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. [NTRODUCTION

Wave propagation in saturated porous media and the dynamic response of such
media are of great interest in geophysics, acoustic, soil and rock mechanics and many
earthquake engineering problems.

Biot [1] derived the basic equations of poroelastisity on the basis of energy
principles. Privost[17] rederived these equations by use of mixture theory. Zienkiewicz
,Chang [18] and Zienkiewicz, Shiomi [19] derived the basic equations of poroelasticity by
the use of principal of continuum mechanics . Gatmiri and Kamalian [4] adopted the later
approach because it is more flexible and is based on a set of parameters with a clear
physical interpretation to discuss different type of problem. Gatmiri and Nguyen [5]
investigated two dimensional problem for saturated porous media with incompressible
fluid.

Gatmiri and Jabbari [7,8] discuss time domain Green''s functions for unsaturated
soil for two dimensional and three dimensional solution. Gatmiri ,Maghoul and
Duhamel[6] also discuss the two dimensional transient thermo-hydro-mechanical
fundamental solution of multiphase porous media in frequency and time domains. Gatmiri
and Eslami [9] discuss the scattering of harmonic waves by a circular cavity in a porous
medium by using complex function theory approach.

Normal mode analysis approach has been successfully applied by different authors
e.g. Ezzat, Othman and Karamang[3],Othman Ezzat,Zaki and Karamang[12], Othman
and Oman[14], Othman and Singh[15], Othman,Farouk and Hamied[11], Othman and
Lotfy[13], Othman,Lotfy and Farouk[16], Ezzat,Zakaria and Karamang[2].Resently
Kumar,Miglani and Kumar[10] investigated the different problems by using normal mode
analysis in fluid saturated porous medium.

In the present paper, we obtain the components of stress and pore pressure for
homogeneous isotropic porous saturated medium with incompressible fluid due to various
sources. The resulting quantities are shown graphically to depict the effect of porosity.
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[I. GOVERNING EQUATIONS

Following Gatmiri and Nguyen [5],the basic equations are

Equation of motion :

0yt f; = pls + p W, (1)
Constitutive relation :
oy = hui;dij+p (uiy+uji)—ap (2)
Flow conservation for the fluid phase :
Wity =au;;+ % (3)
Generalized Darcy’s law :
1. . .
p,i = _;Wi - pfui - mw; (4)

where u; is the displacement of the solid skeleton, p denote the fluid pressure, w;
represents the average displacement of the fluid relative to the solid. The elastic constants

A and p are drained Lame’s constant. pr is the fluid density, ps is the solid density, p=
1-n ps+npy is the density of solid-fluid mixture and m=2L is the mass parameter where n

n
is the porosity, k is the permeability coefficient. @ and M are material parameters which
describes the relative compressibility of the constituents. f; and y denotes the body force
and the rate of fluid injection in to the media.

Equations (1) and (4) with the aid of (2) and (3) in the absence of body force and the rate
of fluid injection in to the media, reduce to

i, + (Ap) wig—p1 ti—a'pi=0, (5)
1 dp % .
i~ @ Ui =0, (6)

where
_ 2 i * _ i _ [1 n a]—l
pr=p—pfTo, @ =a—ppT—,T=|-+mo| .
Formulation of the problem
We consider a homogeneous, isotropic conducting porous elastic layer of thickness 2H
initially undisturbed. The origin of the coordinate system (x;, x,, x;) is taken at the
middle surface of the plate and x, - axis normal to it along the thickness. The surface x, =
+H is subjected to different sources. The x,—x, plane is chosen to coincide with the middle
surface and x;- axis is normal to it along the thickness.
For two dimensional problem, we take
u = (ug,0,u3) (7)
We define the non-dimensional quantities
’—ﬂ 1_2 I=£ I=2 1=£ Z=A+2ﬂ l=
X1 =Xy X3 = X3 Uy S U, Uz = U p S 1=, t = wt (8)
where w is the constant having the dimensions of frequency.
The displacement components are related by the potential functions ¢ and W as

do_3¥ o _ g 0¥

u, = , Uz

(9)
Making use of equations (8) and (9), the equations (5) and (6) with aid of (7) after
suppressing the prime for convenience, reduce to

2

(1+ al)V2<p —ayp —az A (10)

att

0x1 6_x3 dx3 = 0x1
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Notes

2 ap 9wl 1_
b1V p—bza—a[v (p]—O (12)
_ I R 1) _ Tod _
Where a; = e BEa, o BE by = s and b, = =
We assume the solution of equations (10) - (12) of the form
(¢, ¥,p) = [f(2),g(2), h(z)]e’> *17) (13)

where
c= %, where & is the wave number.
Making use of (13) in equations (10) - (12), eliminating h(z) from the resulting equations,
we obtain
dZ

(— . m,%) fz) =0 (14)

dz*

where
,  —Ait |A2+4B;

ms = > ,(n=1,2) are the roots of equation (14) and

mi = A, — & (15)

v=;—z A =A—282 B =t*— A2 +B ,

=ﬁ22 =[a3 2 2 b_z a ] — b2a3 . 3 .3
A, alE ct A —1+a12 c +b1 LEc+b1(1+a1)lEc and B PP LA

The appropriate potential ¢, W, p can be written as

@ = [Cycosmyz + Cysinmyz + Dycosm,z + D, sin myz]e¥x1=<0) (16)
Y = [Eicosmsz + E;sin myz]eltta—ct (17)
p = [r1Cicosm,z + r,Cys5in my z + 15D cosmyz + 1, D, 5in myz]edx1=c) (18)
where
(1+a1) 2 2 .
=gl mE -+ 20G (i=12). (19)

With the help of equations (16) and (17), we obtain the displacement components u, and
U, as
uy = [i&(C1cosmqz + C,sinmqz + Dycosmyz + Dysin myz) + m3(Ecosmsz
— E,sinmsz)]elta—cH (20)
uz = [(=C,mysinmyz + C;mycos myz — Dymysin myz + Dymycos myz)
+ i§(E{Dosmsz + E;sin msz)] e¢1=<0 (21)
[11.  BOUNDARY CONDITIONS

The boundary conditions at x;= + H are

033 = —Flei‘g(xl_‘:t) ,031 = _eriE(cht) P = Fgeiz(xl_Ct) (22)
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where F, JF, are the magnitudes of the forces and F; is the constant pressure applied on
the boundary and

611,3

0-33—R16x +R2 ap,
(23)

_ow o

031 = dx3 0xq
where

A At+2p Notes

R1 = ;, RZ == .
u

Case 1 : For normal force F,= F,= 0,
Case 2 : For tangential force F,= F,= 0,
Case 3 : For pressure F, = F,= 0

Derivation of the secular equations

XII Issue VI Version I
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Substituting the value of u;, u; and p from (20), (21) and (18) in the boundary condition
(22) and with help of (23) after some simplifications, we obtain

Fia11—F3ay2—F3a Fra . F3zacc—F1ag6—F3a
a3 = [Rs {( 1a11—F3az2—F3 33) cos m12+( 2 44) Slnm12}+R4 {( 3ass—F1ae6—F3 77) cos myz
A Az A1 (24)

Fra Fra F3by1—F3by2+F1b33+F1b i _
( =8 88) smmzz} d3{ ( - 99) sinmsz +cos m3z( e 44)}] el8x1—ct)
20 20 10

. Fia11—F3ax2—F3a . —Faa —F3ass+Fiagg+F3a
Oy = [le{ml( 1a11—F3az;—F3 33)smm12+m1( 2 44) cosmlz—mz( 3a55+F1a66+F3 77)
A1p Azo Ao (25)
F3b11—F3bzz+F1b33+F1b44)}] elx1—ct)

Aqo

Faa
sin mzz+m2( 2 88) cosmzz}+d {( z 99) cos m3z+sin msz (
20

For normal force: F|=1, F,.=F,= 0

o35 = [R3 {(Flall) cos mlz} + Ry {(M) cos mzz} —ds {cog msz (M)}] eifta=c) (96)

A A1 Aqg

031 = [Ziz {ml (Fi?gl) sinmyz —m; (FXTSG) sin mzz} + dg {sin msz (Flb%lfll”‘r‘*)}] el&x1—ct) (27)

For Tangential Force: F,=1 , F,=F,=0

033 = [R {(Fzz‘”) Slnmlz} +R, { (FZZE8) sinmzz} — d; {— (Fngg) sin mgz}] elt(x1—ct) (28)
031 = [ZiE{ml (%2‘244) cosmz +m, (FZZSS) cosmzz} +dg {(FAZ 9) cos m3z}] eltta—ct (29)

For Pressure : F,=F,=0, F,=1

O33= [Rg{(—_F3a2A21_OF3a33)cos mlz} +R, {(—FWSSA;:W”) cos mzz} — dg{COSTngZ(—_F3b1A11_0F3b22)}] eii(go—)ct)

F3a;—F3as3 F3ass+Fsazy

N 031=[2i5{m1(_A—10)sin myz—m; (_T)Sin m22}+d6 {sin m3z(—_F3b11_F3b22)}] eit(x1—ct)

A0 (31)
Where
Ry = RiE + Rym? + ary, Ry = RiEX + Rym3 + ary,
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Notes

ay1 = rydgcos myHsin mgH a5, = dydgcos myHsin msH,a33 = dzdssin myHcos mzH,ay,

= rydssin myHcos mzH

ass = didgcos miHsin mgH,agq = r1dgcos myHsin mzH,a7;7 = dzdssin m{Hcos m3H,agg

=ridzsinm{Hsin mzH,

Qgg = (r1d, —rydy)sinm{Hsin myH, by = d;dscos m{Hsin myH, by, = d,d4sin myHcos

myH, b3 = T2dssin myHcos myH, by, = ridscos myHsin myH.

Ao= (—1rydqdg + rydydg)cosmyHcosm, HsinmsH + r,dsd,sin myHcosm,H cos msH

+ rydsdscosmiHcos mgH sin myH ,

Ayo= (rd1dg — 1dydg)sin myHsin myHcosmsH + rydsd,cosmy Hsinm, HsinmsH

— nrydzdssin myHsinmgHcosm,H,

dq
de = m§ — €.

IV.  SpeciAL CASE

Ri& —Rymi, dy = Ri& —Rym5 , d3 = (R — R,) ifmz ,d, = 2i€my, ds = 2i¥m,,

In the absence of incompressible fluid, the boundary conditions reduce to

033 = —Fleig(xl_Ct) ,031 = —eriE(Xl_Ct)

(32)

and we obtain the constituting expressions for stress components for elastic layer as

F1dgsinm3zH FodszsinmgH . FodqsinmyH
a3 = [Rs {_Mcosmﬂ_ugnmﬂ} — ds {_u
As Ago Ago
 Fadastnmall m3z}] elfxi=ct)
Asg
, Fod3sinmsH FodisinmyH FidssinmyH
031 = [ZLE {m;LL cos m4z} + dg {u cosmyz + ————
Ago Ago Aso
For normal force: F)=1 and F,=0
FidgsinmgH FidysinmyH i _
033 = [RS {—16A—3 cosm4z} —dj {1:—4 cos m3z}] elt(x1=cH
50 50

FidgsinmgH . i _
031 = dg [%504 sin m3z] eib(x1—ct)

For Tangential Force: F,=0 and F,=1

FpdssinmsH . FodysinmgH . ] —_
033 = [RS {—%sm m4z} —dj {—%smmﬂ}] elt(x1=cH

, FpdssinmsH FodqsinmaH i -
031 = [212{m4%005 m4z} + dg {% cosm3z}] eltx1=cH

Where
Rs = R, & + Rym?
Aso= didgcosmyHsinmszH + dsdssin myH cos mgH

Ago= — dydgcos mgHsin myH — d3d4sin mgH cos myH

sinmsz
(33)

sin m3z}] elbx1—ct) (34)

(37)

(38)
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V. NUMERICAL RESULTS AND DISCUSSION

With the view of illustrating the theoretical results and for numerical discussion we
take a model for which the value of the various physical parameters are taken from

Gatmiri and Ngyun[2007]:
A = 12.5MPa ,u = 8.33MPa K, = 10°MPa , ,K; = 0.22 x 10*MPa ,p; = 2600Kg/m?
ps = 1000Kg/m* k = 0.001m/s @ = 1,n = 0.3

The values of normal stress o,; , tangential stress g, and pore pressure p for
homogeneous isotropic porous saturated medium with incompressible fluid and elastic
medium are obtained for t=1 and z=1 in the range 0 < x < 10.

The solid line represent the value of oy, in fluid saturated porous medium with
incompressible fluid for normal force(NFSPM), long dash line represent the value of g, in
fluid saturated porous medium with incompressible fluid for tangential force (TEFSPM)
and small dash line represent the value of p in fluid saturated porous medium with
incompressible fluid for pressure (PFSPM) where as solid line with central
symbol(NFEM) and small dash line with central symbol(TFEM) represent the value of 4,

and 05, in elastic medium for normal and tangential force respectively.
Fig.1 shows the variation of normal stress component og,; w.r.t distance x in fluid

saturated porous medium with incompressible fluid and elastic medium. The value of o,
in fluid saturated porous medium with incompressible fluid, in case of normal force, first
increase and then starts decrease and in case of tangential force, it remains linear with
small decrease and in case of normal pressure source, it first increase and then start
decreasing. The value of g, in elastic medium first increase and then starts decreasing in
case of normal force where as in case of tangential force there is sharp increase and then
starts decreasing.

Fig.2 shows the variations of tangential stress component o, w.r.t distance x in
fluid saturated porous medium with incompressible fluid and elastic medium. The value of
05 in fluid saturated porous medium with incompressible fluid, in case of normal force,
first starts with small increase and then starts decreasing. In case of tangential force, it
shows small decrease where as there is a sharp decrease in case of normal pressure. The
values of g, in elastic medium, show small increase in case of normal force and there is a
sharp decrease and then starts increasing and ends with small decrease in case of
tangential force.

Fig.3 shows the variation of pore pressure w.r.t distance x in fluid saturated porous
medium with incompressible fluid. The values of p start with small decrease and increase
in case of normal force and become linear in case of tangential force. There is sharp
increase in case of pressure force.

VI. CONCLUSION

It is observed that the behaviour ofa,; in case of normal force and tangential force
is same although the value due pore pressure is more. Appreciable porosity effect is

observed on normal stress component. The behaviour of g, in case of normal force and
tangential force is opposite. In case of normal pressure the value of normal force is
initially less as compared with tangential force.
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