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Ref.

utt − uxx = |u|l, t ∈ [0,∞), x ∈ R, l ∈
[0,1). l ≥ 1, l = 0 l∈ (0,1)

In this article we investigate the Cauchy problem

utt − uxx = |u|l, t > 0, x ∈ R, (1.1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R, (1.2)

where u0 ∈ C2(R), u1 ∈ C1(R) are given functions for which |u0(x)| ≤ D, |u1(x)| ≤ D for
every x ∈ R, D is given positive constant, l ∈ [0, 1) is fixed, u is unknown function.

The problem (1.1), (1.2) was considered in the cases when l ≥ 1, l = 0, for local
existence, global existence, blow up and etc, see for instance [2] and references therein. The
case l ∈ (0, 1) was opened. Our aim in this article is to give an answer in this case. We
give an answer for local existence of classical solutions. The problem for uniqueness of the
classical solutions(twice continuous - differentiable in x and in t) is opened yet.

For M,N ⊆ R with C2(M, C2(N)) we will denote the space of the functions u which are
twice continuous - differentiable in t ∈M and twice continuous - differentiable in x ∈ N .

Our main results are as follows.

Theorem 1.1. Let D be fixed positive constant and u0 ∈ C2(R), u1 ∈ C1(R) be fixed so
that |u0(x)| ≤ D, |u1(x)| ≤ D for every x ∈ R, let also l ∈ [0, 1) be fixed. Then there
exist positive constants A and B so that the Cauchy problem (1.1), (1.2) has a solution
u ∈ C2([0, A], C2([0, B])).

Theorem 1.2. Let D be fixed positive constant and u0 ∈ C2(R), u1 ∈ C1(R) be fixed
so that |u0(x)| ≤ D, |u1(x)| ≤ D for every x ∈ R, let also l ∈ [0, 1) be fixed. Then
there exists positive constant A so that the Cauchy problem (1.1), (1.2) has a solution
u ∈ C2([0, A], C2([0,∞))).

Author : University of Sofia, Faculty of Mathematics and Informatics, Department of Differential Equations, Blvd “ Tzar Osvoboditel ”15, 
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II. Proof of Theorem 1.1

Theorem 1.3. Let D be fixed positive constant and u0 ∈ C2(R), u1 ∈ C1(R) be fixed
so that |u0(x)| ≤ D, |u1(x)| ≤ D for every x ∈ R, let also l ∈ [0, 1) be fixed. Then
there exists positive constant A so that the Cauchy problem (1.1), (1.2) has a solution
u ∈ C2([0, A], C2(R)).

We note that when u0 or u1 is not identically equal to zero the Cauchy problem (1.1),
(1.2) has a nontrivial solution.

To prove our main results we will use a new approach which is used in the author’s
article [1] for another class of nonlinear wave equations.

The article is organized as follows: in the next section we will prove Theorem 1.1, in
the section 3 we will prove Theorem 1.2, in the section 4 we will prove Theorem 1.3. In the
appendix we will prove some facts which are used in the proof of basic results.

Let ε ∈ (0, 1) be fixed. We choose enough small positive constants A and B so that

εD +B2D(2 +A) + (2 +B)A2D +A2B2Dl ≤ D,

εD +BD(2 +A) + (2 +B)A2D +A2BDl ≤ D,

εD + 2B2D + (2 +B)AD +AB2Dl ≤ D.

(2.1)

For example ε = 1
2 , D = 100, A = B = 1

1000000 .

In this section we will prove that the Cauchy problem

utt − uxx = |u|l, t ∈ [0, A], x ∈ [0, B], (2.2)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [0, B], (2.3)

has a solution u+1 ∈ C2([0, A], C2([0, B])).

We define the sets

N+1 =
{
u ∈ C2([0, A], C2([0, B])) : |u(t, x)| ≤ D, |ut(t, x)| ≤ D, |ux(t, x)| ≤ D

∀t ∈ [0, A], ∀x ∈ [0, B]
}
,

N∗+1 =
{
u ∈ C2([0, A], C2([0, B])) : |u(t, x)| ≤ (1 + ε)D, |ut(t, x)| ≤ (1 + ε)D,

|ux(t, x)| ≤ (1 + ε)D ∀t ∈ [0, A], ∀x ∈ [0, B]
}
,

in these sets we define a norm as follows

||u||1 = max
t∈[0,A],x∈[0,B]

|u(t, x)|.

Lemma 2.1. The sets N+1 and N∗+1 are closed, compact and convex spaces in C([0, A] ×
[0, B]) in the sense of norm || · ||1.

Proof. We will prove our assertion for N+1.
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Firstly we will prove that N+1 is a closed space with respect || · ||1. For this we will
propose two ways, the first one is to be proved that N+1 is a completely normed space with
respect the norm || · ||1, using Weierstrass - Stone theorem, the second one is based on the
definition - in other words we will prove that it contains its limit points.

First proof. Let {un} is a sequence of elements of the space N+1 which is a fun-
damental sequence and it is well known that there exists U ∈ C([0, A] × [0, B]) so that
limn−→∞ un = U with respect the norm || · ||1. Then for every ε > 0 there exists N1 =
N1(ε) > 0 so that for every n > N1 we have

||un − U ||1 < ε.

From Weierstrass - Stone theorem there exists a sequence {pl} of trigonometric polynomials
so that ||pl − U ||1 −→ 0 when l −→ ∞. We have pl ∈ C2([0, A] × [0, B]) and there exists
L1 = L1(ε) > 0 so that for every L > L1 we have

||pL − U ||1 < ε.

We fix L > L1 and put u = pL. From here, for every n > N1,

||un − u||1 ≤ ||un − U ||1 + ||U − u||1 < 2ε.

Consequently the fundamental sequence un of elements of N+1 is convergent to the element
u ∈ C2([0, A] × [0, B]) with respect the norm || · ||1. Now we will prove that u ∈ N+1.
Evidently |u(t, x)| ≤ D for every (t, x) ∈ [0, A] × [0, B]. Now we suppose that there exists
(t̃, x̃) ∈ [0, A]× [0, B] so that

|ut(t̃, x̃)| > D.

Then there exists ε2 > 0 so that

|ut(t̃, x̃)| ≥ D + ε2.

From here there exists δ5 = δ5(ε2) > 0 such that from |h| < δ5, h 6= 0, (t̃, x̃) ∈ [0, A]× [0, B]
we have ∣∣∣u(t̃, x̃+ h)− u(t̃, x̃)

h

∣∣∣ ≥ D + ε2.

On the other hand, since un(t̃, x̃) −→ u(t̃, x̃) in sense of || · ||1, as n −→ ∞, follows that
there exists δ6 = δ6(ε2) > 0 so that we have from |h| < δ6, h 6= 0, (t̃+ h, x̃) ∈ [0, A]× [0, B]∣∣∣un(t̃+h,x̃)−un(t̃,x̃)h − u(t̃+h,x̃)−u(t̃,x̃)

h

∣∣∣ < ε2

and since |(un)t| ≤ D in [0, A]× [0, B]

∣∣∣un(t̃+ h, x̃)− un(t̃, x̃)

h

∣∣∣ ≤ D
for enough large n. From here, for enough large n and for |h| < min{δ5, δ6}, h 6= 0,
(t̃+ h, x̃) ∈ [0, A]× [0, B] we have

ε2 = D + ε2 −D

Notes
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≤
∣∣∣u(t̃+h,x̃)−u(t̃,x̃)h

∣∣∣− ∣∣∣un(t̃+h,x̃)−un(t̃,x̃)h

∣∣∣
≤
∣∣∣u(t̃+h,x̃)−u(t̃,x̃)h − un(t̃+h,x̃)−un(t̃,x̃)

h

∣∣∣ < ε2,

which is a contradiction. Therefore |ut| ≤ D in [0, A]× [0, B]. As in above we can prove that
|ux(t, x)| ≤ D in [0, A]× [0, B]. Consequently u ∈ N+1 and N+1 is closed in C([0, A]× [0, B])
in sense of || · ||1.

Second proof. Let u is a limit point of N+1.
Then there exists a sequence {un} of elements of N+1 and un −→n−→∞ u in the sense

of the norm || · ||1.
Evidently |u(t, x)| ≤ D for every (t, x) ∈ [0, A]× [0, B].

We suppose that u /∈ C1([0, A]× [0, B]). Without loss of generality we suppose that ut
does not exist in a point (t, x) ∈ [0, A] × [0, B]. Then there exists ε > 0 so that for every
δ1 = δ1(ε) > 0 and |h| < δ1, h 6= 0, (t+ h, x) ∈ [0, A]× [0, B], we have∣∣∣u(t+ h, x)− u(t, x)

h

∣∣∣ > ε. (2.4)

On the other hand since un ∈ C2([0, A], C2([0, B])) we have that there exists δ2 = δ2(ε) > 0
so that from |h| < δ2, h 6= 0, (t+ h, x) ∈ [0, A]× [0, B], we have∣∣∣un(t+ h, x)− un(t, x)

h

∣∣∣ < ε

3
. (2.5)

Also, from un −→n−→∞ u in the sense of the norm || · ||1 we have for enough large n and
|h| < min{δ1, δ2}, h 6= 0, (t+ h, x) ∈ [0, A]× [0, B] that∣∣∣un(t+h,x)−un(t,x)h − u(t+h,x)−u(t,x)

h

∣∣∣ < ε
3 . (2.6)

Then from (2.6), (2.5), (2.4) we obtain for |h| < min{δ1, δ2}, h 6= 0, (t+h, x) ∈ [0, A]×[0, B],
for enough large n,

ε <
∣∣∣u(t+h,x)−u(t,x)h

∣∣∣ ≤ ∣∣∣un(t+h,x)−un(t,x)h

∣∣∣+
∣∣∣un(t+h,x)−un(t,x)h − u(t+h,x)−u(t,x)

h

∣∣∣ < 2 ε3 ,

which is a contradiction with our assumption that ut(t, x) does not exist. If we suppose
that ux(t, x) does not exist in a point (t, x) ∈ [0, A] × [0, B], as in above we will go to a
contradiction. Therefore u ∈ C1([0, A], C1([0, B])).

We note that from un −→ u as n −→ ∞ and un, u ∈ C1([0, A], C1([0, B])) follows that
for every ε̃ there exists δ̃(ε̃) > 0 so that from |h| < δ̃, h 6= 0, (t + h, x) ∈ [0, A] × [0, B], we
have ∣∣∣un(t+ h, x)− un(t, x)

h
− u(t+ h, x)− u(t, x)

h

∣∣∣ < ε̃,

from where we conclude that unt −→ ut in sense of || · ||1 as n −→∞. In the same way we
have unx −→ ux when n −→∞ in sense of || · ||1.

We suppose that u /∈ C2([0, A], C2([0, B]). Without loss of generality we suppose that
utt does not exist in a point (t, x) ∈ [0, A] × [0, B]. Then there exists ε1 > 0 so that for
every δ3 = δ3(ε1) > 0 and |h| < δ3, h 6= 0, (t+ h, x) ∈ [0, A]× [0, B] we have

Notes

© 2012 Global Journals Inc.  (US)
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∣∣∣ut(t+ h, x)− ut(t, x)

h

∣∣∣ > ε1. (2.7)

On the other hand since un ∈ C2([0, 1], C2(B1)) we have that there exists δ4 = δ4(ε1) > 0 so
that from |h| < δ4, h 6= 0, (t+ h, x) ∈ [0, A]× [0, B] we have

∣∣∣(un)t(t+ h, x)− (un)t(t, x)

h

∣∣∣ < ε1
3
. (2.8)

Also, from unt −→n−→∞ ut in the sense of the norm || · ||1 we have for enough large n and
|h| < min{δ3, δ4}, h 6= 0, (t+ h, x) ∈ [0, A]× [0, B] that∣∣∣ (un)t(t+h,x)−(un)t(t,x)h − ut(t+h,x)−ut(t,x)

h

∣∣∣ < ε1
3 . (2.9)

Then from (2.9), (2.8), (2.7) we obtain for |h| < min{δ3, δ4}, h 6= 0, (t+h, x) ∈ [0, A]×[0, B],
for enough large n,

ε1 <
∣∣∣ut(t+h,x)−ut(t,x)h

∣∣∣
≤
∣∣∣ (un)t(t+h,x)−(un)t(t,x)h

∣∣∣+
∣∣∣ (un)t(t+h,x)−(un)t(t,x)h − ut(t,x)−ut(t,x)

h

∣∣∣ < 2 ε13 ,

which is a contradiction with our assumption that utt does not exists in a point (t, x) ∈
[0, A] × [0, B]. If we suppose that uxx does not exist in a point (t, x) ∈ [0, A] × [0, B]
as in above we can go to a contradiction. Therefore u ∈ C2([0, A], C2([0, B])). As in the
first proof(above) we have that |u(t, x)| ≤ D, |ut(t, x)| ≤ D, |ux(t, x)| ≤ D for every
(t, x) ∈ [0, A]× [0, B], i.e. u ∈ N+1. Consequently N+1 contains its limit points.

Using Arzela - Ascoli Theorem the set N+1 is a compact set in C([0, A]× [0, B]) in sense
of || · ||1.

Let now λ ∈ [0, 1] is arbitrary chosen and fixed and u1, u2 ∈ N+1. Then for (t, x) ∈
[0, A]× [0, B] we have λu1(t, x) + (1− λ)u2(t, x) ∈ C2([0, A], C2([0, B])) and

|ui(t, x)| ≤ D, |uit(t, x)| ≤ D |uix(t, x)| ≤ D for i = 1, 2,

|λu1(t, x) + (1− λ)u2(t, x)| ≤ λ|u1(t, x)|+ (1− λ)|u2(t, x)| ≤ λD + (1− λ)D = D,

|λu1t(t, x) + (1− λ)u2t(t, x)| ≤ λ|u1t(t, x)|+ (1− λ)|u2t(t, x)| ≤ λD + (1− λ)D = D,

|λu1x(t, x) + (1− λ)u2x(t, x)| ≤ λ|u1x(t, x)|+ (1− λ)|u2x(t, x)| ≤ λD + (1− λ)D = D.

Therefore N+1 is convex.

As in above we can prove that N∗+1 is closed, compact and convex in C([0, A]× [0, B])
in sense of || · ||1.

For u ∈ N∗+1 we define the operators

K+1(u)(t, x) = (1 + ε)u(t, x),

L+1(u)(t, x) = −εu(t, x) +
∫ x
0

∫ σ
0 u(t, y)dydσ −

∫ x
0

∫ σ
0

(
u0(y) + tu1(y)

)
dydσ

Notes
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−
∫ t
0

∫ τ
0 u(s, x)dsdτ −

∫ t
0

∫ τ
0

∫ x
0

∫ σ
0 |u|

l(s, y)dydσdsdτ,

P+1(u)(t, x) = K+1(u)(t, x) + L+1(u)(t, x).

Our first observation is as follows.

Lemma 2.2. Let u ∈ N∗+1 be a fixed point of the operator P+1. Then u is a solution to the
Cauchy problem (2.2), (2.3).

Proof. Since u ∈ N∗+1 is a fixed point of the operator P+1 we have for every t ∈ [0, A] and
x ∈ [0, B]

u(t, x) = P+1(u)(t, x) = K+1(u)(t, x) + L+1(u)(t, x)

= (1 + ε)u(t, x)− εu(t, x) +
∫ x
0

∫ σ
0 u(t, y)dydσ −

∫ x
0

∫ σ
0

(
u0(y) + tu1(y)

)
dydσ

−
∫ t
0

∫ τ
0 u(s, x)dsdτ −

∫ t
0

∫ τ
0

∫ x
0

∫ σ
0 |u|

l(s, y)dydσdsdτ

= u(t, x) +
∫ x
0

∫ σ
0 u(t, y)dydσ −

∫ x
0

∫ σ
0

(
u0(y) + tu1(y)

)
dydσ

−
∫ t
0

∫ τ
0 u(s, x)dsdτ −

∫ t
0

∫ τ
0

∫ x
0

∫ σ
0 |u|

l(s, y)dydσdsdτ,

whereupon for every t ∈ [0, A] and every x ∈ [0, B] we have

0 =
∫ x
0

∫ σ
0 u(t, y)dydσ −

∫ x
0

∫ σ
0

(
u0(y) + tu1(y)

)
dydσ

−
∫ t
0

∫ τ
0 u(s, x)dsdτ −

∫ t
0

∫ τ
0

∫ x
0

∫ σ
0 |u|

l(s, y)dydσdsdτ.

(2.10)

Now we differentiate the last equality with respect t and we get, for t ∈ [0, A], x ∈ [0, B],

0 =
∫ x
0

∫ σ
0

(
ut(t, y)− u1(y)

)
dydσ −

∫ t
0 u(s, x)ds−

∫ t
0

∫ x
0

∫ σ
0 |u|

l(s, y)dydσds. (2.11)

We differentiate the last equality with respect the time variable t and we obtain

0 =

∫ x

0

∫ σ

0
utt(t, y)dydσ − u(t, x)−

∫ x

0

∫ σ

0
|u|l(t, y)dydσ, t ∈ [0, A], x ∈ [0, B].

Now we differentiate the last equality with respect x we find

0 =

∫ x

0
utt(t, y)dy − ux(t, x)−

∫ x

0
|u|l(t, y)dy, t ∈ [0, A], x ∈ [0, B].

After we differentiate the last equality in x we obtain

0 = utt − uxx − |u|l, t ∈ [0, A], x ∈ [0, B],

in other words u satisfies the equation (2.2).
Now we put t = 0 in (2.10) and we find

0 =

∫ x

0

∫ σ

0

(
u(0, y)− u0(y)

)
dydσ, x ∈ [0, B],

Notes

© 2012 Global Journals Inc.  (US)
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after which we differentiate it twice in x and we get

u(0, x) = u0(x), x ∈ [0, B].

We put t = 0 in (2.11) and we have

0 =

∫ x

0

∫ σ

0

(
ut(0, y)− u1(y)

)
dydσ, x ∈ [0, B],

we differentiate twice the last equality with respect x and we find

ut(0, x) = u1(x), x ∈ [0, B].

Consequently u satisfies the initial conditions (2.3).

The above lemma motivate us to search fixed points of the operator P+1. For this
purpose we will use the following fixed point theorem.

Theorem 2.3. (see [3], Corollary 2.4, pp. 3231) Let X be a nonempty closed convex subset
of a Banach space Y . Suppose that T and S map X into Y such that

(i) S is continuous, S(X) resides in a compact subset of Y ;
(ii) T : X −→ Y is expansive and onto.
Then there exists a point x? ∈ X with Sx? + Tx? = x?.

Here we will use the following definition for expansive operator.

Definition. (see [3], pp. 3230) Let (X, d) be a metric space and M be a subset of X.
The mapping T : M −→ X is said to be expansive, if there exists a constant h > 1 such
that

d(Tx, Ty) ≥ hd(x, y) ∀x, y ∈M.

Lemma 2.4. The operator K+1 : N+1 −→ N∗+1 is an expansive operator and onto.

Proof. Firstly we will see thatK+1 : N+1 −→ N∗+1. Let u ∈ N+1. Then u ∈ C2([0, A], C2([0, B]))
and |u(t, x)| ≤ D, |ut(t, x)| ≤ D, |ux(t, x)| ≤ D for every t ∈ [0, A] and x ∈ [0, B]. From here
K+1(u) = (1 + ε)u ∈ C2([0, A], C2([0, B])) and |K+1(u)(t, x)| = (1 + ε)|u(t, x)| ≤ (1 + ε)D,∣∣∣ ∂∂tK+1(u)(t, x)

∣∣∣ = (1+ε)|ut(t, x)| ≤ (1+ε)D,
∣∣∣ ∂∂xK+1(u)(t, x)

∣∣∣ = (1+ε)|ux(t, x)| ≤ (1+ε)D

for every t ∈ [0, A] and x ∈ [0, B]. Consequently K+1 : N+1 −→ N∗+1.
Let now u, v ∈ N+1. Then

||K+1(u)−K+1(v)|| = (1 + ε)||u− v||,

i.e. the operator K+1 : N+1 −→ N∗+1 is an expansive operator with a constant h = 1 + ε.
Now we will see that the operator K+1 : N+1 −→ N∗+1 is onto. Indeed, let v ∈ N∗+1.

Then u = v
1+ε ∈ N+1 and K+1(u)(t, x) = v(t, x) for every t ∈ [0, A] and x ∈ [0, B]. Therefore

K+1 : N+1 −→ N∗+1 is onto.

Lemma 2.5. The operator L+1 : N+1 −→ N+1 is a continuous operator.

Proof. Let u ∈ N+1, from where |u(t, x)| ≤ D, |ut(t, x)| ≤ D, |ux(t, x)| ≤ D for every
t ∈ [0, A] and x ∈ [0, B], also |u0(x)| ≤ D, |u1(x)| ≤ D for every x ∈ [0, B]. From the
definition of the operator L+1, for t ∈ [0, A], x ∈ [0, B], we have

|L+1(u)(t, x)| ≤ ε|u(t, x)|+
∫ x
0

∫ σ
0 |u(t, y)|dydσ +

∫ x
0

∫ σ
0

(
|u0(y)|+ t|u1(y)|

)
dydσ

Notes
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+
∫ t
0

∫ τ
0 |u(s, x)|dsdτ +

∫ t
0

∫ τ
0

∫ x
0

∫ σ
0 |u|

l(s, y)dydσdsdτ

≤ εD +B2D(2 +A) +A2D +A2B2Dl ≤ D,

in the last inequality we use the first inequality of (2.1).
For t ∈ [0, A], x ∈ [0, B], we have

∂
∂xL+1(u)(t, x) = −εux(t, x) +

∫ x
0 u(t, y)dy −

∫ x
0

(
u0(y) + tu1(y)

)
dy

−
∫ t
0

∫ τ
0 ux(s, x)dsdτ −

∫ t
0

∫ τ
0

∫ x
0 |u|

l(s, y)dydsdτ

and from here, for t ∈ [0, A] and x ∈ [0, B], we get∣∣∣ ∂∂xL+1(u)(t, x)
∣∣∣ ≤ ε|ux(t, x)|+

∫ x
0 |u(t, y)|dy +

∫ x
0

(
|u0(y)|+ t|u1(y)|

)
dy

+
∫ t
0

∫ τ
0 |ux(s, x)|dsdτ +

∫ t
0

∫ τ
0

∫ x
0 |u|

l(s, y)dydsdτ

≤ εD +BD(2 +A) +A2D +A2BDl ≤ D,

in the last inequality we use the second inequality of (2.1).
Also, for t ∈ [0, A], x ∈ [0, B], we have

∂
∂tL+1(u)(t, x) = −εut(t, x) +

∫ x
0

∫ σ
0 ut(t, y)dydσ −

∫ x
0

∫ σ
0 u1(y)dydσ

−
∫ t
0 u(s, x)ds−

∫ t
0

∫ x
0

∫ σ
0 |u|

l(s, y)dydσds

and ∣∣∣ ∂∂tL+1(u)(t, x)
∣∣∣ ≤ ε|ut(t, x)|+

∫ x
0

∫ σ
0 |ut(t, y)|dydσ +

∫ x
0

∫ σ
0 |u1(y)|dydσ

+
∫ t
0 |u(s, x)|ds+

∫ t
0

∫ x
0

∫ σ
0 |u|

l(s, y)dydσds

≤ εD + 2B2D +AD +AB2Dl ≤ D,

in the last inequality we use the third inequality of (2.1).

From the above estimates follows that L+1 : N+1 −→ N+1.
Let now {un} is a sequence of elements of N+1 and u ∈ N+1 and un −→ u when

n −→ ∞ in the sense of the topology of the set N+1, i.e. for every ε1 > 0 there exists
N1 = N1(ε1) > 0 so that for every n > N1 and t ∈ [0, A], x ∈ [0, B], we have

|un(t, x)− u(t, x)| < ε1, |(un)x(t, x)− ux(t, x)| < ε1, |(un)t(t, x)− ut(t, x)| < ε1.

From here, for every ε2 > 0 there exists N2 = N2(ε2) > 0 so that for every n > N2 and for

every t ∈ [0, A], x ∈ [0, B], we have
∣∣∣|un|l(t, x)− |u|l(t, x)

∣∣∣ < ε2 and

|un(t, x)− u(t, x)| < ε2, |(un)x(t, x)− ux(t, x)| < ε2, |(un)t(t, x)− ut(t, x)| < ε2,

|L+1(un)(t, x)− L+1(u)(t, x)| ≤ ε|un(t, x)− u(t, x)|+
∫ x
0

∫ σ
0 |un(t, y)− u(t, y)|dydσ

Notes

© 2012 Global Journals Inc.  (US)
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III. Proof of Theorem 1.2

+
∫ t
0

∫ τ
0 |un(s, x)− u(s, x)|dsdτ +

∫ t
0

∫ τ
0

∫ x
0

∫ σ
0

∣∣∣|un|l(s, y)− |u|l(s, y)
∣∣∣dydσdsdτ

< ε2

(
ε+B2 +A2 +A2B2

)
,∣∣∣ ∂∂xL+1(un)(t, x)− ∂

∂xL+1(u)(t, x)
∣∣∣ ≤ ε|(un)x(t, x)− ux(t, x)|+

∫ x
0 |un(t, y)− u(t, y)|dy

+
∫ t
0

∫ τ
0 |(un)x(s, x)− ux(s, x)|dsdτ +

∫ t
0

∫ τ
0

∫ x
0

∣∣∣|un|l(s, y)− |u|l(s, y)
∣∣∣dydsdτ

< ε2

(
ε+B +A2 +A2B

)
,∣∣∣ ∂∂tL+1(un)(t, x)− ∂

∂tL+1(u)(t, x)
∣∣∣ ≤ ε|(un)t(t, x)− ut(t, x)|+

∫ x
0

∫ σ
0 |(un)t(t, y)− ut(t, y)|dydσ

+
∫ t
0 |un(s, x)− u(s, x)|ds+

∫ t
0

∫ x
0

∫ σ
0

∣∣∣|un|l(s, y)− |u|l(s, y)
∣∣∣dydσds

< ε2

(
ε+B2 +A+AB2

)
,

Therefore L+1(un) −→ L+1(u) when n −→ ∞ in the sense of the topology of the space
N+1, i.e. the operator L+1 : N+1 −→ N+1 is a continuous operator.

Using Lemma 2.1, Lemma 2.4, Lemma 2.5 we apply Theorem 2.3 as the operator T in
Theorem 2.3 corresponds of the operator K+1, the operator S in Theorem 2.3 corresponds
of L+1, the set X in Theorem 2.3 corresponds of N+1, Y in Theorem 2.3 corresponds of
N∗+1 and follows that the operator P+1 has a fixed point u+1 ∈ N+1. From here and from
Lemma 2.2 follows that u+1 is a solution to the Cauchy problem (2.2), (2.3).

In the previous section we prove that if the positive constants A and B satisfy the conditions
(2.1) then the Cauchy problem

utt − uxx = |u|l, t ∈ [0, A], x ∈ [0, B],

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [0, B],

has a solution u+1 ∈ C2([0, A], C2([0, B])).

Let A and B be the same constants as in the Section 2. We consider the Cauchy
problem

utt − uxx = |u|l, t ∈ [0, A], x ∈ [B, 2B],

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [B, 2B].
(3.1)

We define the sets

N+2 =
{
u ∈ C2([0, A], C2([B, 2B])) : |u(t, x)| ≤ D, |ut(t, x)| ≤ D, |ux(t, x)| ≤ D

∀t ∈ [0, A], ∀x ∈ [B, 2B]
}
,

Notes
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N∗+2 =
{
u ∈ C2([0, A], C2([B, 2B])) : |u(t, x)| ≤ (1 + ε)D, |ut(t, x)| ≤ (1 + ε)D,

|ux(t, x)| ≤ (1 + ε)D ∀t ∈ [0, A], ∀x ∈ [B, 2B]
}
,

in these sets we define a norm as follows

||u||1 = max
t∈[0,A],x∈[B,2B]

|u(t, x)|,

in this way the sets N+2 and N∗+2 are closed, convex and compact sets in C([0, A]× [B, 2B]).
For u ∈ N∗+2 we define the operators

K+2(u)(t, x) = (1 + ε)u(t, x),

L+2(u)(t, x) = −εu(t, x) +
∫ x
B

∫ σ
B u(t, y)dydσ −

∫ x
B

∫ σ
B

(
u0(y) + tu1(y)

)
dydσ

−
∫ t
0

∫ τ
0

(
u(s, x)− u+1(s,B)− (x−B)u+1

x (s,B)
)
dsdτ −

∫ t
0

∫ τ
0

∫ x
B

∫ σ
B |u|

l(s, y)dydσdsdτ,

P+2(u)(t, x) = K+2(u)(t, x) + L+2(u)(t, x).

As in the Section 2 we prove that the Cauchy problem (3.1) has a solution u+2 ∈ C2([0, A], C2([B, 2B]))
for which we have, for t ∈ [0, A], x ∈ [B, 2B],

0 =
∫ x
B

∫ σ
B u

+2(t, y)dydσ −
∫ x
B

∫ σ
B

(
u0(y) + tu1(y)

)
dydσ

−
∫ t
0

∫ τ
0

(
u+2(s, x)− u+1(s,B)− (x−B)u+1

x (s,B)
)
dsdτ −

∫ t
0

∫ τ
0

∫ x
B

∫ σ
B

∣∣∣u+2
∣∣∣l(s, y)dydσdsdτ

(3.2)

Now we put x = B in (3.2) and we obtain

0 =

∫ t

0

∫ τ

0

(
u+2(s,B)− u+1(s,B)

)
dsdτ, t ∈ [0, A],

after we differentiate twice in t the last equality we get

u+2(t, B) = u+1(t, B), t ∈ [0, A]. (3.3)

Now we differentiate in x the equality (3.2), after which we put x = B and we find

0 =

∫ t

0

∫ τ

0

(
u+2
x (s,B)− u+1

x (s,B)
)
dsdτ, t ∈ [0, A],

after we differentiate the last equality twice in t we obtain

u+2
x (t, B) = u+1

x (t, B), t ∈ [0, A].

From (3.3) we have

u+1
t (t, B) = u+2

t (t, B), u+1
tt (t, B) = u+2

tt (t, B), t ∈ [0, A].

From here, from (3.3) and from

u+2
tt (t, B)− u+2

xx (t, B) =
∣∣∣u+2

∣∣∣l(t, B), t ∈ [0, A],

Notes

© 2012 Global Journals Inc.  (US)
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u+1
tt (t, B)− u+1

xx (t, B) =
∣∣∣u+1

∣∣∣l(t, B), t ∈ [0, A],

we conclude that

u+2
xx (t, B) = u+1

xx (t, B), t ∈ [0, A].

Consequently the function

ũ =


u+1 t ∈ [0, A], x ∈ [0, B],

u+2 t ∈ [0, A], x ∈ [B, 2B],

is a solution to the Cauchy problem

utt − uxx = |u|l, t ∈ [0, A], x ∈ [0, 2B],

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [0, 2B],

which belongs in the space C2([0, A], C2([0, 2B])).
Now consider the Cauchy problem

utt − uxx = |u|l, t ∈ [0, A], x ∈ [2B, 3B],

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [2B, 3B].

We define the sets

N+3 =
{
u ∈ C2([0, A], C2([2B, 3B])) : |u(t, x)| ≤ D, |ut(t, x)| ≤ D, |ux(t, x)| ≤ D

∀t ∈ [0, A], ∀x ∈ [2B, 3B]
}
,

N∗+3 =
{
u ∈ C2([0, A], C2([2B, 3B])) : |u(t, x)| ≤ (1 + ε)D, |ut(t, x)| ≤ (1 + ε)D,

|ux(t, x)| ≤ (1 + ε)D ∀t ∈ [0, A], ∀x ∈ [2B, 3B]
}
,

in these sets we define a norm as follows

||u||1 = max
t∈[0,A],x∈[2B,3B]

|u(t, x)|,

in this way the sets N+3 and N∗+3 are are closed, convex and compact sets in C([0, A] ×
[2B, 3B]).

For u ∈ N∗+3 we define the operators

K+3(u)(t, x) = (1 + ε)u(t, x),

L+3(u)(t, x) = −εu(t, x) +
∫ x
2B

∫ σ
2B u(t, y)dydσ −

∫ x
2B

∫ σ
2B

(
u0(y) + tu1(y)

)
dydσ

−
∫ t
0

∫ τ
0

(
u(s, x)− u+2(s, 2B)− (x− 2B)u+2(s, 2B)

)
dsdτ −

∫ t
0

∫ τ
0

∫ x
2B

∫ σ
2B |u|

l(s, y)dydσdsdτ,

P+3(u)(t, x) = K+3(u)(t, x) + L+3(u)(t, x).

Notes
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IV. Proof of Theorem 1.3

And etc.
The function

u+ =



u+1 t ∈ [0, A], x ∈ [0, B],

u+2 t ∈ [0, A], x ∈ [B, 2B],

u+3 t ∈ [0, A], x ∈ [2B, 3B],

· · ·

is a solution to the Cauchy problem

utt − uxx = |u|l, t ∈ [0, A], x ∈ [0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [0,∞),

which belongs to the space C2([0, A], C2([0,∞))).

Let A and B are the same constants as in the Section 2. Now consider the Cauchy problem

utt − uxx = |u|l, t ∈ [0, A], x ∈ [−B, 0],

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [−B, 0].
(4.1)

We define the sets

N−1 =
{
u ∈ C2([0, A], C2([−B, 0])) : |u(t, x)| ≤ D, |ut(t, x)| ≤ D, |ux(t, x)| ≤ D

∀t ∈ [0, A], ∀x ∈ [−B, 0]
}
,

N∗−1 =
{
u ∈ C2([0, A], C2([−B, 0])) : |u(t, x)| ≤ (1 + ε)D, |ut(t, x)| ≤ (1 + ε)D,

|ux(t, x)| ≤ (1 + ε)D ∀t ∈ [0, A], ∀x ∈ [−B, 0]
}
,

in these sets we define a norm as follows

||u|| = max
t∈[0,A],x∈[−B,0]

|u(t, x)|,

in this way the sets N−1 and N∗−1 are are closed, convex and compact sets in C([0, A] ×
[−B, 0]).

For u ∈ N∗−1 we define the operators

K−1(u)(t, x) = (1 + ε)u(t, x),

L−1(u)(t, x) = −εu(t, x) +
∫ 0
x

∫ 0
σ u(t, y)dydσ −

∫ 0
x

∫ 0
σ

(
u0(y) + tu1(y)

)
dydσ

−
∫ t
0

∫ τ
0

(
u(s, x)− u+(s, 0)− xu+x (s, 0)

)
dsdτ −

∫ t
0

∫ τ
0

∫ 0
x

∫ 0
σ |u|

l(s, y)dydσdsdτ,

Notes
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P−1(u)(t, x) = K−1(u)(t, x) + L−1(u)(t, x).

As in the Section 2 and in the Section 3 we prove that the Cauchy problem (4.1) has a
solution u−1 ∈ C2([0, A], C2([−B, 0])). And etc.

The function
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u−1 t ∈ [0, A], x ∈ [−B, 0],

u−2 t ∈ [0, A], x ∈ [−2B,−B],

· · ·

is a solution to the Cauchy problem

utt − uxx = |u|l, t ∈ [0, A], x ∈ (−∞, 0],

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (−∞, 0],

which belongs to the space C2([0, A], C2(−∞, 0]), and the function

u =


u+ t ∈ [0, A], x ∈ [0,∞),

u− t ∈ [0, A], x ∈ (−∞, 0],

is a solution to the Cauchy problem (1.1), (1.2) which belongs to the space C2([0, A], C2(R)).
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