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Ref.

cI0(F,∆n) `I∞(F,∆nAbstract - In this article we introduce the sequence space                  and                   for the sequence of F = (fk) and 

given some inclusion relations.

Let ω, `∞, c0 be the set of all sequences of complex numbers, the linear spaces of bounded, conver-
gent and null sequences x = (xk) with complex terms, respectively, normed by

‖x‖∞ = sup
k
|xk|,whereK ∈ N = 1, 2, 3......

The idea of difference sequence spaces was introduced by H. Kizmaz [10]. In 1981 , Kizmaz defined
the sequence spaces as follow;

`∞(∆) = {x = (xk) ∈ ω : (∆xk) ∈ `∞},

c(∆) = {x = (xk) ∈ ω : (∆xk) ∈ c},

c0(∆) = {x = (xk) ∈ ω : (∆xk) ∈ c0},

where

∆x = (xk − xk+1) and ∆0x = (xk),

These are Banach space with the norm

‖x‖∆ = |x1|+ ‖∆x‖∞.

Later Colak and Et [2] defined the sequence spaces:

`∞(∆n) = {x = (xk) ∈ ω : (∆nxk) ∈ `∞},

c(∆n) = {x = (xk) ∈ ω : (∆nxk) ∈ c},
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c0(∆n) = {x = (xk) ∈ ω : (∆nxk) ∈ c0},

where n ∈ N,∆0x = (xk),∆x = (xk − xk+1), ∆nx = (∆nxk) = (∆n−1xk −∆n−1xk+1)
and so that

∆nxk =
n∑

v=0

(−1)v
[
n
v

]
xk+v,

and so that these are Banach space with the norm

‖x‖∆ =
n∑

i=1

|xi|+ ‖∆nx‖∞.

The idea of modulus was defined by Nakano [15] in 1953. A function f : [0,∞) → [0,∞) is
called a modulus if

(i) f(t) = 0 if and only if t = 0,

(ii) f(t+ u) ≤ f(t) + f(u), for all t, u ≥ 0,

(iii) f is increasing and

(iv) f is continuous from the right at 0.

Let X be a sequence spaces.Then the sequence spaces X(f) is defined as

X(f) = {x = (xk) : (f(|xk|)) ∈ X}

for a modulus f. Maddox and Ruckle[14,16]

Kolak[11,12] gave an extension of X(f) by considering a sequence of moduli F = (fk),that is

X(F ) = {x = (xk) : (fk(|xk|)) ∈ X}.

After then Gaur and Mursaleen[9] defined the following sequence spaces

`∞(F,∆) = {x = (xk) : (∆xk) ∈ `∞(F )},

c0(F,∆) = {x = (xk) : (∆xk) ∈ c0(F )},

for a sequence of moduli F = (fk).

we defined the following sequence spaces:

`∞(F,∆n) = {x = (xk) : (∆nxk) ∈ `∞(F )},

c0(F,∆n) = {x = (xk) : (∆nxk) ∈ c0(F )},

for a sequence of moduli F = (fk). We will give the necessary and sufficient conditions for the
inclusion relations between X(∆n) and Y (F,∆n), where X,Y = `∞ or c0. Sequence of moduli
have been studied by C.A.Bektas and R. Colak[1] and many other authours.

Ref.

The notion of statical convergence was introduced by H.Fast[6]. Later on it was studied by
J.A.Fridy [7,8] from the sequence space point view and linked with the summability theory.

The notion of I-convergence is a generalization of the statical convergence. It was studied at
initial stage by Kostyrko, Salat and Wilezynski [13]. Later on it was studied by Salat [19],Salat,
Tripathy and Ziman [20], Demric[3]
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II. Main Results

Ref.

Let N be a non empty set. Then a family of sets I ⊆ 2N (power set of N) is said to be an
ideal if I is additive i.e (A,B) ∈ I ⇒ (A ∪ B) ∈ I and i.e A ∈ I,B ⊆ A ⇒ B ∈ I. A non empty
family of sets £(I) ⊆ 2N is said to be filter on N if and only if Φ /∈ £(I) for A,B ∈ £(I) we have
(A ∩B) ∈ £(I) and for each A ∈ £(I) and A ⊆ B implies B ∈ £(I).

An ideal I ⊆ 2N is called non trivial if I 6= 2N . A non trivial ideal I ⊆ 2N is called admissible
if {(x) : x ∈ N} ⊆ I. A non trivial ideal is maximal if there cannot exist any non-trivial ideal
J 6= I containing I as a subset. For each ideal I, there exist a filter £(I) corresponding to I, i.e
£(I) = {K ⊆ N : Kc ∈ I},where Kc = N −K.

Definition 1.1. A sequence (xk) ∈ ω is said to be I-convergent to a number L if for every
ε > 0. {k ∈ N : |xk − L| ≥ ε} ∈ I.In this case we write I − limxk = L.

Definition 1.2. A sequence (xk) ∈ ω is said to be I-null if L=0. In this case we write
I − limxk = 0.

Definition 1.3. A sequence (xk) ∈ ω is said to be I-cauchy if for every ε > 0, there exist a
number m = m(ε) such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.

Definition 1.4. A sequence (xk) ∈ ω is said to be I-bounded if there exist M > 0 such that
{K ∈ N : |xk| ≥M}.

We need the following Lemmas.

Lemma 1.5. The condition supk fk(t) <∞, t > 0 hold if and only if there is a point t0 > 0
such that supk fk(t0) <∞ (see [1,9]).

Lemma 1.6. The condition infk fk(t) > 0 hold if and only if there exist is a point t0 > 0
such that infk fk(t0) > 0 (see [1,9]).

Lemma 1.7. Let K ∈ £(I) and M ⊆ N . If M 6= I then M ∩K 6= I (see [20]).

Lemma 1.8. If I ⊆ 2N and M ⊆ N . If M 6= I then M ∩K 6= I (see [13]).

In this article we introduce the following classes of sequence spaces.

cI0(F,∆n) = {(xk) ∈ ω : I − lim fk(|∆nxk|) = 0} ∈ I,

`I∞(F,∆n) = {(xk) ∈ ω : I − sup
k
fk(|∆nxk|) <∞} ∈ I

Theorem 2.1. For a sequence F = fk of moduli, the following statements are equivalent:

(a) `I∞(∆n) ⊆ `I∞(F,∆n),

(b) cI0(∆n) ⊆ cI0(F,∆n),

(c) supk fk(t) <∞, (t > 0).

Proof. (a) implies (b) is obvious .

(b) implies (c). Let cI0(∆n) ⊆ cI0(F,∆n). Suppose that (c) is not true. Then by Lemma (1.5)

sup
k
fk(t) =∞, for all t > 0,
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and therefore there is a sequence (ki) of positive integers such that

fki
(
1

i
) > i, for each i = 1, 2, 3...... (1)

Define x = (xk) as follow

xk =

{
1
i if k = ki, i = 1, 2, 3.....;
0 otherwise.

Then x ∈ cI0(∆n) but by (1), x /∈ `I∞(F,∆n) which contradicts (b). Hence (c) must hold.
(c) implies (a). Let (c) be satisfied and x ∈ `I∞(F,∆n). If we suppose that x /∈ `I∞(F,∆n) then

sup
k
fk(|∆nxk|) =∞ for ∆nx ∈ `I∞

If we take t = |∆nx| then supk fk(t) = ∞ which contradicts (c).
Hence `I∞(∆n) ⊆ `I∞(F,∆n).

Theorem 2.2. For a sequence F = fk is a sequence of moduli, the following statements are
equivalent:

(a) cI0(F,∆n) ⊆ cI0(∆n),

(b) cI0(F,∆n) ⊆ `I∞(∆n),

(c) infk fk(t) > 0, (t > 0).

Proof. (a) implies (b) is obvious.

(b) implies (c). Let cI0(F,∆n) ⊆ `I∞(∆n). Suppose that (c) is not true. Then by Lemma (1.6)

inf
k
fk(t) = 0, (t > 0)

Notes

and therefore there is a sequence (ki) of positive integers such that

fki
(i2) <

1

i
for each i = 1, 2, 3...... (2)

Define x = (xk) as follow

xk =

{
i2, if k = ki i = 1, 2, 3.....;
0 otherwise.

By (2) x ∈ cI0(F,∆n) but x /∈ `I∞(∆n) which contradicts (b). Hence (c) must hold.
(c) implies (a). Let (c) be satisfied and x ∈ cI0(F,∆n) that is

I − lim
k
fk(|∆nxk|) = 0.

Suppose that x /∈ cI0(∆n). Then for some number ε0 > 0 and positive integer k0 we have
|∆nxk| ≤ ε0 for k > k0. Therefore fk(ε0) ≥ fk(|∆nxk|) for k > k0 and hence lim

k
fk(ε0) > 0, which

contradicts our assumption that x /∈ cI0(∆n).

Thus cI0(F,∆n) ⊆ cI0(∆n).

Theorem 2.3.The inclusion `I∞(F,∆n) ⊆ cI0(∆n) holds if and only if

lim
k
fk(t) =∞ for t > 0. (3)
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