_m| \ge \epsilon\} \in I$.

Definition 1.4. A sequence $(x_k) \in \omega$ is said to be I-bounded if there exist M > 0 such that $\{K \in \mathbb{N} : |x_k| \ge M\}$.

We need the following Lemmas.

Lemma 1.5. The condition $\sup_k f_k(t) < \infty, t > 0$ hold if and only if there is a point $t_0 > 0$ such that $\sup_k f_k(t_0) < \infty$ (see [1,9]).

Lemma 1.6. The condition $\inf_k f_k(t) > 0$ hold if and only if there exist is a point $t_0 > 0$ such that $\inf_k f_k(t_0) > 0$ (see [1,9]).

Lemma 1.7. Let $K \in \pounds(I)$ and $M \subseteq N$. If $M \neq I$ then $M \cap K \neq I$ (see [20]).

Lemma 1.8. If $I \subseteq 2^N$ and $M \subseteq N$. If $M \neq I$ then $M \cap K \neq I$ (see [13]).

II. MAIN RESULTS

In this article we introduce the following classes of sequence spaces.

$$c_0^I(F,\Delta^n) = \{(x_k) \in \omega : I - \lim f_k(|\Delta^n x_k|) = 0\} \in I,$$
$$\ell_\infty^I(F,\Delta^n) = \{(x_k) \in \omega : I - \sup_k f_k(|\Delta^n x_k|) < \infty\} \in I$$

Theorem 2.1. For a sequence $F = f_k$ of moduli, the following statements are equivalent:

- (a) $\ell^I_{\infty}(\Delta^n) \subseteq \ell^I_{\infty}(F,\Delta^n),$
- (b) $c_0^I(\Delta^n) \subseteq c_0^I(F, \Delta^n),$
- (c) $\sup_k f_k(t) < \infty, (t > 0).$

Proof. (a) implies (b) is obvious .

(b) implies (c). Let $c_0^I(\Delta^n) \subseteq c_0^I(F, \Delta^n)$. Suppose that (c) is not true. Then by Lemma (1.5)

$$\sup_{k} f_k(t) = \infty, \text{ for all } t > 0,$$

C.A.Bektas, R.Colak, Generalized difference sequence spaces defined by a sequence

of moduli, Soochow. J.Math., 29(2)(2003), 215-220 164

Year 2012

and therefore there is a sequence (k_i) of positive integers such that

$$f_{k_i}(\frac{1}{i}) > i$$
, for each $i = 1, 2, 3.....$ (1)

Define $x = (x_k)$ as follow

$$x_k = \begin{cases} \frac{1}{i} & \text{if } k = k_i, i = 1, 2, 3....; \\ 0 & \text{otherwise.} \end{cases}$$

Then $x \in c_0^I(\Delta^n)$ but by (1), $x \notin \ell_{\infty}^I(F, \Delta^n)$ which contradicts (b). Hence (c) must hold. (c) implies (a). Let (c) be satisfied and $x \in \ell_{\infty}^I(F, \Delta^n)$. If we suppose that $x \notin \ell_{\infty}^I(F, \Delta^n)$ then

$$\sup_{k} f_k(|\Delta^n x_k|) = \infty \text{ for } \Delta^n x \in \ell^I_{\infty}$$

If we take $t = |\Delta^n x|$ then $\sup_k f_k(t) = \infty$ which contradicts (c). Hence $\ell_{\infty}^{I}(\Delta^{n}) \subseteq \ell_{\infty}^{I}(F,\Delta^{n}).$

Theorem 2.2. For a sequence $F = f_k$ is a sequence of moduli, the following statements are equivalent:

- (a) $c_0^I(F,\Delta^n) \subseteq c_0^I(\Delta^n),$
- (b) $c_0^I(F,\Delta^n) \subseteq \ell_\infty^I(\Delta^n),$
- (c) $\inf_k f_k(t) > 0, (t > 0).$

Proof. (a) implies (b) is obvious.

(b) implies (c). Let $c_0^I(F, \Delta^n) \subseteq \ell_\infty^I(\Delta^n)$. Suppose that (c) is not true. Then by Lemma (1.6)

$$\inf_{k} f_k(t) = 0, \ (t > 0)$$

and therefore there is a sequence (k_i) of positive integers such that

$$f_{k_i}(i^2) < \frac{1}{i}$$
 for each $i = 1, 2, 3.....$ (2)

Define $x = (x_k)$ as follow

$$x_{k} = \begin{cases} i^{2}, \text{ if } k = k_{i} & i = 1, 2, 3....; \\ 0 & \text{otherwise.} \end{cases}$$

By (2) $x \in c_0^I(F, \Delta^n)$ but $x \notin \ell_\infty^I(\Delta^n)$ which contradicts (b). Hence (c) must hold. (c) implies (a). Let (c) be satisfied and $x \in c_0^I(F, \Delta^n)$ that is

$$I - \lim_{h \to \infty} f_k(|\Delta^n x_k|) = 0.$$

Suppose that $x \notin c_0^I(\Delta^n)$. Then for some number $\epsilon_0 > 0$ and positive integer k_0 we have $|\Delta^n x_k| \leq \epsilon_0$ for $k > k_0$. Therefore $f_k(\epsilon_0) \geq f_k(|\Delta^n x_k|)$ for $k > k_0$ and hence $\lim_{k \to \infty} f_k(\epsilon_0) > 0$, which contradicts our assumption that $x \notin c_0^I(\Delta^n)$.

Thus $c_0^I(F, \Delta^n) \subseteq c_0^I(\Delta^n)$.

Theorem 2.3. The inclusion $\ell^I_{\infty}(F, \Delta^n) \subseteq c^I_0(\Delta^n)$ holds if and only if

$$\lim_{k} f_k(t) = \infty \quad \text{for} \quad t > 0. \tag{3}$$

Notes

Proof. Let $\ell_{\infty}^{I}(F, \Delta^{n}) \subseteq c_{0}^{I}(\Delta^{n})$ such that $\lim_{k} f_{k}(t) = \infty$ for t > 0 doesn't hold. Then there is a number $t_{0} > 0$ and a sequence (k_{i}) of positive integer such that

$$f_{k_i}(t_0) \le M < \infty. \tag{4}$$

define the sequence $x = (x_k)$ by

$$x_{k} = \begin{cases} t_{0}, \text{ if } k = k_{i} \ i = 1, 2, 3....; \\ 0 \text{ otherwise.} \end{cases}$$

Thus $x \in \ell_{\infty}^{I}(F, \Delta^{n})$ by (4). But $x \notin c_{0}^{I}(\Delta^{n})$, so that (3) must hold. If $\ell_{\infty}^{I}(F, \Delta^{n}) \subseteq c_{0}^{I}(\Delta^{n})$. Conversely, let (3) hold. If $x \in \ell_{\infty}^{I}(F, \Delta^{n})$, then $f_{k}(|\Delta^{n}x_{k}|) \leq M < \infty$, for k = 1, 2, 3......Suppose that $x \notin c_{0}^{I}(\Delta^{n})$. Then for some number $\epsilon_{0} > 0$ and positive integer k_{0} we have $|\Delta^{n}x_{k}| < \epsilon_{0}$ for $k \geq k_{0}$. Therefore $f_{k}(\epsilon_{0}) \geq f_{k}(|\Delta^{n}x_{k}|) \leq M$ for $k \geq k_{0}$, which contradicts(3). Hence $x \in c_{0}^{I}(\Delta^{n})$.

Theorem 2.4. The inclusion $\ell_{\infty}^{I}(\Delta^{n}) \subseteq c_{0}^{I}(F, \Delta^{n})$ holds if and only if

$$\lim_{k \to 0} f_k(t) = 0, \text{ for } t > 0.$$
(5)

Proof. Suppose that $\ell^I_{\infty}(\Delta^n) \subseteq c^I_0(F,\Delta^n)$ but (5) doesn't hold,

Then

$$\lim_{k} f_k(t_0) = l \neq 0, \quad \text{for some } t_0 > 0 \tag{6}.$$

Define the sequence $x = (x_k)$ by

$$x_{k} = t_{0} \sum_{v=0}^{k-n} (-1)^{n} \begin{bmatrix} n+k-v-1\\ k-v \end{bmatrix}$$

for $k = 1, 2, 3, \dots$ Then $x \notin c_0^I(F, \Delta^n)$ by (6). Hence (5) must hold.

conversely, let $x \in \ell_{\infty}^{I}(\Delta^{n})$ and suppose that (5) holds. Then $|\Delta^{n}x_{k}| \leq M < \infty$ for K = 1, 2, 3... There for $f_{k}(|\Delta^{n}x_{k}|) \leq f_{k}(M)$ for k = 1, 2, 3... and $\lim_{k} f_{k}(|\Delta^{n}x_{k}|) \leq \lim_{k} f_{k}(M) = 0$ by (5). Hence $x \in c_{0}^{I}(F, \Delta^{n})$

References Références Referencias

- 1. C.A.Bektas, R.Colak, Generalized difference sequence spaces defined by a sequence of moduli, Soochow. J.Math., 29(2)(2003), 215-220 164.
- 2. R.Colak and M.ve Et, on some generalized difference sequence spaces and related matrix transformations, Hokkaido Math.J.,26(3)(1997),483-492.
- 3. K.Demerici, I-limit superior and limit inferior, Math.Commun., 6(2001),165-172.
- 4. K.Dems, On I-Cauchy sequences, Real Analysis Exchange., 30(2005), 123-128.
- 5. A.Esi and M.Isik, Some generalized difference sequence spaces, Thai J.Math.,3(2)(2005),241-247.
- 6. H.Fast, Sur Ia convergence statistique, Colloq.Math., 2(1951), 241-244.
- 7. J.A.Fridy, On statical convergence, Analysis., 5(1985),301-313.
- 8. J.A.Fridy, Statistical limit points, Proc. Amer.Math.Soc., 11(1993), 1187-1192.
- 9. A.K. Gaur and M.Mursaleen, Di'erence sequence spaces defined by a sequence of moduli, Demonstratio Math., 31(1998), 275-278.

Year 2012

37

- 10. H.Kizmaz, on certain sequence spaces, Canadian Math.Bull.,24(1981), 169-176.
- 11. E.Kolak, On strong boundedness and summability with respect to a sequence of moduli, Acta Comment.Univ.Tartu.,960(1993),41-50.
- 12. E.Kolak, Inclusion theorems for some sequence spaces defined by a sequence of modulii, Acta Comment.Univ. Tartu., 970(1994), 65-72.
- P.kostyrko.T.Salat and W.Wilczynski, I-Convergence, Real Analysis Exchange., 26 (2)(2000), 669-686.
- 14. I.J.Maddox, Sequence spaces defined by a modulus, Math.Camb.Phil.Soc., 100(1986),161-166.
- 15. H.Nakano, Concave modulars, J.Math Soc. Japan., 5(1953),29-49.
- 16. W.H.Ruckle, On perfect Symmetric BK-spaces, Math.Ann., 175(1968), 121-126.
- 17. W.H.Ruckle, Symmetric coordinate space and symmetric bases, Canad, J.Math., 19(1967), 828-838.
- 18. W.H.Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded. Canad.J.Math.,25(5)(1973),973-975.
- 19. T.salat, On statitical convergent sequences of real numbers, Math. Solvaca., 30(1980), 139-150.
- 20. T.salat, B.C.Tripathy and M.Ziman, On some properties of I-convergence, Tatra Mt. Math.Publ., 28(2004),279-286.