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Existence of Classical Solutions for a Class
Nonlinear Wave Equations

Svetlin Georgiev Georgiev

[ [NTRODUCTION

In this article we investigate the Cauchy problem

Uy — Uge = |ul', > 0,2 €R, (1.1)

u(0,2) = up(z), w(0,2) =ui(z), =x€R, (1.2)

where ug € C?(R), u; € C}(R) are given functions for which |ug(z)| < D, |ui(z)| < D for
every x € R, D is given positive constant, [ € [0, 1) is fixed, u is unknown function.

The problem (1.1), (1.2) was considered in the cases when [ > 1, [ = 0, for local

existence, global existence, blow up and etc, see for instance [2] and references therein. The
case | € (0,1) was opened. Our aim in this article is to give an answer in this case. We
give an answer for local existence of classical solutions. The problem for uniqueness of the
classical solutions(twice continuous - differentiable in x and in ¢) is opened yet.

For M, N C R with C?(M,C?(N)) we will denote the space of the functions u which are

twice continuous - differentiable in ¢t € M and twice continuous - differentiable in « € N.

Our main results are as follows.

Theorem 1.1. Let D be fized positive constant and ug € C*(R), u; € CY(R) be fized so

that |up(z)] < D, |ui(z)] < D for every x € R, let also | € [0,1) be fized. Then there

exist positive constants A and B so that the Cauchy problem (1.1), (1.2) has a solution

u € C2([0, A],C%([0, B))).

Theorem 1.2. Let D be fived positive constant and uy € C*(R), u1 € C*(R) be fived
so that |ug(z)] < D, |ui(z)] < D for every x € R, let also | € [0,1) be fixred. Then
there exists positive constant A so that the Cauchy problem (1.1), (1.2) has a solution
u € C2([0, A],C%([0,0))).
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Theorem 1.3. Let D be fized positive constant and ug € C*(R), u; € C*(R) be fived
so that |up(z)| < D, |ui(z)| < D for every x € R, let also I € [0,1) be fized. Then

there exists positive constant A so that the Cauchy problem (1.1), (1.2) has a solution
u € C2((0, A],C2(R)).

We note that when wuy or u; is not identically equal to zero the Cauchy problem (1.1),
(1.2) has a nontrivial solution.

To prove our main results we will use a new approach which is used in the author’s
article [1] for another class of nonlinear wave equations.

The article is organized as follows: in the next section we will prove Theorem 1.1, in
the section 3 we will prove Theorem 1.2, in the section 4 we will prove Theorem 1.3. In the
appendix we will prove some facts which are used in the proof of basic results.

[I.  PROOF OF THEOREM 1.1
Let € € (0,1) be fixed. We choose enough small positive constants A and B so that
eD + B2D(2+ A) + (2+ B)A%2D + A’B2D! < D,
eD+ BD(2+ A) + (2+ B)A2D + A2BD' < D, (2.1)
eD +2B%D + (2+ B)AD + AB?D' < D.

For example € = £, D =100, A = B = 555005

In this section we will prove that the Cauchy problem
Uy — Uge = |ul', t€[0,4],2 €0,B], (2.2)
U(O,Jf) = UO(:U)? ut(ovx) = Ul(.%'), T e [O?B]v (23)

has a solution vt € C%([0, A],C2([0, B])).
We define the sets

Ny = {u e €20, AL,C2(0. BY) : [u(t, 2)] < D, fu(t,2)] < D, lug(t,2)| < D
Vt e [0,4], Vze [o,B]},
F1= {U € C%([0,AL,¢*([0, B])) « [u(t, #)| < (1 +€)D, Jue(t, )| < (1+€) D,
lug(t, )| < 1+ 6D Vte[0,4], Vae [o,B]},
in these sets we define a norm as follows

— t .
[[ull1 o lu(t, )|

Lemma 2.1. The sets Nyy and N, are closed, compact and convex spaces in C([0, A] x
[0, B]) in the sense of norm || - ||1.

Proof. We will prove our assertion for N .
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Firstly we will prove that N4 is a closed space with respect || - ||;. For this we will
propose two ways, the first one is to be proved that N, is a completely normed space with
respect the norm || - ||1, using Weierstrass - Stone theorem, the second one is based on the
definition - in other words we will prove that it contains its limit points.

First proof. Let {u,} is a sequence of elements of the space N;; which is a fun-
damental sequence and it is well known that there exists U € C([0, A] x [0, B]) so that
lim,,— o0 up, = U with respect the norm || - [|;. Then for every € > 0 there exists N3 =
Ni(€) > 0 so that for every n > Nj we have

llun — U1 < e.

From Weierstrass - Stone theorem there exists a sequence {p;} of trigonometric polynomials
so that |[p; — U||1 — 0 when [ — co. We have p; € C?([0, A] x [0, B]) and there exists
Ly = Li(e) > 0 so that for every L > L; we have

lpr = Ul <e

We fix L > L; and put v = pr. From here, for every n > Ny,
[lun = ully < lun = Ulls + ||U —ul[y < 2e.

Consequently the fundamental sequence u,, of elements of N, is convergent to the element
u € C?([0, A] x [0, B]) with respect the norm || - ||;. Now we will prove that u € Ny.
Evidently |u(t,z)| < D for every (t,z) € [0, A] x [0, B]. Now we suppose that there exists
(t,%) € [0, A] x [0, B] so that

lug (£, Z)| > D.

Then there exists €5 > 0 so that

‘Ut<£,.i')‘ > D + e9.

From here there exists d5 = d5(e2) > 0 such that from |h| < 5, h # 0, (£,Z) € [0, A] x [0, B]
we have

‘u(f,i—i-h) —u(f,:i)‘ > D4

On the other hand, since u,(,#) — u(t,#) in sense of || - ||1, as n — oo, follows that
there exists dg = dg(e2) > 0 so that we have from |h| < dg, h # 0, (t + h, %) € [0, A] x [0, B]

un (f+h,E)—un(t,28)  u(t+h,@)—u(l,i)
h h

< €9

and since |(uy)¢| < D in [0, A] x [0, B]

‘un(t-l-h,xi)L—un(t,x)) <D

for enough large n. From here, for enough large n and for |h| < min{ds,d}, h # O,
(t+h,%) €0, A] x [0, B] we have

eo=D+e—D
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< u(t+h,@)—u(t,z) U, (TR, ) =, (£,)
h B h

<

u(t+h,x2b—u(t,$) . un(t-i—h,:c})L—un(t,:c) < e,

which is a contradiction. Therefore |u;| < D in [0, A] x [0, B]. As in above we can prove that
|uz(t,z)| < D in [0, A] x [0, B]. Consequently u € N4; and Ny is closed in C([0, A] x [0, B])
in sense of || - ||;.

Second proof. Let u is a limit point of N ;.

Then there exists a sequence {u,} of elements of N1 and u, —,— 00 u in the sense
of the norm || - |;.

Evidently |u(t,z)| < D for every (t,x) € [0, A] x [0, B].
We suppose that u ¢ C1([0, A] x [0, B]

does not exist in a point (t,z) € [0, A] x [0, B]. Then there exists € > 0 so that for every
01 =01(e) >0 and |h| <1, h#0, (t+ h,x) € [0, A] x [0, B], we have

). Without loss of generality we suppose that u;

‘ u(t + h, x) —u(t,z) ‘ e (2.4)

On the other hand since u,, € C%([0, A],C%([0, B])) we have that there exists dy = d2(€) > 0
so that from |h| < d2, h # 0, (t + h,x) € [0, A] x [0, B], we have

un(t—i-h,x]z—un(taff)) < g (2.5)

Also, from u,, —%,—,00 u in the sense of the norm || - ||; we have for enough large n and
|h| < min{dq,d2}, h # 0, (t+ h,z) € [0, A] x [0, B] that

un (t+h,a)—un(t,z)  u(t+h,x)—u(t,x)
h h

< 3. (2.6)

Then from (2.6), (2.5), (2.4) we obtain for |h| < min{dy,d2}, h # 0, (t+h,x) € [0, A] x[0, B],
for enough large n,

u(t+h,z)—u(t,x) up (t+h,x)—un (t,x) up (t+h,x)—un (t,x) u(t+h,z)—u(t,x) €
2 < B 2 - h <23

€< 3

_l’_

which is a contradiction with our assumption that w(¢,z) does not exist. If we suppose
that us(t,z) does not exist in a point (t,z) € [0, A] x [0, B], as in above we will go to a
contradiction. Therefore u € C1([0, A],C1([0, B])).

We note that from u, — u as n — oo and u,,u € C'([0, A],C*([0, B])) follows that
for every € there exists 6(¢€) > 0 so that from |h| < &, h # 0, (t + h,z) € [0, A] x [0, B], we
have

un(t+ h,x) —up(t,z)  u(t+ h,z) — u(t,x)

- <€
h h ’
from where we conclude that w,; — u; in sense of || - || as n — oo. In the same way we
have up; — u; when n — oo in sense of || - ||;.

We suppose that u ¢ C%([0, A],C?([0, B]). Without loss of generality we suppose that
uy does not exist in a point (¢,z) € [0, A] x [0, B]. Then there exists ¢; > 0 so that for
every d3 = 03(e1) > 0 and |h| < d3, h # 0, (t + h,z) € [0, A] x [0, B] we have
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ut(t + h7 l’) — ut(tv x)

> €1. (27)

On the other hand since u,, € C?([0,1],C?(B1)) we have that there exists d4 = 64(e1) > 0 so
that from |h| < d4, h # 0, (t + h,z) € [0, A] x [0, B] we have

’(un)t(t + h,a:})L — (un)i(t, ) ‘ < %1 . (2.8)

Also, from up; —p—00 ur in the sense of the norm || - ||; we have for enough large n and
|h| < min{ds,d4}, h # 0, (t + h,x) € [0, A] x [0, B] that

(un)e(t+h,z)—(un)¢ (t,x) g (t+h,x)—ui(t,z)
h h

< 9. (2.9)
Then from (2.9), (2.8), (2.7) we obtain for |h| < min{ds,ds}, h # 0, (t+h, z) € [0, A] x [0, B],
for enough large n,

€ < ut (t+h,:1:})lfut (t,x)

<

(un)e(t+h,x) = (un)e(t,2)
h 37

un )t (E+h,2)—(upn ) (t,x) ut (t,x) —ue(t,z) €
(un)s( h()t _w( ht( < 24

—+

which is a contradiction with our assumption that uy; does not exists in a point (¢,z) €
[0, A] x [0,B]. If we suppose that wu,, does not exist in a point (¢,z) € [0, A] x [0, B]
as in above we can go to a contradiction. Therefore u € C2([0, A],C3([0, B])). As in the
first proof(above) we have that |u(t,z)| < D, |u(t,z)| < D, |ux(t,z)| < D for every

(t,z) € [0, A] x [0, B], i.e. u € Ny;. Consequently Ni; contains its limit points.

Using Arzela - Ascoli Theorem the set N1 is a compact set in C([0, A] x [0, B]) in sense
of |- |l

Let now X\ € [0,1] is arbitrary chosen and fixed and uy,us € Nij. Then for (t,z) €
[0, A] x [0, B] we have Auq(t,z) + (1 — Nua(t, z) € C2([0, 4], C?([0, B])) and

us(t,0)] < D, Jugg(t,0) €D fuig(t,7)| <D for i=1,2,
i (t,2) + (1 — Nus(t, )] < Mui (t,2)] + (1 — Mua(t, )] < AD + (1 — \)D = D,
[Aury(t, ) + (1 = Augg (8, 2)| < Muae(t, )| + (1 = A)|ugi(t,2)] <AD + (1 = A)D =D,
[Aurg (8, @) + (1 = MNugg (8, 2)| < Auig(t, )| + (1 = A|ugy (¢, 2)| < AD + (1 - A)D = D.

Therefore N4 is convex.
As in above we can prove that N7, is closed, compact and convex in C([0, A] x [0, B])
in sense of || - ||.

For u € N7, we define the operators
Ko (u)(t,2) = (1+ ult, o),

Lii(u)(t,x) = —eu(t,x) + [ [5 u(t,y)dydo — [ [7 (uo(y) + tul(y))dyda

© 2012 Global Journals Inc
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fo fo s, x)dsdT — f(f fOT fom foa lu|' (s, y)dydodsdr,

P+1(U)(t, Q?) = K+1(U)(t, 1’) + L+1(U’)(t7 1’)
Our first observation is as follows.

Lemma 2.2. Let u € N, be a fived point of the operator Pyy1. Then u is a solution to the
Cauchy problem (2.2), (2.3).

Proof. Since u € N7, is a fixed point of the operator P we have for every t € [0, A] and
z € [0, B]

u(t,z) = Pri(u)(t, x) = K1 (u)(t, 2) + Ly (u)(t, z)
= (14 u(t,2) — eult,z) + J J7 u(t.y)dydo — [7 J7 (wo(y) + tur (y) ) dydo
— [T (s, z)dsdr — [ LT T ull(s, y)dydodsdr
u(t,@) + [y J5 ult,y)dydo = [ J5 (woly) + tur (v) ) dydo
— [T (s, @)dsdr — [ LTS ull(s, y)dydodsdr,

whereupon for every ¢ € [0, A] and every = € [0, B] we have

0= [y J5 ult,y)dydo — [ [ (uo ) + tui(y ))dyda
(2.10)

—fo fo 5, dsdT—fO fo fo fo lul' (s, y)dydodsdr.

Now we differentiate the last equality with respect ¢t and we get, for ¢ € [0, 4], x € [0, B],
0= fom fOU (ut(t, y) — ul(y))dyda — fg u(s,z)ds — fg fg f(f |u|l(s,y)dydo'ds. (2.11)

We differentiate the last equality with respect the time variable ¢t and we obtain

0= [ [ unttavdo —utt.x)~ [ [ lul'tp)dvdo, ¢ 0,410 € o,B
0 0 0 0

Now we differentiate the last equality with respect x we find
x x !
0= / utt(tvy)dy_um(t7$) - |U| (tay)dy7 te [0714]733 € [07 B]
0 0
After we differentiate the last equality in x we obtain

0= us — gy — |ul', t€[0,4],z€[0,B],

in other words u satisfies the equation (2.2).
Now we put t = 0 in (2.10) and we find

0—/ / u(0,y) — uo(y ))dyda z € [0, B],

© 2012 Global Journals Inc. (US)
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after which we differentiate it twice in z and we get
u(0,z) = up(z), =z €[0,B].

We put ¢ =0 in (2.11) and we have
0= / / (ut(ovy) - ul(y)>dyd07 T e [07 B]7
0o Jo

we differentiate twice the last equality with respect z and we find
ut(ovx):ul(m)7 T € [OvB]
Consequently u satisfies the initial conditions (2.3).

The above lemma motivate us to search fixed points of the operator P,;. For this
purpose we will use the following fixed point theorem.

Theorem 2.3. (see [3], Corollary 2.4, pp. 3231) Let X be a nonempty closed convex subset
of a Banach space Y. Suppose that T and S map X into Y such that

(i) S is continuous, S(X) resides in a compact subset of Y ;

(ii) T: X — Y s expansive and onto.

Then there exists a point x* € X with Sx* + Ta* = x*.

Here we will use the following definition for expansive operator.

Definition. (see [3], pp. 3230) Let (X, d) be a metric space and M be a subset of X.
The mapping T : M — X is said to be expansive, if there exists a constant h > 1 such
that

d(Txz,Ty) > hd(x,y) Vx,y € M.

Lemma 2.4. The operator K1 : Ny1 — N7J; is an expansive operator and onto.

Proof. Firstly we will see that K1 : Nyy — N3;. Let u € Nyi. Thenu € C%([0, A, C*([0, B)))

and |u(t, z)| < D, |u(t,z)| < D, |ug(t,x)| < D for every t € [0, A] and = € [0, B]. From here
Ky1(u) = (1+ e)u € €2([0, A],€2([0, B])) and |K41(u)(t,2)] = (1 + e)u(t,z)| < (1 +¢€)D,
%Kﬂ(u)(t,x)‘ — (14)|w(t,2)| < (1+€)D, %Kﬂ(u)(t,x)‘ = (14 6)|ua(t,z)| < (1+€)D
for every t € [0, A] and x € [0, B]. Consequently K i : Ny1 — NJ;.

Let now u,v € Nij. Then

1K1 (u) = K (0)]] = (1 + )ffu — o],

i.e. the operator K1 : Ny1 — N7, is an expansive operator with a constant h =1 + €.

Now we will see that the operator K1 : Ny3 — N7, is onto. Indeed, let v € N7;.
Then u = 3. € Nyy and K4 (u)(t,2) = v(t, z) for every t € [0, A] and z € [0, B]. Therefore
Ky : Nyp — N7, is onto.

Lemma 2.5. The operator Ly : Ny1 — Ni1 1s a continuous operator.

Proof. Let w € Nyi, from where |u(t,z)| < D, |u(t,x)| < D, |ugy(t,z)] < D for every
t € [0,4] and = € [0, B], also |ug(z)| < D, |ui(x)| < D for every x € [0,B]. From the
definition of the operator L1, for t € [0, A, x € [0, B], we have

L (u)(t,0)] < elult, )| + 7 J3 Lt )ldydo + [ [ (luo(w)] + tus ()] ) dydo
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+ Jo Jo luls,2)dsdr + [§ [7 fo J3 [ul' (s, y)dydodsdr
<eD+ B?’D(2+ A) + A’D + A’B?D! < D,

in the last inequality we use the first inequality of (2.1).
For t € [0, A], z € [0, B], we have

a%cLJrl(u)(t’:E) = _GUZ(t :L‘ + f() t » Y dy fO (Uo )+tu1(y))dy
_f() fo Ua (s, z)dsdT — fo fo fo |ul'(s,y)dydsdr

and from here, for ¢ € [0, A] and = € [0, B], we get

L Ly ()t )] < eluat, )] + J5 ult p)ldy + Ji (Juo(w)] + s (v)] ) dy

+ fy S lua (s, 2)|dsdr + [y [ [ lul'(s,y)dydsdr
<eD+ BD(2+ A) + A’D + A’2BD! < D,

in the last inequality we use the second inequality of (2.1).
Also, for t € [0, A], x € [0, B], we have

%Lﬂ(u)(t,az) = —euy(t,x) + [ fg w(t,y)dydo — [ [ ui(y)dydo

—f(f u(s,x)ds — fg Iy lul' (s, y)dydods

and
‘%LH( )(t, x)‘ < clugt, ) + [T [ fua(t, )| dydo + [ [T |ur (y)|dydo

—i—fg lu(s,x)|ds + fg foz foa |u\l(s,y)dyd0d5
<€D +2B?D + AD + AB*D! < D,

in the last inequality we use the third inequality of (2.1).

From the above estimates follows that Ly : Npg — Nyj.

Let now {u,} is a sequence of elements of Ny; and v € Ni; and u, — u when
n — oo in the sense of the topology of the set N, i.e. for every ¢; > 0 there exists
N1 = Ni(e1) > 0 so that for every n > Ny and t € [0, A], x € [0, B], we have

lun(t, z) —u(t,x)| < €1, |(un)e(t,x) — uz(t, )| < €1, [(un)e(t,x) — u(t, )| < €.

From here, for every e > 0 there exists Ny = Na(e3) > 0 so that for every n > Ny and for
every t € [0, A], x € [0, B], we have ‘|un|l(t,x) - \u|l(t,a:)’ < € and

lun(t, ) —u(t,x)| < e, |(un)z(t,x) — ux(t, )| < €2, |(un)e(t, x) — u(t, x)| < €a,

L (un)(t, ) = Lia () (8, )] < elun(t,2) — ult,2)| + [§ f lun(t,y) — u(t,y)|dydo
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—|—fg lun (s, z) —u(s,z)|ds + fg fg; f[;f

+ Jo Jo lun(s, @) = uls,x)ldsdr + [5 [5 Jo" 3

<e2(e+BQ+A2+A2B2>,

unl'(s,y) — |u|l(s,y)‘dydadsd7

5 Lt (un) (¢, ) — %LJrl(“)(th)’ < €l(un)e(t, @) — us(t, 2)| + [§ lun(t,y) — u(t,y)|dy

ST (un)a (s, 2) — ug(s, @) |dsdr + [y [T [

[l (5,) = lul (5, ) | dydsdr

<62(6+B+A2+A2B),

L (wn)(t,2) = GTa ()t )| < ellwn)it,2) = walt 2) + J3 7 )il y) — et )l dydo

(5. y) = [ul' (s, )| dydods

<62<€+BQ+A—|—AB2>,

Therefore Ly1(up) — Li1(u) when n — oo in the sense of the topology of the space
N,1, i.e. the operator L1 : N1 —> N4 is a continuous operator.

Using Lemma 2.1, Lemma 2.4, Lemma 2.5 we apply Theorem 2.3 as the operator 7" in

Theorem 2.3 corresponds of the operator K1, the operator .S in Theorem 2.3 corresponds
of L4y, the set X in Theorem 2.3 corresponds of N4, Y in Theorem 2.3 corresponds of
N7, and follows that the operator Py; has a fixed point ut! € Nii. From here and from
Lemma 2.2 follows that u™! is a solution to the Cauchy problem (2.2), (2.3).

[1I.  PROOF OF THEOREM 1.2

In the previous section we prove that if the positive constants A and B satisfy the conditions
(2.1) then the Cauchy problem

Ut — Ugy = ’u|la te [O,A],IL’ € [0’ B]a

uw(0,2) = ug(z),ut(0,2) = uy(z), =z €l0,B],

has a solution vt € C2([0, A],C2([0, B])).

Let A and B be the same constants as in the Section 2. We consider the Cauchy

problem

Uy — Uz = |u|', t€[0,4], x€[B,2B],
(3.1)
u(0,x) = ug(x),us(0,2) = ui(x), =€ [B,2B].

We define the sets

Nio = {u € C(0, 4],C*([B,2B)) : |u(t, 2)| < D, Jus(t, 2)] < D, ua(t, 2)] < D

vie 0,4, vee(B28]}
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Nty = {u e C2([0, A],C3([B,2B))) : [u(t,z)| < (1 + €)D, Jus(t, z)| < (1 + €)D,
lup(t, )| < 1+ 6D Wte[0,4], Vae [B,zB]},

in these sets we define a norm as follows

lulh = max Ju(t, z)],

te[0,A],z€[B,2B]

in this way the sets N2 and N7, are closed, convex and compact sets in C([0, A] x [B, 2B]).
For u € N7, we define the operators

Ka(u)(t,2) = (1+ ult, o),
Lia(u)(t,z) = —eu(t, ) + [2 [Su(t,y)dydo — [2 [S (uo )+tu1(y))dyd0

~ Jo Ji (u(s,2) = wti(s, B) = (@ = BYui(s, B) ) dsdr — [§ [ [3 J7, lul'(s,y)dydodsdr,
Pro(u)(t, x) = Kya(u)(t, ) + Ly2(u)(t, ).

As in the Section 2 we prove that the Cauchy problem (3.1) has a solution u™ € C?([0, A],C*([B, 2B]))
for which we have, for ¢ € [0, 4], z € [B,2B],

0= f3 [ u*(t.)dydo — [ 5 (uo(y) + tur(v) ) dydo

—fot N <u+2(s,x) —utl(s,B) — (z — B)uf!(s B))deT fot Is Iz /5 u+2‘l(s,y)dydodsd7'

(3.2)
Now we put z = B in (3.2) and we obtain
O—// +2SB ) —uT(s, B))deT te0,A4],
after we differentiate twice in t the last equality we get
*2(t,B) =uT(t,B), te]0,A]. (3.3)

Now we differentiate in x the equality (3.2), after which we put x = B and we find

t T
0= / / (uiz(s, B) — uf (s, B))deT, t € [0, 4],
0 Jo

after we differentiate the last equality twice in ¢t we obtain
u?(t,B) = uft(t,B), te][0,A]
From (3.3) we have
+1(t7 B) = “t (t B), Utt (t B) = Utt (t B), tel0,A]
From here, from (3.3) and from

ul(t, B) —ut2(t,B) = ‘ +2‘l(t,B), t €10, A],

© 2012 Global Journals Inc. (US)
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l
uf (t B) — ubh e B) = [utt| (1, B), te 0, 4]

we conclude that
wZ(t,B) = uj, (t,B), te[0,A]

Consequently the function

Notes = '

ut? te|0,A],r € [B,2B],

1o telo, A,z €[0,B],

I~

is a solution to the Cauchy problem

Uy — gz = |ult, t€10,A],x €[0,2B],
U(O,l’) = ’LL(](IL‘),’LLt(O,l‘) = ul(x)v T € [0> 23]7

which belongs in the space C2([0, A],C2([0,2B))).
Now consider the Cauchy problem

gt — uge = |ul', t€[0,4], x¢c[2B,3B],
U(O,I) = uO(x)vut(Oaﬁ) = ul(x)v T < [QBaBB]

We define the sets
Nis = {u e ([0, A], C2([2B,3B))) : Ju(t,z)| < D, Jus(t,z)| < D, |ug(t, x)| < D
Vte[0,4], Vre [23,33]},
3= {u € C%([0, A],C?([2B,3B))) : |u(t,x)| < (1 +€)D, |u(t, z)| < (1 +¢€)D,
lug(t, )| < (1+ 6D Vte[0,4], Vae [23,33]},
in these sets we define a norm as follows

= t
[[ull1 o a S s lu(t, z)|,

in this way the sets Ny3 and N}, are are closed, convex and compact sets in C([0, A] x
[2B,3B]).
For w € N7 we define the operators

K es(w)(t,) = (1 + ult, 2),
Lis(u)(t, ) = —eult,a) + [ [5pu(t.y)dydo — [3 55 (uo(y) + tur (y) ) dydo
— fot fOT (u(s,x) —u*%(s,2B) — (x — 2B)u™?(s, 2B)>dsd7' — fot fOT foB f;B lu|' (s, y)dydodsdr,

Pya(u)(t, x) = Kys(u)(t, ) + Lyz(u)(t, ).
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And ete.
The function

utt te|0,4],z €0, B],
ut? te|0,A],z €[B,2B],

ut3 te0,A],z € [2B,3B],

L Notes

is a solution to the Cauchy problem

U — Uge = |ul', € ]0,A],x € [0,00),
u(0,2) = ug(x),u(0,2) = ui(x), = € [0,00),

which belongs to the space C%([0, 4], C%(]0, >))).

[V.  PROOF OF THEOREM 1.3
Let A and B are the same constants as in the Section 2. Now consider the Cauchy problem

Uy — Uge = |ul', t€[0,4], x€[-B,0],
(4.1)
u(0,z) = up(z), ut(0,z) = ui(x), =€ [-B,0].
We define the sets

Ny = {ue (0,41, C%(~B,0) : [u(t, )| < D, Jualt, )| < D, ua(t, 2)] < D
vt e [0, 4], Vre [—B,o]},
N2y = {u e (0,4, C([=B,0) : fult, 2)] < (14D, fuelt, 2)] < (1+)D,
lug(t, )| < (1+€)D Vte[0,4], Vae [—B,O]},

in these sets we define a norm as follows

[lul| = Ju(t, )],

telo, A} ze[ B,0]

in this way the sets N_; and N*; are are closed, convex and compact sets in C([0, A] x
[_Ba 0])

For u € N*; we define the operators

K_1(u)(t,z) = (1 + e)u(t, x),
L 1(u)(t,z) = —eu(t,z +f f (t,y dyda—f f (uo ) + tug (y ))dyda

fo N ( s,z) —ut(s,0) — zut (s, 0))dsd7‘—f0 N f f lu|' (s, y)dydodsdr,
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P_i(u)(t,z) = K_1(u)(t,z) + L_1(u)(t, x).

As in the Section 2 and in the Section 3 we prove that the Cauchy problem (4.1) has a
solution u~! € C2([0, A],C?([-B,0])). And etc.
The function

u™t tel0,4],z € [-B,0],

u =< u? tel0,A],r€[-2B,-B],

is a solution to the Cauchy problem

Ug — Ugz = |ul', t€]0,A],x € (—00,0],

u(0,z) = uo(x),u(0,2) = wr(z), = € (—o0,0],
which belongs to the space C2([0, A],C?(—oc,0]), and the function
ut te[0,A],z € [0,0),
u” tel0,A],z € (—o0,0],

is a solution to the Cauchy problem (1.1), (1.2) which belongs to the space C2(]0, A], C3(R)).
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