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[.  INTRODUCTION

A continuous complex valued function f = u + iv defined in a complex
domain D is said to be harmonic in D if both v and v are real harmonic in
D. In any simply connected domain we can write f = h + g, where h and
g are analytic in D. A necessary and sufficient condition for f to be locally
univalent and sense preserving in D is that |h/'(2)]| > |¢'(2)], z € D.(See Clunie
and Sheil-Small[2]).

Denote by ‘H the class of functions f = h + g that are harmonic univalent
and sense preserving in the unit disc U = {z : |z| < 1} so that f = h+ 7 is
normalized by f(0) = h(0) = f.(0) —1 = 0.

Let H(U) be the space of holomorphic functions in U. We let:

={feHU), f(2) =2+ ap12" T +..,2€ U}, with A =A.
We let H[a, n| denote the class of analytic functions in Uof the form
f(2)=a+an" +an 12"+ 2 €U
The integral operator I™ is defined in [4] by:
(@) I"f(z) = f();
(i) 1'(2) / F(tyta
(i) I"f(z) =I(I""'f(2)), neN-{0}, fcA

[2]J. Clunie, T. Scheil- Small, Harmonic univalent functions, Ann. Acad.

Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
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Ahuja and Jahangiri [1] defined the class H(n), n € N, consisting of all
univalent harmonic functions f = h + g that are sense preserving in U and h

and g are of the form:

z) :z—i-Zakzk, g(2) :Zbkzk,|b1\ <1 (1.1)
k=2 k=1
For f = h + g given by (1.1) the integral operator I" is defined as: Ref.
I"f(z) = I"h(z) + (—1)"I"g(2),z € U, (1.2)
where .
z)=z+ Z ka2
k=2
and

= i k’”bkzk.
k=1

For fixed positive integers n and for 0 < o < 1,3 > 0 we let H(n, «, 3) denote
the class of univalent harmonic functions of the form (1.1) that satisfy the
condition:

f(z)

I"f(z
} In—i—lf )

Re{ In+1f

6} — 1| +a. (1.3)

The subclass H™(n, «, 3) consists of functions f, = h+ g, in H(n,«a, 3) so
that h and g, are of the form

o0

hz)=z- Z%Zk» gn(2) = ) Zbkz by < 1. (1.4)

k=2

[I.  THE MAIN RESULTS

€1-T “(1002)T ATV 199G e{SMOPOPS-OLIN) SLIRJA[ "AIU[) "UUY

‘suorounf 2411403 2MUOWLDY Uy ‘LSRRl N[ ey " O[T]

In the first theorem, we introduce a sufficient coefficient bound for harmonic
functions in H(n,a, 3).
Theorem 2.1. Let f = h+ g be given by (1.1). If

D A (na,B)lax] +6(n, 0, )i} < 2, (2.1)

k=1

where

K1+ ) = (3-+ )k 0

11—«

(n’O‘?ﬁ) =

9
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Notes

E(1 4 B) 4+ (B + o)k~ (D
1l -«

and e(nj a, 6) —

Y

ap=1, 0<a<l, (>0, neN,then fe€ H(n,a/pf).

Proof. According to (1.2) and(1.3) we only need to show that

I"f(2) = Q"M f(2) = B I () — "L (2)]
fee( ) )

The case r = 0 is obvious. For 0 < r < 1 it follows that

(LG =0l ()~ BN E) ~ ()]

In—i—lf(Z)
(1—a)z+ Z apZ[y" — ay" ]
= Re{ — h=2 +

z—i—ny"Ha e + n+1 nynJrlb p
k=2

DY bRy + ay™t

k._

4 =
Z+Z,yn+1a P + n+1 Z,yn-Hb Zk
k=2

B> " a [yt ="+ (=)D By )
. k=2

k=2 k=1
1—a+ Z akzk 1[,}/11 047n+1]
= Re{——= = = +
1+ Z,yn+1akzk71 + (_1)n+1 Z,}/n+1wzfl
k=2 k=1

k=1
1+ Z Y ap P (=1) ! Z A b2k 2!
k=2 k=1
Be®z 7Y [y =y a4 ()™ [+ bk
k=2 k=1 }
1+ Z,yn—&—lakzk—l + (_1)n+1 Z,Yn—i—lb pu P 1
k=2 k=1

> 0.
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(1—a)+ A(2) 1
=R h =
e B where 7
For z = re® we have
Z ) gkl 0

k=2

Notes

+(—1)”Z(fy + L)t le= R _ 3D (n + 1,0, ),

k=1
where
o0 o0
D(n+1 n, Oé o |Z n+1 k‘ kl@ nz ~y +'7n+1 k 1€7ki9 7
k=2 k=1
and
Z,yn+l p(k=1)0i | (_1>n+1 Z,ynJrlarkflef(kJrl)Hi'
k=1
. 1—a+A(z) 1+w(z)
Setting 57~ = (1-— a)l_w(z).

The proof will be complete if we can show that |w(z)| < r < 1. This is the

case since, by the condition (2.1), we can write:

A(z) = (1 —a)B(z)
wiz)l = |A(z) + (1 —a)B(2) +2(1 — a) | =

[(L+ 8" =" Dlarl + (1 + B+ )bl

hE

S k=1 _
41— a) = S {1+ B) = 5y Jakl + (1 + B) + 57" bi 3
k=1
N @+ B8) (" = Ylar] + (7 )L+ B) bl
< k=1 - <1,
41 —a) = > A"+ 8) = v Mlarl + [y (1 + B) + 69" |bil}

>
Il

1

where 0 = 4+ 2a — 1.

The harmonic univalent functions

N 1 FLN 1 R
D= e D e g
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where n € N0 < a < 1,8 > 0 and Z|xk| + Z|yk| = 1, show that the

k=2 k=1
coefficient bound given by (2.1) is sharp.

In the following theorem it is show that the condition (2.1)is also necessary
for the function f, = h + g,, where h and g, are of the form (1.4).

Theorem 2.2. Let f, = h+ G, be given by (1.4). Then f, € H (n,«, )
Notes . :
if and only if

i (n, o, B)ag, + 0(n, a, B)bg] < 2, (2.2)

k=1
a;=1,0<a<l,neN.

Proof. Since H™ (n,a,3) C H(n,a,3), we only need to prove the ”only
if” part of the theorem. For functions f,, of the form (1.4), we note that the

condition
I"f(z 2)
Re{[nJrlf } 6‘In+lf _1‘—1_0‘
is equivalent to
1 o Oé Z n+1 Zk:
Re{ k=2 - 4
. Z,yn+1 kg 1)2n ZVng Sk

Be| = > (7" + " aget + (1)) (9" — "Bt
_ k=2 - }>0, (23

- 27n+1akzk + (_1)2n+1 ZVnﬂbk?
k=2

k=1

where v = %

The above required condition (2.3) must hold for all values of z € U. Upon

choosing the values of z on the positive real axis where 0 < 2z = r < 1 and

using Re(—e?) > —|e??| = —1 we must have

© 2012 Global Journals Inc. (US)
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(1—a) =Y "1 +8) — (a+B)y"Mapr"

012:2 00 - (24>
1— Z’Yn_'_lakrk_l + Z,yn—i-lbkrk—l
k=2 k=1

> (4 8) + 4" (B + )bt

k=1 _ - > 0.
1— Z fy”Hakrk_l + Z ’y”“bkrk_l
k=2 k=1

If the condition (2.3) does not hold, then the expression in (2.4) is negative
for r sufficiently close to 1. Hence there exist zp = 79 in (0,1) for which
this quotient in (2.4) is negative. This contradicts the required condition for

fn € H™(n,a, 3) and so the proof is complete.

The following theorem gives the distortion bounds for functions in

H~(n,a, 3) which yields a covering results for this class.

Theorem 2.3.Let f,, € H (n,«, 3). Then for |z| =r < 1 we have

[Fa(2)] < (L b)r + [B(n, 0, B) = w(n, @, B)by)r™

and
|fu(2)] = (1= bi)r — {é(n, o, B) — w(n, a, B)by }r"*2,
where .
) = (15 5) — (/27 (a + B)’
e - EA) @0

(1/2*(1+8) = (1/2)"*+ (a + B)

Proof. We prove the right side inequality for |f,|. The proof for the left
hand inequality can be done using similar arguments. Let f, € H (n,a, 3).
Taking the absolute value of f,, then by Theorem 2.2, we can obtain :

o0 [e.9]

@l = 12 = S e+ (-1 S b <

k=2 k=1
< T+Zakrk+2bkrk :T+blr+2(ak+bk)r <
k=2 k=1 k=2

<r+4br+ Z(ak + by)r? =
k=2

© 2012 Global Journals Inc. (US)
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[M]#

= (1+b1)r + ¢(n,, B)

< (14b)r + ¢(n,a, B)r"t? [ (n,q,B)ag + 0(n,a, B)b] <

NER

x~
Il

2

< (1+b)r + [6(n, o, B) — w(n, o, B)b]r" 2.
Notes

The following covering result follows from the left hand inequality in The-
orem 2.3.
Corollary 2.4. Let f, € H (n,a,3). Then for |z| = r < 1 we have

{w : |w| <l-b - [¢(n7a7ﬁ) - (“J(nva’n)bl] - fn(U)}
Next we determine the extreme points of closed convex hulls of H™ (n, «, ),
denoted by clcoH ™ (n, a, ).
Theorem 2.5. Let f, be given by (1.4). Then f, € H (n,«a, 3) if and only
if N
Z [2xhi(2) + Yrgn, (2)];
k=1

where h(z) = z,

=z— k=2,3,..
R R E R

and

1—«a
k=(1+ 8) + (8 + a)k—(+1D)

¢ k=1,2,3, ..

xp 2> 0,y > O,Z(ﬂﬁk +yr) = 1.
k=1

In particular, the extreme points of H ™ (n, a, 3) are {hi} and {g,, }.
Proof. For functions f, of the form (2.1) we have:

Z Z'khk + ykgnk( )] =
k=2

> > 11—« i
_; ) ,;k 11 0) - (Brak okt

> 11—«
n 1 =k
2} k(1 + 8) + (B + )k =
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Then

- "(145) = (B + o)k~ "V (1-a)
kz —a A4 B) - (Bt )k
= (14 6) 4 (8 + o)k~ (D -«

Z l-a k(14 8) + (B + a)k—n+)

:ixk‘f‘iyk:l—ﬁlﬁl
k=2 k=1

and so f,(z) € H (n,«, 3).
Conversely, suppose f,(z) € H™ (n,a, 3). Letting

xlzl—zl'k—zyk
k=2 k=1

(14 5) = (8+ )k

T = -ak,k:2,37...
1—«a
and
-n(q —(n+1)
g = +5)j(6+a)k bk =1,2,3, .
-«

we obtain the required representation, since

—Z—Zakz—l— i

k=1

[e.o]

kn(1+5) — (B + )k oD+

k=2

11—«
nl =k __
> A e

=z — [z — hi(2)]zr — Z[Z I (2)|yp =
=[1- Z Tp — Zyk]z + Z xrphe(2) + Z yk‘gnk<z)
k=2 k=1 k=2 k=1
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Now we show that H™(n,«, ) is closed under convex combination of its
members.

Theorem 2.6. The family H™ (n, «, 3) is closed under convex combination.

Proof. For i = 1,2, ... suppose that f € H (n,a, 3), where

—z+Zakz + ( "IZbZ_k

then by Theorem 2.2,

A1 B) — (B kY SR (L 5) + (B a)k )
2 —a ai+ ) S b, <2,
k=1 —1

(2.5)

[e.e]

for Z t; =1,0 <t; <1, the convex combination of f{ may be written as
i=1

S tifi(z)=2-=Y O tap)F + (—1)" Y (O tiby)F.
=1 k=2 i=1 k=1 =1

Then by (2.4)

S o &
>R

=1 =1

= k(1 o) 220
k= i=1

* X 1.—n _ —(n+1)
=Zti[2k (1+6)1_(ﬁa+ o)kt gt
i=1 k=1

X 1.—n —(n+1) 0
+Zk: (1+8)+(B+a)k +lbz]§2zt¢:2
i=1

l—«

and therefore Z tifi(z) € H (n,a, ).

i=1

The beautiful results for harmonic functions, was obtained by P. T. Mocanu
in [3].
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