Note on Certain Field of Fractions

By S. Usaini & S. M. Tudunkaya

Kano University of Science and Technology, Nigeria

Abstract - The set of some real rhotrices of the same dimension D^* was defined in [2] to be an integral domain. An example of a finite field $M[R_3]$ was given in [4] based on this definition also and on the construction of finite fields presented in [3]. It was discovered that the finite subcollection of the elements of $M[R_3]$ as contained in D^* is not closed under rhotrix addition and hence not an integral domain. More generally, D^* is not an integral domain as it is not closed under rhotrix addition. This problem affects the field of fractions constructed in [8]. A solution to this problem is provided in this article and the construction method of such fields is reviewed. This reviewed version gives the generalization of such construction as the n-dimensional rhotrices are used.

Keywords : n-dimensional rhotrix; Quotient rhotrix; Integral domain; Field of fraction.

GJSFR-F Classification : MSC 2010: 83A05

© 2012, S. Usaini & S. M. Tudunkaya. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Note On Certain Field of Fractions

S. Usaini & S. M. Tudunkaya

Abstract - The set of some real rhotrices of the same dimension D^* was defined in [2] to be an integral domain. An example of a finite field $M[R_3]$ was given in [4] based on this definition also and on the construction of finite fields presented in [3]. It was discovered that the finite sub collection of the elements of $M[R_3]$ as contained in D^* is not closed under rhotrix addition and hence not an integral domain. More generally, D^* is not an integral domain as it is not closed under rhotrix addition. This problem affects the field of fractions constructed in [8]. A solution to this problem is provided in this article and the construction method of such fields is reviewed. This reviewed version gives the generalization of such construction as the n-dimensional rhotrices are used.

Keywords: n-dimensional rhotrix; Quotient rhotrix; Integral domain; Field of fractions

1. Introduction

The idea of classifying the set of all rhotrices of dimension 3 as abstract structures was presented in [1] and [2]. In [2] the set of some 3-dimensional real rhotrices

$$D^* = \langle (R - ZD), +, \circ \rangle \quad (1.1)$$

was defined to be an integral domain under rhotrix addition and multiplication, where R is the set of all real rhotrices of dimension 3 as defined in [6] by

$$R = \left\{ \begin{bmatrix} a & b & c & d \\ e & 0 & 0 & 0 \end{bmatrix} : a, b, c, d, e \in \mathbb{R} \right\},$$

$$ZD = \left\{ \begin{bmatrix} a & b & d & e \\ -b & 0 & 0 & 0 \end{bmatrix} : a, b, d, e, 0 \in \mathbb{R} \text{ and at least one of } a, b, d, e \neq 0 \right\}.$$

Recall that an integral domain is a commutative ring with out zero divisors. However, D^* is not even a ring because the additive closure is not there. This can be seen as follows: Let $R, Q \in D^*$ such that $h(R) = c$ and $h(Q) = -c$. If $R + Q = S$ then $h(S) = 0$ and at least one of $a, b, d, e \neq 0$ which implies that $S \notin D^*$.

Author α α : Department of Mathematics, Kano University of Science and Technology, Wudil, P.M.B. 3244 Kano, Nigeria.
E-mails: kunyasco@yahoo.com, tudunkayaunique@yahoo.com

© 2012 Global Journals Inc. (US)
A method of constructing finite fields through the use of rhotrices was presented in [3]. The cardinalities of such fields were also provided. In [4] an example of a particular finite field $M[R_3]$ whose cardinality is $|M[R_3]| = 3^5 = 243$ was given. This field gave the clear picture of the problem in D^*.

In [1] a hearty rhotrix of dimension 3 was defined to be a rhotrix S having all its entries (except the heart) as zero. Thus, an integer hearty rhotrix of dimension 3 is of the form $\begin{pmatrix} 0 & c & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $c \neq 0 \in \mathbb{Z}$. Therefore we may define the set of all integer hearty rhotrices of the same dimension as

$$H = \left\{ \begin{pmatrix} 0 & c & 0 \\ 0 & 0 & 0 \end{pmatrix} : c \neq 0 \in \mathbb{Z} \right\}$$ \hspace{1cm} (1.2)

For any two base rhotrices R, S the quotient $\frac{R}{S}$ is defined in [5] to be the quotient rhotrix as follows:

$$\frac{R}{S} = R \circ S^{-1}, \text{ provided } h(S) \neq 0.$$

(1.3)

The concept of n-dimensional heart-oriented rhotrix multiplication was introduced in [7]. A rhotrix R_n of dimension n have $|R_n|$ entries where $|R_n| = \frac{1}{2}(n^2 + 1)$ as indicated in [6]. Thus any given rhotrix R_n with entries $a_1, a_2, \ldots, a_{\frac{1}{2}(n^2 + 1)}$, is generally represented as

$$R_n = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ a_5 & a_6 & a_7 & a_8 \\ \vdots & \vdots & \vdots & \vdots \\ a_{\frac{1}{2}(n^2 + 1)} & a_{\frac{1}{2}(n^2 + 3)} & a_{\frac{1}{2}(n^2 + 5)} & \ldots & a_{\frac{1}{2}(n^2 + 1)} \end{pmatrix}$$

The method of constructing field of fractions through the use of base rhotrices based on definitions (1.1) and (1.3) was presented in [8]. To take care of the problem that affects this construction as pointed out earlier; this article aims at reviewing and generalizing the construction method using definitions (1.2) and (1.3).
II. A Particular Field of Fractions of an Integral Domain

Theorem 2.1

Let H_n be the set of all n-dimensional integer hearty rhotrices. If $H_n^* = H_n \cup \{O_n\}$ then H_n^* is an integral domain, where O_n is an n-dimensional zero rhotrix.

Proof

It suffices to show that H_n^* is isomorphic to an integral domain \mathbb{Z}. That is $\cong H_n^* \mathbb{Z}$.

Define a mapping $\tau : \mathbb{Z} \rightarrow H_n^*$ by $\tau(c) = C_n$.

For homomorphism, let $c, d \in \mathbb{Z}$, then

(i) $\tau(c + d) = C_n + D_n = \tau(c) + \tau(d)$
(ii) $\tau(cd) = C_n \circ D_n = \tau(c)\tau(d)$

Therefore τ is a homomorphism.

Since $\forall \tau(c) \in H_n^*$ there exists $c \in \mathbb{Z}$ such that $\tau(c) = C_n$ then τ is onto.

Now let $\tau(c), \tau(d) \in H_n^*$ such that $\tau(c) = \tau(d)$.

$\tau(c) = \tau(d) \Rightarrow C_n = D_n \Rightarrow c = d$.

Thus τ is one to one.

Hence $H_n^* \cong \mathbb{Z}$.

Definition 2.1

Let H_n^* and H_n be as in Theorem 2.1 above. Then a relation \sim on $H_n^* \times H_n$ defined by cross multiplication as $(C_{n_1}, D_{n_1}) \sim (C_{n_2}, D_{n_2})$ if $C_{n_1} \circ D_{n_2} = C_{n_2} \circ D_{n_1}$, $\exists C_{n_1}, C_{n_2} \in H_n^*$; $D_{n_1}, D_{n_2} \in H_n$.

Proposition 2.1

The relation \sim as defined in Definition (2.1) is an equivalence relation.

Proof

Reflexivity and Symmetry of the relation are obvious.

For transitivity, let $C_{n_1} \circ D_{n_2} = C_{n_2} \circ D_{n_1}$ and $C_{n_2} \circ D_{n_3} = C_{n_3} \circ D_{n_2}$. To show that $C_{n_1} \circ D_{n_3} = C_{n_3} \circ D_{n_1}$ we have

$$
(C_{n_1} \circ D_{n_2}) \circ D_{n_2} = (C_{n_1} \circ D_{n_2}) \circ D_{n_3}
$$

$$
= (C_{n_2} \circ D_{n_1}) \circ D_{n_3}
$$

$$
= (C_{n_2} \circ D_{n_3}) \circ D_{n_1}
$$

$$
= (C_{n_3} \circ D_{n_2}) \circ D_{n_1}
$$

$$
= (C_{n_3} \circ D_{n_1}) \circ D_{n_2}
$$

$\therefore (C_{n_1} \circ D_{n_3}) = (C_{n_3} \circ D_{n_1})$ by cancellation law.

We denote by $\frac{C_n}{D_n}$ the equivalence class of (C_n, D_n) in $H_n^* \times H_n$ and define $H_n^*[H_n^{-1}]$ to be the set of all the equivalence classes $\frac{C_n}{D_n}$, where $C_n \in H_n^*$ and $D_n \in H_n^*$.

© 2012 Global Journals Inc. (US)
For all \(\frac{C_{n1}}{D_{n1}}, \frac{C_{n2}}{D_{n2}} \in H_n^*[H_n^{-1}] \) we define addition and multiplication on \(H_n^*[H_n^{-1}] \) as follows:

\[
\frac{C_{n1}}{D_{n1}} + \frac{C_{n2}}{D_{n2}} = \frac{C_{n1} \circ D_{n2} + C_{n2} \circ D_{n1}}{D_{n1} \circ D_{n2}} \quad \text{and} \quad \frac{C_{n1}}{D_{n1}} \cdot \frac{C_{n2}}{D_{n2}} = \frac{C_{n1} \circ C_{n2}}{D_{n1} \circ D_{n2}}.
\]

Proposition 2.2

The operations \((+')\), \((\cdot')\) as defined above are well-defined.

Proof

Suppose \(\frac{C_{n1}'}{D_{n1}'} = \frac{C_{n1}}{D_{n1}} \) and \(\frac{C_{n2}'}{D_{n2}'} = \frac{C_{n2}}{D_{n2}} \); then \(C_{n1}' \circ D_{n1} = D_{n1}' \circ C_{n1} \) and \(C_{n2}' \circ D_{n2} = D_{n2}' \circ C_{n2} \), so that\((C_{n1}' \circ D_{n2}' + C_{n2}' \circ D_{n1}')D_{n1}D_{n2} = C_{n1}' \circ D_{n1} \circ D_{n2}' \circ D_{n2} + C_{n2}' \circ D_{n2} \circ D_{n1}' \circ D_{n1} \)

\[= C_{n1} \circ D_{n1}' \circ D_{n2}' \circ D_{n2} + C_{n2} \circ D_{n2}' \circ D_{n1}' \circ D_{n1} \]

\[= (C_{n1} \circ D_{n2} + C_{n2} \circ D_{n1})D_{n1}' \circ D_{n2}' \]

implying that \(\frac{C_{n1}'}{D_{n1}'} + \frac{C_{n2}'}{D_{n2}'} = \frac{C_{n1}}{D_{n1}} + \frac{C_{n2}}{D_{n2}} \).

Similarly \((C_{n1}' \circ C_{n2}')D_{n1} \circ D_{n2} = (C_{n1} \circ C_{n2})D_{n1}' \circ D_{n2}' \) implies that \(\frac{C_{n1}'}{D_{n1}'} \circ \frac{C_{n2}'}{D_{n2}'} = \frac{C_{n1} \circ C_{n2}}{D_{n1} \circ D_{n2}} \).

By definition (1.3) the equivalence class \(\frac{C_n}{D_n} = C_n \circ D_n^{-1} \) since \(D_n \neq 0_n \in H_n \). Therefore, for all \(D_n \in H_n \), \(0_n \in H_n^* \), \(\frac{0_n}{D_n} = 0_n \circ D_n^{-1} = 0_n = 0_n \circ I_n = 0_n \frac{I_n}{D_n} \). Thus \(\frac{0_n}{I_n} = \frac{D_n}{I_n} \) is the additive identity and \(-\frac{C_n}{D_n} = \frac{-C_n}{D_n} \) is the additive inverse. Similarly, \(\frac{I_n}{I_n} = \frac{D_n}{I_n} \) is the multiplicative identity.

Theorem 2.2

With the above definitions and the definitions of the operations \((+')\) and \((\cdot')\), the set of the equivalence classes \(H_n^*[H_n^{-1}] \) is a commutative ring.

Proof

One should check that the properties of a ring are fulfilled. But the proof follows from the fact that addition and multiplication are the regular addition and multiplication of fractions.

Proposition 2.3

The function \(\psi : H_n^* \to H_n^*[H_n^{-1}] \) defined by \(\psi(C_n) = \frac{C_n}{I_n} \) is a ring homomorphism whose kernel is \(\{ C_n \in H_n^* : C_n \circ' D_n = 0 \text{ for some } D_n \in H_n^*[H_n^{-1}] \} \).
Proof

Let \(C_{n1}, C_{n2} \in H_n^* \), then

\[
\psi(C_{n1} + C_{n2}) = \frac{C_{n1} + C_{n2}}{I_n} = (C_{n1} + C_{n2}) \circ I_n = C_{n1} \circ I_n + C_{n2} \circ I_n = \frac{C_{n1}}{I_n} + \frac{C_{n2}}{I_n} = \psi(C_{n1}) + \psi(C_{n2})
\]

\[
\psi(C_{n1} \circ C_{n2}) = \frac{C_{n1} \circ C_{n2}}{I_n} = (C_{n1} \circ C_{n2}) \circ I_n = C_{n1} \circ I_n \circ C_{n2} \circ I_n = \frac{C_{n1}}{I_n} \circ \frac{C_{n2}}{I_n} = \psi(C_{n1}) \circ \psi(C_{n2})
\]

\[
\psi(I_n) = \frac{I_n}{I_n}.
\]

Now \(C_n \in \ker \psi \) if and only if \(\frac{C_n}{I_n} = \frac{0}{I_n} \), if and only if \(C_n \circ I_n = 0 \circ I_n = 0_n \), which imply that \(\ker \psi = \{0_n\} \).

Recall from [1] that, the set \(M = \{ nI : n \in \mathbb{Z} \} \) where \(I \) is the unity element of the commutative ring of 3-dimensional rhotrices \(R \) is a subring and submonoid of \(R \) under multiplication (\(\circ \)). Thus the set \(M_n = \{ nI_n : n \in \mathbb{Z} \} \) is a subring and submonoid of the commutative ring \(R_n^* \) of n-dimensional rhotrices. Therefore any submonoid, \(H_n \) of \(R_n^* \) with property that for all \(Q_n \neq 0 \in R_n^* \) and \(S_n \in H_n \), \(Q_n \circ S_n \neq 0 \) can serve in the above construction for the generalization of proposition 2.3 as stated in the following proposition.

Proposition 2.4

\(R_n^*[H_n^{-1}] \) as constructed above is a ring, and there is a homomorphism \(\psi : R_n^* \to R_n^*[H_n^{-1}] \) given by \(\psi(Q_n) = \frac{Q_n}{I_n} \).

Proof

The proof follows from propositions 2.2 and 2.3.

As defined in [1], a diagonal rhotrix of dimension 3 is a rhotrix whose two non-diagonal entries are all zero. Let \(D \) be the set of all n-dimensional diagonal rhotrices then it is easy for someone to verify that \(W = D \cup \{ O_n, I_n \} \), where \(O_n \) is the n-dimensional additive identity; \(I_n \) is the n-dimensional multiplicative identity is a group and is normal in \(R_n^* \) under multiplication.

Proposition 2.5

Let \(R_n^* \) be a commutative ring of n-dimensional rhotrices, and let \(H_n \) be a submonoid of \(R_n^* \) such that \(Q_n \circ S_n \neq 0_n \) for every \(Q_n \neq 0_n \in R_n^* \) and \(S_n \in H_n \). Then every ideal of \(R_n^*[H_n^{-1}] \) has the form \(W[H_n^{-1}] \), for suitable \(W \) normal in \(R_n^* \).

Proof

Since all the elements of \(W[H_n^{-1}] \) are also elements of \(R_n^*[H_n^{-1}] \) and \(I_n \in H_n \) then obviously \(W[H_n^{-1}] \) is an additive subgroup of \(R_n^*[H_n^{-1}] \).
For all \(\frac{C_n}{D_n} \in R_n^*[H_n^{-1}] \); \(\frac{W_n}{D_n'} \in W[H_n^{-1}] \); \(\frac{C_n \circ W_n}{D_n \circ D'_n} \in W[H_n^{-1}] \) since \(C_n \circ W_n \in W, D_n \circ D'_n \in H_n \).

\(W \) is normal in \(R_n^* \) implies that \(\frac{W_n}{D_n'} \circ \frac{C_n}{D_n} \in W[H_n^{-1}] \).

Proposition 2.6

\(H_n^*[H_n^{-1}] \) is an integral domain.

Proof

Suppose \(\frac{C_{n_1}}{D_{n_1}} \circ \frac{C_{n_2}}{D_{n_2}} = 0_n \in H_n^*[H_n^{-1}] \), that is \(\frac{C_{n_1} \circ C_{n_2}}{D_{n_1} \circ D_{n_2}} = 0_n \)

\(\Rightarrow (C_{n_1} \circ C_{n_2}, D_{n_1} \circ D_{n_2}) - (0_n, I_n) \) and \(C_{n_1} \circ C_{n_2} \circ D_n = 0 \) for some \(D_n \in H_n \).

\(C_{n_1} \circ C_{n_2} \circ D_n = 0_n \in H_n^* \), which is an integral domain, and \(D_n \neq 0_n \), thus \(C_{n_1} \circ C_{n_2} = 0_n \).

So either \(C_{n_1} \) or \(C_{n_2} \) is \(0_n \) and consequently either \(\frac{C_{n_1}}{D_{n_1}} \) or \(\frac{C_{n_2}}{D_{n_2}} \) is \(0_n \).

Theorem 2.3

The set \(H_n^*[H_n^{-1}] \) of all equivalence classes \(\frac{C_n}{D_n} \) is a field.

Proof

From Theorem 2.2, \(H_n^*[H_n^{-1}] \) is a commutative ring with unity \(\frac{I_n}{I_n} \). So we just need to show that every non zero element of \(H_n^*[H_n^{-1}] \) has multiplicative inverse.

Suppose \(\frac{C_n}{D_n} \neq 0_n \), then \(C_n \neq 0_n \), so \(C_n \in H_n \) which implies that \(\frac{C_n}{D_n} \in H_n^*[H_n^{-1}] \).

Clearly, \(\frac{C_n}{D_n} \circ \frac{D_n}{C_n} = \frac{C_n \circ D_n}{D_n \circ C_n} = \frac{I_n}{I_n} \). Thus \(\frac{D_n}{C_n} \) is the multiplicative inverse of \(\frac{C_n}{D_n} \).

III. Conclusion

In this short note, amendment concerning some definitions in [2] and [8] with their generalizations were provided. The steps observed in the construction of field of fractions illustrated in [8] were also amended respectively.

References Références Referencias

