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In the present paper we first establish three new theorems, which involves I-function and general class of 
polynomials. Next, we obtain

 

certain new integrals and expansion formulas by the application of our theorems.
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suitable values to the parameters, main integral reduces to Fox's H-function, G-function and generalized wright 
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 I.
 

INTRODUCTION
 

The
 
I-function, introduced in 1982, is a byproduct of V.P.

 
Saxena’s work on higher 

transcendental function.
 
Now I-function

 
stands on fairly firm footing through the research 

contributions of various authors [1, 10, 11, 12]:
 I-function is defined and represented in the following manner [11]:
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and i iM,N,P,Q
 
are integers satisfying  i i1 N P,1 M Q (i 1,...,R)≤ ≤ ≤ ≤ =

 
and R

 
is finite. j j ji ji, , ,α β α β

 

are 

positive integers and j j ji jia ,b ,a ,b
 
are complex numbers. I-function, which is a generalized 

form of the well known Fox’s H-function [5, p.10, Eqn. (2.1.1)]. In the sequel the I-
function is studied under the following conditions of existence:

 

(I)  i
i 0,|argz|

2
Ωπ

Ω > <                                                     (1.3)  

        

(II) i
i 0,|argz|

2
Ωπ

Ω ≥ ≤ and Re(B 1) 0+ <                                      (1.4)  
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, i (1,...,R)
= = + = = +

Ω = α − α + β − β ∀ =∑ ∑ ∑ ∑     (1.5)  

and
  

( )
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1
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2= = + = = +
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(1.6)
 

   

The general class of polynomials 1 r

1 r

m ,...,m
n ,...,nS [x]

 

will be defined and represented as follow 

[2, p.185, eqn. (7)]:

 

1 1 r r
i i1 r i

1 r i i
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n ,...,n n ,l
l 0 l 0 i 1 i

( n )
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−
= ∑ ∑ ∏

     

(1.7)

 

where 1 r 1 rn ,...,n 0,1,2,...;m ,...m= are arbitrary positive integers, the coefficients 

i in ,l i iA (n ,l 0)≥

 

are arbitrary constants, real or complex. 1 r

1 r

m ,...,m
n ,...,nS [x]

 

yield a number of known 

polynomials as its special cases. These include, among other, the Jacobi polynomials, the 
Bessel Polynomials, the Lagurre Polynomials, the Brafman Polynomials and

 

several 
others [6, p. 158-161].

 

The following formulas [8, p.77, Ens. (3.1), (3.2) & (3.3)] will be required in our 
investigation:

 

p 12

p 1/2
0

b (p 1/ 2)
ax c dx

x (p 1)2a(4ab c)

− −
∞

+

  π Γ + + + =   Γ ++   
∫ , ( )a 0;b 0;c 4ab 0;Re(p) 1/ 2 0> ≥ + > + >

   (1.8)   
 

  

p 12

2 p 1/2
0

1 b (p 1/ 2)
ax c dx

x (p 1)x 2b(4ab c)

− −
∞

+

  π Γ + + + =   Γ ++   
∫ , ( )a 0;b 0;c 4ab 0;Re(p) 1/ 2 0≥ > + > + >

  

(1.9)

 

  
 

 
p 12

2 p 1/2
0

b b (p 1/ 2)
a ax c dx

x (p 1)x (4ab c)

− −
∞

+

  π Γ +   + + + =     Γ ++     
∫ , ( )a 0;b 0;c 4ab 0;Re(p) 1/ 2 0> > + > + >

 

(1.10)

 

II.

 

MAIN THEOREMS

 

 

Let

 

X

 

stands for

 

2
b

ax c
x

 + + 
 

 

First Theorem:

 

If

 

( ) ( ) r
2 1 r

r 0

1 y F 2 ,2 ;2 ;y a y
∞

α+β−γ

=

− α β γ = ∑

 

                      (2.1)

 

then

   

Where
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The above result will be converge under the following conditions:

 (I)

 

a 0;b 0;c 4ab 0> ≥ + > and i 0, 0µ > δ ≥ .
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(2.4)

 

The above result will be converge under the following conditions:
 

 

(I) a 0;b 0;c 4ab 0≥ > + > and i 0, 0µ > δ ≥ 

(II) j

1 j m
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(III) i
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(IV) ( )1 1
2 2
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Third Theorem:
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           The above result will be converge under the following conditions
 

(I) a 0;b 0;c 4ab 0> > + > and i 0, 0µ > δ ≥  

(II) j

1 j m
j

b 1
Re min 0

2≤ ≤

  
λ + δ + >   β   

  

(III)  i

1
|argz|

2
< Ωπ , where iΩ is given by equation (1.5)  

(IV) ( )1 1
2 2

− < α −β − γ <  

 
Proof:  In our investigation following result [7, p. 75] is also required:  

 
( ) rr

2 1 2 1 r
r 0

r

1 1
F , ; ;X F , ; ;X a X

12 2
2

∞

=

γ   α β γ + γ − α γ − β γ + =         γ + 
 

∑     (2.7)  

 
Where ra is given by (2.1).  

To prove the first theorem, using the result given by equation (2.7)  and express I-
function  occurring on the L.H.S. of equation (2.2) in terms of contour integral given by 

equation (1.1) and the general class of polynomials  1 r

1 r

m ,...,m
n ,...,nS [x]  in series form with the help 

of equation (1.7)  and then interchanging the order of integration and summation we get:
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 

∑ ∑ ∑ ∏ ∫ ∫   (2.8)

            
    Further using the formulae (1.8) the above integral becomes

 
 

New Theorems Involving The I-function and General Class of Polynomials
  

  
 )

92

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
 e

rs
io
n

I
V

IV
  

 F)

  
20

12
A
pr

il

©  2012 Global Journals Inc.  (US)

Notes

( ) ( )1 1 k k
i i i

i i

1 k

[n /m ] [n /m ] k i ml rl r
n ,l i
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π ∑ Γ λ − + µ + δξ ++

∑
∫

∑
  

         

(2.9)

 

 
 

Then interpreting with the help of (1.1) and (2.9) provides first integral.

 

Proceeding on the same parallel lines, theorems second and third given by 
equation (2.4) and (2.6) can be obtained by using the results (1.9) and (1.10) respectively.

 

III.

 

SPECIAL CASES

 

(3.1)  If we put R 1,=

 

I-function reduces to Fox’s H-function [5, p. 10, Eqn. (2.1.1)], 

then the equation (2.2), (2.4) and (2.6) takes the following form:
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∞

=

=+
+ + δ

=

×


 
 

 − λ + − µ δ α 
 + β −λ + − µ δ  
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(3.1.2)
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The Conditions of validity of (3.1.1), (3.1.2) and (3.1.3) easily follow from those 
given

 

in (2.2), (2.4) and (2.6).

 

(3.2)

 

By applying the our results given in (2.2), (2.4) and (2.6)

 

to the case of 

Hermite polynomials [2, 3] by setting 2 n/2
n n

1
S (x) x H

2 x

 
→  

 

 

in which 

i i

l
1 k 1 k i i n ,lm ,...,m 2;n ,...,n n;k 1;v v,y y,A ( 1)= = = = = = − , we have the following interesting results:

 

 

( )

( ) ( ) ( )

i i

i i

n/21 M,N
2 1 2 1 n P ,Q ;R

0

l[n/2]
rl2l r

1/2 r l
r 0 l 0

r

M,N 1
P 1,Q 1;R

1 1 1 X
X F , ; ;X F , ; ;X yX H I zX dx

2 2 2 y

n ay
( 1)

1l!2a(4ab c) (4ab c)
2

1/ 2 r lz
I

(4ab c)

∞ µ
−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

      α β γ + γ − α γ − β γ +             

− γπ
= − ×

+ +  γ + 
 

− λ + − µ

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

j j ji ji1,n n 1,pi

j j ji ji1,m m 1,q

, ; a , ; a ,

b , ; b , ; r l,

+

+

 δ α α
 
 β β −λ + − µ δ  

  

(3.2.1)

 

( )
i i

n/21 M,N
2 1 2 1 n P ,Q ;R2

0

1 1 1 1 X
X F , ; ;X F , ; ;X yX H I zX dx

2 2 2 yx

∞ µ
−λ− −µ −δ

      α β γ + γ − α γ − β γ +             
∫

 

( ) ( ) ( )l[n/2]
rl2l r

1/2 r l
r 0 l 0

r

n ay
( 1)

1l!2b(4ab c) (4ab c)
2

∞

λ+ − +µ
= =

− γπ
= − ×

+ +  γ + 
 

∑∑

 

 

( ) ( ) ( )
( ) ( ) ( )

i

i i

i

j j ji ji1,n n 1,pM,N 1
P 1,Q 1;R

j j ji ji1,m m 1,q

1/ 2 r l, ; a , , a ,z
I

(4ab c) b , ; b , ; r l,

++
+ + δ

+

 − λ + − µ δ α α
 
 + β β −λ + − µ δ  

  

(3.2.2)
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( )

( ) ( ) ( )

i i

i i

n/21 M,N
2 1 2 1 n P ,Q ;R2

0

l[n/2]
rl2l r

1/2 r l
r 0 l 0

r

M,N 1
P 1,Q 1;R

b 1 1 1 X
a X F , ; ;X F , ; ;X yX H I zX dx

2 2 2 yx

n ay
( 1)

1l!(4ab c) (4ab c)
2

1z
I

(4ab c)

∞ µ
−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

        + α β γ + γ − α γ − β γ +                 

− γπ
= − ×

+ +  γ + 
 

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

i

j j ji ji1,n n 1,p

j j ji ji1,m m 1,q

/ 2 r l, ; a , ; a ,

b , ; b , ; r l,

+

+

 − λ + − µ δ α α
 
 β β −λ + − µ δ  

(3.2.3)

The Conditions of validity of (3.2.1), (3.2.2) and (3.2.3) easily follow from those 
given in (2.2), (2.4) and (2.6)

(3.3) By applying the our results given in (2.2), (2.4) and (2.6) to the case of 

Lagurre polynomials [2, 3] by setting ( )'2
n nS (x) L [x]α→ in which 

( )i i1 k 1 k i i n ,l

l

n ' 1
m ,...,m 1;n ,...,n n;k 1,v v,y y,A

n ' 1

+ α 
= = = = = =   α + 

, we have the following interesting 

results:



  

 
 

  
 

 

 

( )

( )
( )

( ) ( )

i i

i i

1 M,N
2 1 2 1 n P ,Q ;R

0

l[n/2]
r2l r

1/2 r l
r 0 l 0 l

r

M,N 1
P 1,Q 1;R

1 1
X F , ; ;X F , ; ;X L yX I zX dx

2 2

n ayn ' 1
1nl! ' 12a(4ab c) (4ab c)
2

1/ 2 rz
I

(4ab c)

∞
α−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

       α β γ + γ − α γ − β γ +          

− γ+ α π
= ×  α ++ +    γ + 

 

− λ + − µ

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

i

j j ji ji1,n n 1,p

j j ji ji1,m m 1,q

l, ; a , ; a ,

b , ; b , ; r l,

+

+

 δ α α
 
 β β −λ + − µ δ  

  

(3.3.1)

 

( )

( )
( )

( ) ( )

i i

i i

1 M,N
2 1 2 1 n P ,Q ;R2

0

l[n/2]
r2l r

1/2 r l
r 0 l 0 l

r

M,N 1
P 1,Q 1;R

1 1 1
X F , ; ;X F , ; ;X L yX I zX dx

2 2x

n ayn ' 1
1nl! ' 12b(4ab c) (4ab c)
2

1/ 2z
I

(4ab c)

∞
α−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

       α β γ + γ − α γ − β γ +          

− γ+ α π
= ×  α ++ +    γ + 

 

− λ +

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

i

j j ji ji1,n n 1,p

j j ji ji1,m m 1,q

r l, ; a , ; a ,

b , ; b , ; r l,

+

+

 − µ δ α α
 
 β β −λ + − µ δ  

   

(3.3.2)

 

( )

( )
( )

( ) ( )

i i

i i

1 M,N
2 1 2 1 n P ,Q ;R2

0

l[n/2]
r2l r

1/2 r l
r 0 l 0 l

r

M,N 1
P 1,Q 1;R

b 1 1
a X F , ; ;X F , ; ;X L yX I zX dx

2 2x

n ayn ' 1
1nl! ' 1(4ab c) (4ab c)
2

z
I

(4ab c)

∞
α−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

         + α β γ + γ − α γ − β γ +              

− γ+ α π
= ×  α ++ +    γ + 

 

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

i

j j ji ji1,n n 1,p

j j ji ji1,m m 1,q

1/ 2 r l, ; a , ; a ,

b , ; b , ; r l,

+

+

 − λ + − µ δ α α
 
 β β −λ + − µ δ  

  

(3.3.3)
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Notes

The Conditions of validity of (3.3.1), (3.3.2) and (3.3.3) easily follow from those 
given in (2.2), (2.4) and (2.6)

(3.4) If we put j jR 1; 1= α = β = , then the I-function reduces to general type of G-

function [9] i.e. 
( ) ( )
( ) ( )

1

i i

1

j j11,n n 1,pM,N
P,Q ;1

j j11,m m 1,q

a ,1 ; a ,1
I z

b ,1, ; b ,1

+

+

 
 
 
  

( )
( )

j 1,p

j 1,q

a ,1
G z

b ,1

 
 =  
  

, the equation (2.2), (2.4) and (2.6) 

takes the following form:

( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 m,n

2 1 2 1 n ,...,n i p,q
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

1 1
X F , ; ;X F , ; ;X S y X G zX dx

2 2

n a1
... A (y )

1l !2a(4ab c) (4ab c)
2

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

      α β γ + γ − α γ − β γ +            

− γπ
=

+ +  γ +


∏∫

∑ ∑ ∏
r 0

r

∞

=

×




∑



 
 

 
 

( ) ( )
( ) ( )

k

i i ji 1 1,pm,n 1
p 1,q 1 k

j i ii 11,q

1/ 2 r l , ;1 , a ,1z
G

(4ab c) b ,1 , r l , ;1

=+
+ + δ

=

 − λ + − µ δ 
 + −λ + − µ δ  

∑
∑

   

(3.4.1)

 
 

( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 m,n

2 1 2 1 n ,...,n i p,q2
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

1 1 1
X F , ; ;X F , ; ;X S y X G zX dx

2 2x

n a1
... A (y )

1l !2b(4ab c) (4ab c)
2

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

      α β γ + γ − α γ − β γ +            

− γπ
=

+ +  γ +

∏∫

∑ ∑ ∏

( ) ( )
( ) ( )

r 0

r

k

i i ji 1 1,pm,n 1
p 1,q 1 k

j i ii 11,q

1/ 2 r l , ;1 , a ,1z
G

(4ab c) b ,1 , r l , ;1

∞

=

=+
+ + δ

=

×


 
 

 − λ + − µ δ 
 + −λ + − µ δ  

∑

∑
∑

           

(3.4.2)

 

 

 

1 k i

1 k

k
m ,...,m1 m,n

2 1 2 1 n ,...,n i p,q2
i 10

b 1 1
a X F , ; ;X F , ; ;X S y X G zX dx

2 2x

∞
−µ−λ− −δ

=

        + α β γ + γ − α γ − β γ +                
∏∫

 

( ) ( )1 1 k k
i i i

i i i i
1 k

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

r 0 l 0 l 0 i 1 i

r

n a1
... A (y )

1l !2a(4ab c) (4ab c)
2

∞

λ+ − +µ
= = = =

− γπ
= ×

+ +  γ + 
 

∑ ∑ ∑ ∏

 

( ) ( )
( ) ( )

k

i i ji 1 1,pm,n 1
p 1,q 1 k

j i ii 11,q

1/ 2 r l , ;1 , a ,1z
G

(4ab c) b ,1 , r l , ;1

=+
+ + δ

=

 − λ + − µ δ 
 + −λ + − µ δ  

∑
∑

      

(3.4.3)

 

 

The Conditions of validity of (3.4.1), (3.4.2) and (3.4.3) easily follow from those 
given in (2.2), (2.4) and (2.6)

 

(3.5)

 

If we put i i 1 1 j j ji j ji jR 1,M 1,N P P,Q Q 1,b 0, 1,a 1 a ,b 1 b ,= = = = = + = β = = − = − β = β , then the 

I-function reduces to generalized wright hypergeometric function [12, p.33, Eq. (2.3.8)] i.e. 
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( )
( ) ( )

( )
( )

j j j j1,p 1,p1,P
P,Q 1;1 p q

j j j j1,q 1,q

1 a , a ,
I z ; z

0,1 , 1 b , b ,
+

   − α α
   = ψ −   − β β    

, the equation (2.2), (2.4) and (2.6) takes the 

following form:

1 k i

1 k

k
m ,...,m1

2 1 2 1 n ,...,n i p q
i 10

1 1
X F , ; ;X F , ; ;X S y X zX dx

2 2

∞
−µ−λ− −δ

=

      α β γ + γ − α γ − β γ + ψ            
∏∫

( ) ( )1 1 k k
i i i

i i i i
1 k

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

r l 0 l 0 i 1 i

r

n a1
... A (y )

1l !2a(4ab c) (4ab c)
2

λ+ − +µ
= = =

− γπ
=

+ +  γ + 
 

∑ ∑ ∏

( ) ( )
( ) ( )

0

k

i i j ji 1 1,p

p 1 q 1 k

j j i ii 11,q

1/ 2 r l , ; a , z
;
(4ab c)b , ; r l ,

∞

=

=

+ + δ

=

×

 − λ + − µ δ α − ψ  +β −λ + − µ δ  

∑

∑
∑ (3.5.1)

Notes



 
 

 
  

 

( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1

2 1 2 1 n ,...,n i p q2
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

1 1 1
X F , ; ;X F , ; ;X S y X zX dx

2 2x

n a1
... A (y )

1l !2b(4ab c) (4ab c)
2

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

      α β γ + γ − α γ − β γ + ψ            

− γπ
=

+ +  γ +
 

∏∫

∑ ∑ ∏

( ) ( )
( ) ( )

r 0

r

k

i i j ji 1 1,p

p 1 q 1 k

j j i ii 11,q

1/ 2 r l , ; a , z
;
(4ab c)b , ; r l ,

∞

=

=

+ + δ

=

×



 − λ + − µ δ α − ψ  +β −λ + − µ δ  

∑

∑
∑

            

(3.5.2)

 

 

( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1

2 1 2 1 n ,...,n i p q2
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

b 1 1
a X F , ; ;X F , ; ;X S y X zX dx

2 2x

n a1
... A (y )

l !2a(4ab c) (4ab c)

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

        + α β γ + γ − α γ − β γ + ψ                

− γπ
=

+ + γ

∏∫

∑ ∑ ∏

( ) ( )
( ) ( )

r 0

r

k

i i j ji 1 1,p

p 1 q 1 k

j j i ii 11,q

1
2

1/ 2 r l , , a , z
;
(4ab c)b , , r l ,

∞

=

=

+ + δ

=

×
 + 
 

 − λ + − µ δ α − ψ  +β −λ + − µ δ  

∑

∑
∑

  

(3.5.3)

            
   

 

The Conditions of validity of (3.5.1), (3.5.2) and (3.5.3) easily follow from those 
given in (2.2), (2.4) and (2.6)

 

(3.6)

 

If we putα = γ , in the main

 

theorem, the value of ra

 

in (2.1) comes out to be 

equal to r

r!
β

and the result (2.2), (2.4) and (2.6)  gives the following interesting integral:
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Notes

( ) ( ) ( )

1 k i

1 k i i

1 1 k k
i i i

i i i i
1 k

i i

k
m ,...,m1 M,N

2 1 n ,...,n i P ,Q ;R
i 10

[n /m ] [n /m ] k i ml l r r
n ,l i1/2 r l

r 0 l 0 l 0 i 1 i

r

P 1,Q

1
X F , ; ;X S y X I zX dx

2

n 1
... A (y )

1l !2a(4ab c) (4ab c) r!
2

I

∞
−µ−λ− −δ

=

∞

λ+ − +µ
= = = =

+

    α β α +        

− α βπ
= ×

+ +  α + 
 

∏∫

∑ ∑ ∑ ∏

( ) ( ) ( )
( ) ( ) ( )

i

i

k

i i j j ji jii 1 1,n n 1,pM,N 1
1;R k

j j ji ji i ii 11,m m 1,q

1/ 2 r l , , a , , a ,z
(4ab c) b , , b , , r l ,

= ++
+ δ

=+

 − λ + − µ δ α α 
 + β β −λ + − µ δ  

∑

∑
(3.6.1)

( ) ( ) ( )

1 k i

1 k i i

1 1 k k
i i i

i i i i
1 k

i

k
m ,...,m1 M,N

2 1 n ,...,n i P ,Q ;R2
i 10

[n /m ] [n /m ] k i ml l r r
n ,l i1/2 r l

r 0 l 0 l 0 i 1 i

r

P 1

1 1
X F , ; ;X S y X I zX dx

2X

n 1
... A (y )

1l !2b(4ab c) (4ab c) r!
2

I

∞
−µ−λ− −δ

=

∞

λ+ − +µ
= = = =

+

    α β α +        

− α βπ
= ×

+ +  α + 
 

∏∫

∑ ∑ ∑ ∏

( ) ( ) ( )
( ) ( ) ( )

i

i

i

k

i i j j ji jii 1 1,n n 1,pM,N 1
,Q 1;R k

j j ji ji i ii 11,m m 1,q

1/ 2 r l , , a , , a ,z
(4ab c) b , , b , , r l ,

= ++
+ δ

=+

 − λ + − µ δ α α 
 + β β −λ + − µ δ  

∑

∑ (3.6.2)



   

 

   

 
 

( ) ( ) ( )

1 k i

1 k i i

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 M,N

2 1 n ,...,n i P ,Q ;R2
i 10

[n /m ] [n /m ] k i ml l r r
n ,l i1/2 r l

r 0 l 0 l 0 i 1 i

r

b 1
a X F , ; ;X S y X I zX dx

2X

n 1
... A (y )

1l !(4ab c) (4ab c) r!
2

∞
−µ−λ− −δ

=

∞

λ+ − +µ
= = = =

      + α β α +            

− α βπ
=

+ +  α + 
 

∏∫

∑ ∑ ∑ ∏

( ) ( ) ( )
( ) ( ) ( )

i

i i

i

k

i i j j ji jii 1 1,n n 1,pM,N 1
P 1,Q 1;R k

j j ji ji i ii 11,m m 1,q

1/ 2 r l , , a , , a ,z
I

(4ab c) b , , b , , r l ,

= ++
+ + δ

=+

×

 − λ + − µ δ α α 
 + β β −λ + − µ δ  

∑

∑

   

(3.6.3)

 
 

The Conditions of validity of (3.6.1), (3.6.2) and (3.6.3) easily follow from those 
given in (2.2), (2.4) and (2.6).

 

(3.7)

 

If we put
1
2

β = α +

 

and fα = −

 

( f is non-negative integer) in (3.6.1), (3.6.2) and 

(3.6.3), we have:
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The Conditions of validity of (3.7.1), (3.7.2) and (3.7.3) easily follow from those 
given in (2.2), (2.4) and (2.6).
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