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.  INTRODUCTION

Boundary value problem with Fox’s H-function, M-series & multivariable H-function
were studied by many authors, Churchill, R.V.[1], Mohammed, T.[3], Shrivastava, H.M.
(6], Sharma, M.[4] etc.

Further, an integral involving Fox’s H-function & heat conduction and on

simultaneous operational calculus involving a product of Fox’s H-function and the
multivariable were studied by Bajpai [7], Chourasia [9] respectively.

This paper deals the problem of determining a function 6(x,t), representing the
temperature in a non-homogeneous bar with ends at x = % in which the thermal

conductivity is proportional to (1 — x*) and if the lateral surface of the bar is insulated, it
satisfies the partial differential equation of heat conduction Churchill [ 1],
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where b is a constant, provided thermal coefficient is constant. The boundary
conditions of the problem are that both ends of a bar at

x=x%1 (2)
are also insulated because the conductivity vanishes there and the initial conditions
0 (x,0) =f(x); -1ix1, (3)

II.  RESULT REQUIRED
(i) The finite integral

boundary value problem in heat conduction, Vij. Par. Anu. Pat., 29(4), (1986), 225-230.
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>%|Re(u) Li'=1,..m,j=1,.,u® 5 >0,k >0,

1 1.
k,>0,arg (z, )|<E T |arg M |<ET n,T >0,u" is an arbitrary positive integer, the

coefficients AV, ¢ (Vv',s'>0) are arbitrary constants, real or complex.

(ii) Orthogonality property of the associated Legendre polynomials
2(m+1)!
(2n+1)(n—m)! ™
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where 9, is the Kroneckar delta defined by

0,if n=k
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Solution of (1):-
Assuming the following

f0)=(1-x*)*" JF [A:B:BL-x)]
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The solution of the problem (4) can be written as
0 m _b ,
0(x,t) = Nz_o A P (x) e N (8)
If t'=01in (8), then by virtue of (7)
f0)=(1-x*)"" JF, [AL:B:BA-x*)"]
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Equation (7) is valid since f(x) is continuous in the closed interval —1<X<1 and
has a piecewise continuous derivative there, the Legendre series (9) associated with f(x)
converges uniformly to f(x) in —1+ e< x<1l- e, 0 <e<l.

Now multiplying both sides of (9) by Ptl (x) and integrating from — 1 to +1 with
respect to x, we find
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Now using (4) and the orthogonal property of Legendre polynomials, (5) and (6), we get
3 2 v+ 1) (v — p)!
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With the help of (8) and (9) the solution of the problem (1) is obtained in the form
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Special Cases :-
(1) Putting A=A, u? =1v® =BY DY =DV +1vi=1,...r in (12), we obtain
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Notes valid under the same conditions as derivable from (12).
(2) Letting r = 2 in (13), we have
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(3) Taking . = A = C = 0 the results in (12) reduces to the following result
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valid under the same conditions as derivable from (12).

(4)
()

Letting K,a',V'>0 in (4), we have a known result given in ([8], eq.(1.3), p.227).
Also taking K,a',v'—0 in (12), we get a result given in ( [8], eq. (2.1), p.228).
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