\\ \title{
Global Journal
}\\ \title{
Global Journal
}

OF SCIENCE FRONTIER RESEARCH: F

MATHEMATICS AND DECISION SCIENCES

DISCOVERING THOUGHTS AND INVENTING FUTURE

Energy Cosmological Models

Air Traffic Control Sweden; Europe

Terms of q-Product Identities
Summation Formula Enmeshed
\square ENG

Global Journal of Science Frontier Research: F Mathematics \& Decision Sciences

Global Journal of Science Frontier Research: F Mathematics \& Decision Sciences
Volume 12 Issue 12 (VER. 1.0)
© Global Journal of Science Frontier Research . 2012

All rights reserved.
This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website http://globaljournals.us/terms-and-condition/ menu-id-1463/

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374 Import-Export Code: 1109007027 Employer Identification Number (EIN): USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)
Sponsors: Open Association of Research Society
Open Scientific Standards

Publisher's Headquarters office

Global Journals Inc., Headquarters Corporate Office, Cambridge Office Center, II Canal Park, Floor No. 5th, Cambridge (Massachusetts), Pin: MA 02141 United States
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392
Offset Typesetting
Open Association of Research Society, Marsh Road, Rainham, Essex, London RM13 8EU United Kingdom.

Packaging \& Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please email us at local@globaljournals.org
eContacts

Press Inquiries: press@globaljournals.org Investor Inquiries: investers@globaljournals.org Technical Support: technology@globaljournals.org Media \& Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):
For Authors:
22 USD (B/W) \& 50 USD (Color)
Yearly Subscription (Personal \& Institutional):
200 USD (B/W) \& 250 USD (Color)

Editorial Board Members (HON.)

John A. Hamilton,"Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software Engineering
Director, Information Assurance Laboratory
Auburn University
Dr. Henry Hexmoor
IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor

Department of Computer Science Virginia Tech, Virginia University Ph.D.and M.S.Syracuse University, Syracuse, New York
M.S. and B.S. Bogazici University, Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes

Associate Professor and Range
Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal Nutrition
B.A. University of Dublin- Zoology

Dr. Wenying Feng

Professor, Department of Computing \&
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll

Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz

Computer Science \& Information Systems
Department
Youngstown State University
Ph.D., Texas A\&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He

Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS, PhD,. (University of Texas-Dallas)

Burcin Becerik-Gerber

University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley
\& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and FinanceProfessor of Finance Lancaster University Management School BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of
Navarra
Doctor of Philosophy (Management),
Massachusetts Institute of Technology
(MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of ReginaPh.D., M.Sc. in
Mathematics
B.A. (Honors) in Mathematics University of Windso

Dr. Lynn Lim

Reader in Business and Marketing Roehampton University, London BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical
Biology, Mount Sinai School of Medical Center
Ph.D., Etvs Lornd University
Postdoctoral Training,
New York University

Dr. Söhnke M. Bartram

Department of Accounting and
FinanceLancaster University Management
SchoolPh.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management IESE Business School, University of Navarra
Ph.D in Industrial Engineering and
Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.
Director, EP Laboratories, Philadelphia VA
Medical Center
Cardiovascular Medicine - Cardiac
Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D

Associate Professor and Research
Department Division of Neuromuscular

Medicine

Davee Department of Neurology and Clinical
NeuroscienceNorthwestern University
Feinberg School of Medicine

Dr. Pina C. Sanelli

Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic
Radiology
M.D., State University of New York at

Buffalo,School of Medicine and Biomedical Sciences

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical Biology
Mount Sinai School of Medicine Ph.D., The Rockefeller University

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences, National Central University, Chung-Li, TaiwanUniversity Chair Professor Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan.Ph.D., MS The University of Chicago, Geophysical Sciences
BS National Taiwan University, Atmospheric Sciences
Associate Professor of Radiology

Dr. Michael R. Rudnick
M.D., FACP

Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center, Philadelphia
Nephrology and Internal Medicine Certified by the American Board of Internal Medicine

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D Marketing
Lecturer, Department of Marketing, University of Calabar Tourism Consultant, Cross River State Tourism Development Department Co-ordinator, Sustainable Tourism Initiative, Calabar, Nigeria

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer
Science
AUST - American University of Science \& Technology
Alfred Naccash Avenue - Ashrafieh

President Editor (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences
Denham Harman Research Award (American Aging Association)
ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization
AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences
University of Texas at San Antonio
Postdoctoral Fellow (Department of Cell Biology)
Baylor College of Medicine
Houston, Texas, United States

Chief Author (HON.)

Dr. R.K. Dixit
M.Sc., Ph.D., FICCT

Chief Author, India
Email: authorind@computerresearch.org

DEAN \& EDITOR-IN-CHIEF (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),
MS (Mechanical Engineering)
University of Wisconsin, FICCT
Editor-in-Chief, USA
editorusa@computerresearch.org

Sangita Dixit

M.Sc., FICCT

Dean \& Chancellor (Asia Pacific)
deanind@computerresearch.org

Suyash Dixit

(B.E., Computer Science Engineering), FICCTT President, Web Administration and Development, CEO at IOSRD
COO at GAOR \& OSS

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant
CEO at IOSRD, GAOR \& OSS
Technical Dean, Global Journals Inc. (US)
Website: www.suyogdixit.com
Email:suyog@suyogdixit.com

Pritesh Rajvaidya

(MS) Computer Science Department
California State University
BE (Computer Science), FICCT
Technical Dean, USA
Email: pritesh@computerresearch.org
Luis Galárraga
J!Research Project Leader
Saarbrücken, Germany

Contents of the Volume

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Table of Contents
v. From the Chief Editor's Desk
vi. Research and Review Papers

1. An Efficient Class Of Ratio-Cum-Dual To Product Estimator Of Finite Population Mean In Sample Surveys. 1-11
2. Proof of ' J is a Radical Class' Using Amitsur Theorem. 13-20
3. Positive Solutions for Systems of Three-Point Nonlinear Boundary Value Problems on Time Scales. 21-34
4. Application of Laplace transform. 35-40
5. Formation of a Summation Formula Enmeshed with Hypergeometric Function. 41-58
6. Orbit - Orbit Resonance of Pluto and Neptune. 59-65
7. New Representations in Terms of q-product Identities for Ramanujan's Results IV. 67-73
8. Note Oncertain Field of Fractions. 75-81
9. Bianchi Type- VI_{0} Dark Energy Cosmological Models in General Relativity. 83-90
vii. Auxiliary Memberships
viii. Process of Submission of Research Paper
ix. Preferred Author Guidelines
x. Index

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 12 Issue 12 Version 1.0 Year 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

An Efficient Class of Ratio-Cum-Dual to Product Estimator of Finite Population Mean in Sample Surveys

By Sanjib Choudhury \& Bhupendra Kumar Singh

North Eastern Regional Institute of Science and Technology
Abstract - We consider a class of ratio-cum-dual to product estimator for estimating a finite population mean of the study variate. The bias and mean square error of the proposed estimator have been obtained. The asymptotically optimum estimator (AOE) in this class has also been identified along with its approximate bias and mean square error. Theoretical and empirical studies have been done to demonstrate the superiority of the proposed estimator over the other estimators.

Keywords : Finite population mean; ratio-cum-dual to product estimator; Bias; Mean square error; Efficiency.
GJSFR-F Classification : MSC 2010: 62D05

Strictly as per the compliance and regulations of :

© 2012. Sanjib Choudhury \& Bhupendra Kumar Singh. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

An Efficient Class of Ratio-Cum-Dual to Product Estimator of Finite Population Mean in Sample Surveys

Sanjib Choudhury ${ }^{\alpha}$ \& Bhupendra Kumar Singh ${ }^{\sigma}$

Abstract

We consider a class of ratio-cum-dual to product estimator for estimating a finite population mean of the study variate. The bias and mean square error of the proposed estimator have been obtained. The asymptotically optimum estimator (AOE) in this class has also been identified along with its approximate bias and mean square error. Theoretical and empirical studies have been done to demonstrate the superiority of the proposed estimator over the other estimators.

Keywords : Finite population mean; ratio-cum-dual to product estimator; Bias; Mean square error; Efficiency.

I. Introduction

In sample surveys, auxiliary information is used at both selections as well as estimation stages to improve the efficiency of the estimators. The use of auxiliary information at the estimation stage appears to have started with the work of Cochran (1940). When the correlation between study variate and auxiliary variate is positive (high), the ratio method of estimation is used for estimating the population mean. The ratio method is most effective if $\rho C_{y} / C_{x}>1 / 2$, where C_{y}, C_{x} and ρ are coefficient of variation of ${ }^{y}$, coefficient of variation of x and correlation coefficient between y and x respectively. On the other hand, if the correlation is negative, the product method of estimation is used and this is most effective if $\rho C_{y} / C_{x}<-1 / 2$, suggested by Murthy (1964). Srivenkataramana (1980) first proposed dual to ratio estimator and Bandyopadhyay (1980) proposed dual to product estimator. Singh and Tailor (2005), Singh and Espejo (2003), Tailor and Sharma (2009) worked on ratio-cum-product estimators. Sharma and Tailor (2010), Choudhury and Singh (2012) worked on ratio, dual to ratio and dual to product estimators to estimate the study variable. These motivated authors to propose a new ratio-cum-dual to product estimators for estimating the population mean.

[^0]Consider a finite population $U=\left(u_{1}, u_{2}, \ldots, u_{N}\right)$ of size N units. Let y and x denotes the study and auxiliary variates respectively. A sample of size $n(n<N)$ is drawn using simple random sampling without replacement (SRSWOR) to estimate the population mean $\bar{Y}=(1 / N) \sum_{i=1}^{N} y_{i}$ of the study variate y. Let the sample mean (\bar{x}, \bar{y}) are the unbiased estimator of (\bar{X}, \bar{Y}) based on n observations.
The usual ratio and product estimators for \bar{Y} are
where

$$
\bar{y}_{P}=\bar{y}(\bar{x} / \bar{X}) \quad \text { respectively }
$$

$$
\bar{y}=(1 / n) \sum_{i=1}^{n} y_{i} \text { and } \bar{x}=(1 / n) \sum_{i=1}^{n} x_{i} .
$$

Let $x_{i}^{*}=(1+g) \bar{X}-g x_{i}, i=1,2, \ldots, N$, where $g=n /(N-n)$.

Then clearly $\bar{x}^{*}=(1+g) \bar{X}-g \bar{x}$ is also unbiased estimator for \bar{X} and $\operatorname{Corr}\left(\bar{y}, \bar{x}^{*}\right)=-\rho$.
Using the transformation $x_{i}^{*}=(1+g) \bar{X}-g x_{i}$, Srivenkataramana (1980) obtained dual to ratio estimator as

$$
\bar{y}_{R}^{*}=\bar{y}\left(\bar{x}^{*} / \bar{x}\right)
$$

and Bandyopadhyay (1980) obtained dual to product estimator as

$$
\bar{y}_{P}^{*}=\bar{y}\left(\bar{X} / \bar{x}^{*}\right) .
$$

In this paper, we have proposed a class of ratio-cum-dual to product type estimator for estimating population mean \bar{Y}. Numerical illustrations are given in the support of the present study.

II. The Proposed Estimator

For estimating population mean \bar{Y}, we propose an estimator as

$$
\begin{equation*}
\bar{y}_{R d P}=\bar{y}\left[\alpha\left(\frac{\bar{X}}{\bar{x}}\right)+(1-\alpha)\left(\frac{\bar{X}}{\bar{x}^{*}}\right)\right] \tag{1}
\end{equation*}
$$

where α is a suitably chosen scalar.

To obtain the bias and mean square error (MSE) of $\bar{y}_{\text {RdP }}$ to a first degree of approximation, we write

$$
e_{0}=(\bar{y}-\bar{Y}) / \bar{Y} \text { and } e_{1}=(\bar{x}-\bar{X}) / \bar{X}
$$

Such that

$$
\left.\begin{array}{l}
E\left(e_{0}\right)=E\left(e_{1}\right)=0, \quad E\left(e_{0}^{2}\right)=\frac{1-f}{n} C_{y}^{2}, \tag{2}\\
E\left(e_{1}^{2}\right)=\frac{1-f}{n} C_{x}^{2}, \quad E\left(e_{0} e_{1}\right)=\frac{1-f}{n} C C_{x}^{2},
\end{array}\right\}
$$

where $f=n / N$ is the sampling fraction, $C_{y}^{2}=S_{y}^{2} / \bar{Y}^{2}, C_{x}^{2}=S_{x}^{2} / \bar{X}^{2}, \quad C=\rho C_{y} / C_{x}$ and defined as $\rho=S_{x y} / S_{x} S_{y}, \quad S_{x}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{X}\right)^{2}, \quad S_{y}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{Y}\right)^{2} \quad$ and $S_{x y}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{Y}\right)\left(x_{i}-\bar{X}\right)$.

Expressing $\bar{y}_{R d P}$ in terms of e 's, we obtain

$$
\bar{y}_{R d P}=\bar{Y}\left(1+e_{0}\right)\left\{\alpha\left(1+e_{1}\right)^{-1}+(1-\alpha)\left(1-g e_{1}\right)^{-1}\right\} .
$$

We now assume that $\left|e_{1}\right|<1$ and $\left|g e_{1}\right|<1$, so that we may expand $\left(1+e_{1}\right)^{-1}$ and $\left(1-g e_{1}\right)^{-1}$ as a series in powers of e_{1} and $g e_{1}$ respectively. Expanding, multiplying out and retaining terms of e 's to the second degree, we obtain

$$
\begin{equation*}
\bar{y}_{R d P}-\bar{Y} \cong \bar{Y}\left[e_{0}+g\left(e_{1}+e_{0} e_{1}+g e_{1}^{2}\right)+\alpha(1+g)\left\{-e_{1}^{2}+(1-g) e_{1}-e_{0} e_{1}\right\}\right] \tag{3}
\end{equation*}
$$

Taking the expectation of both sides in equation (3) and using the results of equation (2) we get the bias of $\bar{y}_{\text {RdP }}$ as

$$
\begin{equation*}
B\left(\bar{y}_{R d P}\right)=\frac{1-f}{n} \bar{Y} C_{x}^{2}\left[\left\{g^{2}-\alpha\left(g^{2}-1\right)\right\}+C\{g-\alpha(g+1)\}\right] \tag{4}
\end{equation*}
$$

The bias, $B\left(\bar{y}_{R d P}\right)$ in (4) is 'zero' if $\alpha=\frac{g(C+g)}{(1+g)(1-g-C)}$. Thus the estimator $\bar{y}_{R d P}$ with $\quad \alpha=\frac{g(C+g)}{(1+g)(1-g-C)}$ is almost unbiased.

Squaring and taking expectations of both the sides of equation (3) and using the results of equation (2), we obtain the MSE of $\bar{y}_{\text {RdP }}$ to the first degree of approximation as

$$
\begin{equation*}
M\left(\bar{y}_{R d P}\right)=\frac{1-f}{n} \bar{Y}^{2}\left[C_{y}^{2}+C_{x}^{2}\{g-\alpha(1+g)\}\{2 C+g-\alpha(1+g)\}\right] \tag{5}
\end{equation*}
$$

which is minimized when

$$
\begin{equation*}
\alpha=\frac{1}{1+g}(g+C)=\alpha_{o p t .} \text { (say) } \tag{6}
\end{equation*}
$$

Substituting equation (6) in equation (1) yield the 'asymptotically optimum estimator' (AOE) as

$$
\bar{y}_{R d P}^{\text {opt. }}=\bar{y}\left[\left(\frac{g+C}{1+g}\right) \frac{\bar{X}}{\bar{x}}+\left(\frac{1-C}{1+g}\right) \frac{\bar{X}}{\bar{x}^{*}}\right]
$$

Thus the resulting bias and MSE of $\bar{y}_{P d P}^{\text {opt. }}$ respectively as

$$
\begin{equation*}
B\left(\bar{y}_{R d P}^{o p t .}\right)=\frac{1-f}{n} \bar{Y} C_{x}^{2}(1-C)(g+C) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(\bar{y}_{R d P}^{\text {opt. }}\right)=\frac{1-f}{n} \bar{Y}^{2} C_{y}^{2}\left(1-\rho^{2}\right) \tag{8}
\end{equation*}
$$

which is the same as the MSE of the linear regression estimator $\bar{y}_{\text {reg. }}=\bar{y}+b_{y x}(\bar{X}-\bar{x})$, where $b_{y x}$ is the sample regression coefficient of y on x.
From equation (7), we note that the bias of AOE $\bar{y}_{R d P}^{\text {opt. }}$ is 'zero' if
either $C=1$ or $C=-g$.

Remark 2.1.

To the first degree of approximation, the proposed strategy $\bar{y}_{R d P}$ under optimality condition (6), is equal to linear regression estimator.

Remark 2.2.

For $\alpha=1$, the estimator $\bar{y}_{R d P}$ in equation (1) boils down to the usual ratio estimator \bar{y}_{R}. The bias and MSE of \bar{y}_{R} can be obtained by putting $\alpha=1$ in equations (4) and (5) respectively as

$$
\begin{align*}
& B\left(\bar{y}_{R}\right)=\frac{1-f}{n} \bar{Y} C_{x}^{2}(1-C) \\
& M\left(\bar{y}_{R}\right)=\frac{1-f}{n} \bar{Y}^{2}\left\{C_{y}^{2}+C_{x}^{2}(1-2 C)\right\} \tag{9}
\end{align*}
$$

Remark 2.3.

For $\alpha=0$, the estimator $\bar{y}_{\text {RdP }}$ in equation (1) boils down to the dual to product estimator \bar{y}_{p}^{*}, proposed by Bandyopadhyay (1980). The bias and MSE of \bar{y}_{p}^{*} can be obtained by putting $\alpha=0$ in equations (4) and (5) respectively as

$$
B\left(\bar{y}_{p}^{*}\right)=\frac{1-f}{n} \bar{Y} C_{x}^{2} g(g+C)
$$

and

$$
\begin{equation*}
M\left(\bar{y}_{p}^{*}\right)=\frac{1-f}{n} \bar{Y}^{2}\left\{C_{y}^{2}+g C_{x}^{2}(g+2 C)\right\} \tag{10}
\end{equation*}
$$

Thus, we see that this study provides unified treatment towards the properties of different estimators.

iII. Efficiency Comparisons

a) Comparison of $\bar{y}_{\text {RdP }}$

In this section, firstly, we compare MSE of conventional estimators \bar{y}, \bar{y}_{R} and \bar{y}_{P} with MSE of proposed estimator $\bar{y}_{\text {RdP }}$.
The MSE of sample mean \bar{y} under SRSWOR sampling scheme is given by

$$
\begin{equation*}
M(\bar{y})=\frac{1-f}{n} \bar{Y}^{2} C_{y}^{2} \tag{11}
\end{equation*}
$$

From equations (5) and (11), it is found that the proposed estimator $\bar{y}_{R d P}$ is more efficient than \bar{y} if

$$
\{-g+\alpha(1+g)\}\{2 C+g-\alpha(1+g)\}>0
$$

This condition holds if

$$
\begin{aligned}
& \text { either } \frac{g}{1+g}>\alpha \text { and } \frac{1}{1+g}(2 C+g)<\alpha, \\
& \text { or } \quad \frac{g}{1+g}<\alpha \text { and } \frac{1}{1+g}(2 C+g)>\alpha .
\end{aligned}
$$

Therefore, the range of α for which the proposed estimator $\bar{y}_{\text {RdP }}$ is more efficient than \bar{y} is

$$
\left[\min \left\{\frac{g}{1+g}, \frac{1}{1+g}(2 C+g)\right\}, \quad \max \left\{\frac{g}{1+g}, \frac{1}{1+g}(2 C+g)\right\}\right] .
$$

From equations (5) and (9), we note that the estimator $\bar{y}_{R d P}$ has smaller MSE than that of the usual ratio estimator \bar{y}_{R} if

$$
\{1+g-\alpha(1+g)\}\{1-2 C-g+\alpha(1+g)\}>0
$$

This condition holds if

$$
\begin{aligned}
& \text { either } 1>\alpha \text { and } \frac{1}{1+g}(2 C+g-1)<\alpha, \\
& \text { or } \quad 1<\alpha \text { and } \frac{1}{1+g}(2 C+g-1)>\alpha .
\end{aligned}
$$

Therefore, the range of α for which the proposed estimator $\bar{y}_{R d P}$ is better than \bar{y}_{R} is

$$
\left[\min \left\{1, \frac{1}{1+g}(2 C+g-1)\right\}, \max \left\{1, \frac{1}{1+g}(2 C+g-1)\right\}\right] .
$$

To compare the usual product estimator \bar{y}_{P}, we write the bias and MSE of \bar{y}_{P} to
the first degree of approximation respectively as

$$
\begin{align*}
& B\left(\bar{y}_{P}\right)=\frac{1-f}{n} \bar{Y} C C_{x}^{2} \\
& M\left(\bar{y}_{P}\right)=\frac{1-f}{n} \bar{Y}^{2}\left\{C_{y}^{2}+C_{x}^{2}(1+2 C)\right\} \tag{12}
\end{align*}
$$

We note from equations (5) and (12) that the estimator $\bar{y}_{\text {RdP }}$ will dominate over usual product estimator \bar{y}_{P} if

$$
\{-(g-1)+\alpha(g+1)\}\{(2 C+1+g)-\alpha(g+1)\}>0
$$

This condition holds if

$$
\begin{aligned}
& \text { either } \frac{g-1}{1+g}>\alpha \text { and } 1+\frac{2 C}{1+g}<\alpha \\
& \text { or } \quad \frac{g-1}{1+g}<\alpha \text { and } 1+\frac{2 C}{1+g}>\alpha .
\end{aligned}
$$

Hence, the range of α in which the proposed estimator $\bar{y}_{P d P}$ is better than \bar{y}_{P} is

$$
\left\{\min \left(\frac{g-1}{1+g}, 1+\frac{2 C}{1+g}\right), \max \left(\frac{g-1}{1+g}, 1+\frac{2 C}{1+g}\right)\right\}
$$

Secondly, comparing the MSE between the proposed estimator and dual to ratio estimator \bar{y}_{R}^{*}, proposed by Srivenkataramana (1980).

The bias and MSE of \bar{y}_{R}^{*} to the first degree of approximation respectively as

$$
B\left(\bar{y}_{R}^{*}\right)=-\bar{Y} \frac{1-f}{n} g C C_{x}^{2}
$$

and

$$
\begin{equation*}
M\left(\bar{y}_{R}^{*}\right)=\frac{1-f}{n} \bar{Y}^{2}\left\{C_{y}^{2}+g C_{x}^{2}(g-2 C)\right\} \tag{13}
\end{equation*}
$$

From equations (5) and (13), it is found that the proposed estimator $\bar{y}_{\text {RdP }}$ will dominate over Srivenkataramana (1980) estimator \bar{y}_{R}^{*} if

$$
\{2 g-\alpha(g+1)\}\{-2 C+\alpha(g+1)\}>0
$$

This condition exist if

$$
\begin{aligned}
& \text { either } \frac{2 g}{1+g}>\alpha \text { and } \frac{2 C}{1+g}<\alpha, \\
& \text { or } \quad \frac{2 g}{1+g}<\alpha \text { and } \frac{2 C}{1+g}>\alpha .
\end{aligned}
$$

Therefore, the range of α in which the proposed estimator $\bar{y}_{R d P}$ is more efficient than dual to ratio estimator \bar{y}_{R}^{*} is

$$
\left\{\min \left(\frac{2 g}{1+g}, \frac{2 C}{1+g}\right), \quad \max \left(\frac{2 g}{1+g}, \frac{2 C}{1+g}\right)\right\} .
$$

Lastly, we compare MSE of the proposed estimator $\bar{y}_{\text {RdP }}$ with dual to product estimator \bar{y}_{p}^{*}.
We note from equations (5) and (10) that

$$
\begin{aligned}
& M\left(\bar{y}_{p}^{*}\right)>M\left(\bar{y}_{\text {RdP }}\right) \text { if } \\
& \alpha(1+g)\{2 C+2 g-\alpha(1+g)\}>0
\end{aligned}
$$

This condition exist if

$$
\begin{aligned}
& \text { either } 0<\alpha<\frac{2}{1+g}(C+g), \\
& \text { or } \quad \frac{2}{1+g}(C+g)<\alpha<0 .
\end{aligned}
$$

Therefore, the range of α in which the proposed estimator $\bar{y}_{R d P}$ is more efficient than dual to product estimator \bar{y}_{P}^{*} is

$$
\left[\min \left\{\frac{2(C+g)}{1+g}, 0\right\}, \max \left\{\frac{2(C+g)}{1+g}, 0\right\}\right] .
$$

Thus, it seems from the above results that the proposed estimator $\bar{y}_{\text {RdP }}$ may be made better than other estimators by making a suitable choice of the value of α within the respective ranges.
b) Comparison of ' $A O E$ ' of $\bar{y}_{\text {RdP }}^{\text {opt. }}$

From equations (8)-(13), it is found that the 'AOE' $\bar{y}_{R d P}^{\text {opt. }}$ is more efficient than the other existing estimators like $\bar{y}, \bar{y}_{R}, \bar{y}_{P}, \bar{y}_{R}^{*}$ and \bar{y}_{P}^{*}. Since

$$
\begin{aligned}
& M(\bar{y})-M\left(\bar{y}_{R d P}^{\text {opt. }}\right)=\frac{1-f}{n} \bar{Y}^{2} \rho^{2} C_{y}^{2}>0 . \\
& M\left(\bar{y}_{R}\right)-M\left(\bar{y}_{R d P}^{\text {opt. }}\right)=\frac{1-f}{n} \bar{Y}^{2} C_{x}^{2}(1-C)^{2}>0 .
\end{aligned}
$$

$$
\begin{aligned}
& M\left(\bar{y}_{P}\right)-M\left(\bar{y}_{R d P}^{\text {opt. }}\right)=\frac{1-f}{n} \bar{Y}^{2} C_{x}^{2}(1+C)^{2}>0 . \\
& M\left(\bar{y}_{R}^{*}\right)-M\left(\bar{y}_{R d P}^{\text {opt. }}\right)=\frac{1-f}{n} \bar{Y}^{2} C_{x}^{2}(C-g)^{2}>0 . \\
& M\left(\bar{y}_{p}^{*}\right)-M\left(\bar{y}_{R d P}^{\text {opt. }}\right)=\frac{1-f}{n} \bar{Y}^{2} C_{x}^{2}(C+g)^{2}>0 .
\end{aligned}
$$

Hence, we conclude that the proposed estimator ' $\bar{y}_{R d P}$ ' is the best (in the sense of having optimum MSE).

iV. Numerical Illustrations

To examine the merits of the constructed estimator over its competitors numerically, we consider eight sets of data. The source of the population, the nature of the variates y and x and the values of the various parameters are listed in Table 1.

To reflect the gain in the efficiency of the proposed estimator $\bar{y}_{R d P}$ over the estimators $\bar{y}, \bar{y}_{R}, \bar{y}_{P}, \bar{y}_{R}^{*}$ and \bar{y}_{P}^{*}, the effective ranges along with the optimum value of α are presented in Table 2 with respect to the population data sets.

The percent relative efficiencies (PREs) of the different estimators with respect to usual unbiased estimator \bar{y} computed by the formula

$$
\operatorname{PRE}(\mathrm{E}, \bar{y})=\frac{M(\bar{y})}{M(\mathrm{E})} \times 100
$$

where

$$
\mathrm{E}=\bar{y}, \bar{y}_{R}, \bar{y}_{P}, \bar{y}_{R}^{*}, \bar{y}_{P}^{*} \text { and } \bar{y}_{R d P} \text { or } \bar{y}_{R d P}^{\text {opt. }}
$$

and are presented in Table 3.

Table 1 : Description of the populations

Population	Source	Study variate y	Auxiliary variate X	N	n	ρ	C_{y}	C_{x}	\bar{Y}
1	Steel and Torrie (1960)	Log of leaf burn in secs	Chlorine percentage	30	6	-0.4996	0.7001	0.7493	0.6860
2	Pandey and Dubey (1988)	---	---	20	8	-0.9199	0.3552	0.3943	19.55
3	Kadilar and Cingi (2006) pp. 1054	Level of apple production	Number of apple trees	106	20	0.82	4.18	2.02	15.37
4	Sukhatme and Sukhatme (1970)	Number of villages in the circles.	A circle consisting more than five villages	89	12	0.766	0.604	2.1901	3.36
5	Maddala (1977)	Consumption per capita.	Deflated prices of veal	30	6	-0.6823	0.2278	0.0986	7.6375
6	Murthy (1967)	Output	Fixed capital	80	20	0.9413	0.3542	0.7507	51.8264
7	Murthy (1967)	Output	Number of workers	80	20	0.9150	0.3542	0.9484	51.8264
8	Kadilar and Cingi (2006) pp. 78	---	---	106	20	0.86	5.22	2.1	2212.59

Table 2: Effective ranges and optimum value of α of $\bar{y}_{\text {RdP }}$.

B00000	Ranges of α in which the proposed estimator $\bar{y}_{R d P}$ is better than					Optimum value
	\bar{y}	\bar{y}_{R}	\bar{y}_{P}	\bar{y}_{R}^{*}	\bar{y}_{P}^{*}	$\alpha_{\text {opt. }}$
1	(-0.55,0.20)	(-1.35, 1.00)	$(-0.60,0.25)$	$(-0.75,0.40)$	$(-0.35,0.00)$	-0.1734
2	(-0.59, 0.40)	(-1.19, 1.00)	$(-0.20,0.01)$	(-0.99, 0.80)	$(-0.19,0.00)$	-0.0972
3	(0.19, 2.94)	(1.00, 2.13)	$(-0.62,3.75)$	(0.38, 2.75)	(0.00, 3.13)	1.5654
4	(0.13, 0.50)	(-0.36, 1.00)	$(-0.73,1.37)$	(0.27, 0.37)	(0.00, 0.64)	0.3176
5	(-2.32, 0.20)	(-3.12, 1.00)	(-1.52, -0.60)	(-2.52, 0.40)	$(-2.12,0.00)$	-1.0611
6	$(0.25,0.92)$	(0.17, 1.00)	$(-0.50,1.67)$	(0.50, 0.67)	$(0.00,1.17)$	0.5831
7	$(0.25,0.76)$	(0.01, 1.00)	$(-0.50,1.51)$	(0.50, 0.51)	(0.00, 1.01)	0.5063
8	(0.19, 3.66)	(1.00, 2.85)	(_0.62, 4.47)	(0.38, 3.47)	(0.00, 3.85)	1.9231

Table 3 : Percentage relative efficiency of $\bar{y}, \bar{y}_{R}, \bar{y}_{P}, \bar{y}_{R}^{*}, \bar{y}_{P}^{*}$ and $\bar{y}_{R d P}$ or $\bar{y}_{R d P}^{\text {opt. }}$ with respect to \bar{y}.

Population	\bar{y}	\bar{y}_{R}	\bar{y}_{P}	\bar{y}_{R}^{*}	\bar{y}_{P}^{*}	$\bar{y}_{\text {RdP }}$ or $\bar{y}_{R d P}^{\text {opt. }}$
1	100.00	\dagger	\dagger	\dagger	124.34	133.26
2	100.00	\dagger	526.50	\dagger	537.23	650.26
3	100.00	226.76	\dagger	120.73	\dagger	305.25
4	100.00	\dagger	\dagger	220.46	\dagger	241.99
5	100.00	\dagger	167.59	\dagger	115.73	187.10
6	100.00	\dagger	\dagger	591.38	\dagger	877.54
7	100.00	\dagger	\dagger	612.44	\dagger	614.34
8	100.00	212.82	\dagger	117.95	\dagger	384.02

\dagger Relative efficiency less than 100\%.

V. Conclusion

Table 2 provides the wide ranges along with the optimum value of α for which the proposed estimators $\bar{y}_{R d P}$ or $\bar{y}_{R d P}^{\text {opt. }}$ are more efficient than all other estimators considered in this paper. It is also observed from Table 2 that there is a scope for choosing α to obtain better estimators than $\bar{y}, \bar{y}_{R}, \bar{y}_{P}, \bar{y}_{R}^{*}$ and \bar{y}_{P}^{*}.

Table 3 shows that there is a substantial gain in efficiency by using proposed estimator $\bar{y}_{R d P}$ (or $\bar{y}_{R d P}^{\text {opt. }}$) over $\bar{y}, \bar{y}_{R}, \bar{y}_{P}, \bar{y}_{R}^{*}$ and \bar{y}_{P}^{*}. This shows that even if the scalar α deviates from its optimum value $\left(\alpha_{o p t .}\right)$, the suggested estimator $\bar{y}_{\text {RdP }}$ will yield better estimates then $\bar{y}, \bar{y}_{R}, \bar{y}_{P}, \bar{y}_{R}^{*}$ and \bar{y}_{P}^{*}. Thus it is preferred to use the proposed estimators $\bar{y}_{\text {RdP }}$ or $\bar{y}_{R d P}^{\text {opt. }}$ in practice.

References Références Referencias

1. Bandyopadhyay, S. (1980). Improved ratio and product estimators, Sankhya Series C, 42(2), 45-49.
2. Choudhury, S. and Singh, B. K. (2012). An Efficient Class of Dual to Product-CumDual to Ratio Estimator of Finite Population Mean in Sample Surveys, Global Journal of Science Frontier Research, 12(3), p.25-33.
3. Cochran, W. G. (1940). The estimation of the yields of the cereal experiments by sampling for the ratio of grain to total produce, The Journal of Agricultural Science, 30(2), 262-275.
4. Kadilar, C. and Cingi, H. (2006). Ratio Estimators for the population variance in simple and stratified random sampling, Applied Mathematics and Computation, 173(2), 1047-1059.
5. Kadilar, C. and Cingi, H. (2006). Improvement in estimating the population mean in simple random sampling, Applied Mathematics Letters, 19, 75-79.
6. Maddala, G. S. (1977). Econometrics, Mcgraw Hills Pub.Co.: New York.
7. Murthy, M. N. (1964). Product method of estimation, Sankhya A, 26, 69-74.
8. Murthy, M. N. (1967). Sampling Theory and Methods, Statistical Publishing Society: Calcutta.
9. Pandey, B.N. and Dubey, V. (1988). Modified product estimator using coefficient of variation of auxiliary variable, Assam Stat. Rev., 2, 64-66.
10. Sharma, B. and Tailor, R. (2010). A new ratio-cum-dual to ratio estimator of finite population mean in simple random sampling, Global Journal of Science Frontier Research, 10(1), 27-31.
11. Singh, H. P. and Espejo, M. R. (2003). On linear regression and ratio-product estimation of a finite population mean, The Statistician, 52(1), 59-67.
12. Singh, H. P. and Tailor, R. (2005). Estimation of finite population mean using known correlation coefficient between auxiliary characters, Statistica, Anno LXV(4), 407-418.
13. Srivenkataramana, T. (1980). A dual to ratio estimator in sample surveys, Biometrika, 67(1), 199-204.
14. Steel, R. G. D. and Torrie, J. H. (1960). Principles and Procedures of Statistics, McGraw Hill Book.
15. Sukhatme, P. V. and Sukhatme, B. V. (1970). Sampling Theory of Surveys with Applications, Iowa State University Press, Ames, U. S. A.
16. Tailor, R. and Sharma, B. K. (2009). A modified ratio-cum-product estimator of finite population mean using known coefficient of Variation and coefficient of Kurtosis, Statistics in Transition-new series, 10(1), 15-24.

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 12 Issue 12 Version 1.0 Year 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Proof of 'J is a Radical Class’ Using Amitsur Theorem By Raju Chowdhury, Dewan Ferdous Wahid \& Md. Anowar Hossain
 Stamford University Bangladesh, Dhaka

Abstract - The aim of this paper is to study radical class of rings, right quasi-regular rings and finally, to prove that J, the class of all right quasi-regular rings is a radical class. Amitsur gives a theorem of radical class for the sufficient condition that a class of rings would be a radical class. This paper represents, the proof of, J is a radical class using the theorem of radical class given by Amitsur.

Keywords : Ring, Ideal, Radical Class, Right quasi-regular ring.
GJSFR-F Classification : MSC 2010: 16D60, 16N80

> Strictly as per the compliance and regulations of :

[^1]

Proof of 'Jis a Radical Class' Using Amitsur Theorem

Raju Chowdhury ${ }^{\alpha}$, Dewan Ferdous Wahid ${ }^{\circ}$ \& Md. Anowar Hossain ${ }{ }^{~}$

Abstract

The aim of this paper is to study radical class of rings, right quasi-regular rings and finally, to prove that J, the class of all right quasi-regular rings is a radical class. Amitsur gives a theorem of radical class for the sufficient condition that a class of rings would be a radical class. This paper represents, the proof of, J is a radical class using the theorem of radical class given by Amitsur.

Keywords : Ring, Ideal, Radical Class, Right quasi-regular ring.

I. Introduction

The concept of a radical was introduced by J. H. M. Wedderburn [10] in 1908, for the determination of structures of algebras and later on various radicals have been proposed by Artin [14], Baer [11], Jacobson [9], Brown-McCoy [12], Levitzki [7] etc. for the study of rings in the forties. The general theory of radicals was initiated by Kurosh [6] (1953) and Amitsur [1] in the early fifties. Andrunakievic [4], Sulinski [15], Divinsky [8] and many others have followed up the works of Kurosh and Amitsur.

Radical properties based on the notion of nilpotence do not seem to yield fruitful results for rings without chain conditions. The notion of quasi-regularity was introduced by Perlis [16]. In 1945, Jacobson [9] used it and the significant "chainless" results were obtained.

In this paper, the general ring theory covering elementary definition of rings and its ideals, homomorphism, theorem related to homomorphism and some definitions related to radical class has been discussed in preliminaries. Also, we will introduce radical class of rings and some theorems related to radical class. Amitsur gives a theorem of radical class, which works as a sufficient condition of a class of rings that would be a radical class. We will know about this theorem and also right quasi-regular ring, right quasi-regular right ideal and some lemmas related to right quasi regular rings. Finally, we will prove that J, the class of all right quasi-regular rings is a radical class. It has already been proved by using the definition of radical class. But, here we will prove this using Amitsur theorem of radical class.

[^2]
Preliminaries

2.1. Definition

A ring is an ordered triple $(R,+, \cdot)$ such that R is a nonempty set and + and \cdot are two binary operations on R satisfying the following axioms:
a) R is an additive abelian group. i.e.
i) $a+b \in R$ for all $a, b \in R[$ closure law $]$
ii) $(a+b)+c=a+(b+c)$ for all $a, b, c \in R$. [associative law]
iii) there exists an element $0 \in R$ such that $a+0=0+a=a$, for all $a \in R$. [identity law]
iv) for every non-zero element $a \in R$ there exists an element $-a \in R$ such that $a+(-a)=(-a)$ $+a=0$. [inverse law]
v) $a+b=b+a$ for all $a, b \in R$. [commutative law]
b) (R, \cdot) is a semi group. i.e.
i) $a \cdot b \in R$ for all $a, b \in R$. [closure law]
ii) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in R$ [associative law]
c) Distributive laws are true in R. i.e. for all $a, b, c \in R$,
i) $a \cdot(b+c)=a \cdot b+a \cdot c$
ii) $(a+b) \cdot c=a \cdot c+b \cdot c$

Example

i) $(\mathbb{Z},+, \cdot),(\mathbb{Q},+, \cdot),(\mathbb{R},+, \cdot),(\mathbb{C},+, \cdot)$ are rings.
ii) The residue class of modulo 6 ,
$\mathbb{Z}_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ is a ring.
iii) $[x]$, the set of all polynomials in x with real coefficients, is a ring.

2.2. Definition

A non-empty subset I of a ring R is called a left (right) ideal of R if
i) I is an additive subgroup of R
ii) $\forall r \in R$ and $\forall i \in I, r i \in I$, (ir $\in I$).

2.3. Definition

A non-empty subset I of a ring R is called an ideal of R if I is both a left ideal and a right ideal of R. For a commutative ring all left and right ideals are ideals.

Example:

1. $2 \mathbb{Z}$ is an ideal of \mathbb{Z}.
2. The set of integers \mathbb{Z} is only a subring but not an ideal of the ring of rational numbers \mathbb{Q} 。 As $3 \in \mathbb{Z}, \frac{2}{5} \in \mathbb{Q}$ but $3 \cdot \frac{2}{5}=\frac{6}{5} \notin \mathbb{Z}$ 。

2.4. Definition

Let R be a ring and I be an ideal of R then the quotient ring or factor ring $\frac{R}{I}$ is the set $\{r+I: r \in R\}$, where addition and multiplication of two elements $r_{1}+I, r_{2}+I \in \frac{R}{I}$ are given by
i) $\left(r_{1}+I\right)+\left(r_{2}+I\right)=\left(r_{1}+r_{2}\right)+I$.
ii) $\left(r_{1}+I\right)\left(r_{2}+I\right)=r_{1} r_{2}+I$.

Example:
$\frac{\mathbb{Z}}{2 \mathbb{Z}}$ is a quotient ring.

2.5. Definition

Let $(R,+, \cdot)$ and $\left(R^{\prime},+, \cdot\right)$ be two rings. A mapping $f: R \rightarrow R^{\prime}$ is called a ring homomorphism if $\forall a, b \in R$
i) $f(a+b)=f(a)+f(b)$ and
ii) $f(a b)=f(a) f(b)$.

2.5.1. Theorem

Every factor ring of a ring is the homomorphic image of that ring.
Proof: Let R be a ring and I be an ideal of R, then we have to show that $\frac{R}{I}$ is a homomorphic image of R. Let us define a map $f: R \rightarrow \frac{R}{I}$ by $f(r)=r+I$ for all $r \in R$. We need to show that f is a onto homomorphism.
Clearly f is well defined.
Now $f\left(r_{1}+r_{2}\right)=\left(r_{1}+r_{2}\right)+I=\left(r_{1}+I\right)+\left(r_{2}+I\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$ and $f\left(r_{1} r_{2}\right)=r_{1} r_{2}+I=\left(r_{1}+I\right)\left(r_{2}+I\right)=f\left(r_{1}\right) f\left(r_{2}\right)$.
Thus f is a homomorphism.
Let $r+I \in \frac{R}{I}$ where $r \in R$. Then by definition, $f(r)=r+I$. i.e. $r+I=f(r)$. This implies that every element of $\frac{R}{I}$ is the image of some element in R. Thus f is onto. Hence the theorem is proved.
2.6. Definition

A ring R is said to have the ascending chain condition (A.C.C.) on left (right) ideals, if every ascending sequence of left (right) ideals $L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq \ldots \ldots \subseteq L_{\mathrm{n}} \subseteq \ldots \ldots$, terminates after a finite number of steps, i.e. there exists a positive integer n such that L_{n} $=L_{n+1}=$ \qquad
2.7. Definition

A ring R is said to have the descending chain condition (D.C.C.) on left (right) ideals, if every descending sequence of left (right) ideals $R \supseteq L_{1} \supseteq L_{2} \supseteq L_{3} \supseteq \ldots \ldots$... L_{n} $\supseteq \ldots \ldots . .$. , terminates after a finite number of steps, i.e. there exists a positive integer n such that $L_{n}=L_{n+1}=\ldots \ldots \ldots$.

iII. Radical Class of Rings

3.1. Definition

Let \mathfrak{R} be a nonempty class of rings with a certain property. A ring A is said to be an \mathfrak{R}-ring if $A \in \mathfrak{R}$.
Example:
Let \mathfrak{R} be the class of all nilpotent ring and A be an idempotent ring. Then A is not nilpotent ring and hence $A \notin \mathfrak{R}$. Therefore A is not an \mathfrak{R}-ring.

3.2. Definition

An ideal I of a ring A is said to be an \mathfrak{R}-ideal if I is an \mathfrak{R}-ring. i.e. $I \in \mathfrak{R}$.

Example:

Let \mathfrak{R} be the class of all nilpotent ring and I be an ideal of a nilpotent ring A. Then $I \in \mathfrak{R}$. Therefore I is an \mathfrak{R}-ideal.

3.3. Definition

A ring A is said to be \mathfrak{R}-semi-simple if A has no non-zero \mathfrak{R}-ideal.

3.4. Definition

Let \mathfrak{R} be a non-empty class of rings with a certain property. Then \mathfrak{R} is said to be a radical property or radical class if the following conditions are hold:
A) \mathfrak{R} is homomorphically closed. i.e. every homomorphic image of an \mathfrak{R}-ring A is an \mathfrak{R}-ring. i.e. if $A \in \mathfrak{R}$ and $I \triangleleft A$, then $\frac{A}{I} \in \mathfrak{R}$.
B) Every ring $A \in \mathfrak{R}$ contains a non-zero \mathfrak{R}-ideal $R(A)$ which contains every other \mathfrak{R} ideals of A.
C) $\frac{A}{R(A)}$ has no non-zero \mathfrak{R}-ideal. i.e. $\frac{A}{R(A)}$ is \mathfrak{R}-is semi-simple.

A radical class is simply called a radical.

3.5. Definition

Let \mathfrak{R} be a radical class. The \mathfrak{R}-ideal $R(A)$ of a ring A is called the \mathfrak{R} - radical of the ring A.
3.6. Definition

Let \mathfrak{R}-be a radical class. Then a ring A is said to be an \mathfrak{R}-radical ring if $R(A)=A$, where $R(A)$ is the radical of A.

3.7. Definition

Let \mathfrak{R} be a radical class. Then a ring A is said to be an \mathfrak{R}-semi-simple ring if $R(A)$ $=0$, where $R(A)$ is the radical of A.
0 is the only ring which is both an \mathfrak{R}-radical ring and an \mathfrak{R}-semi-simple ring.
3.7.1. Theorem [8]

Let \mathfrak{R} be a non-empty class \mathfrak{R} of rings. Then \mathfrak{R} is said to be a radical class if and only if
A) \mathfrak{R} is homomorphically closed.
D) If every non-zero homomorphic image of a ring A contains a non-zero $\mathfrak{\Re}$-ideal, then A is in \mathfrak{R}. i.e. $\forall I \triangleleft A$, if $\frac{A}{I} \supset \frac{B}{I} \in \mathfrak{R}$ then $A \in \mathfrak{R}$, where $B \triangleleft A$.
This theorem is known as Kurosh's Theorem.
3.7.2.1. Lemma (Zorn's Lemma)

Let A be a nonempty partially ordered set in which every totally ordered subset has an upper bound in A. Then A contains at least one maximal element.
3.7.2. Theorem (Amitsur) [3]

Let \mathfrak{R} be a nonempty class of rings. Then \mathfrak{R} is a radical class if and only if $\left.A^{\prime}\right) \mathfrak{R}$ is homomorphically closed.
B^{\prime}) For any ring A and an ideal I of A if both I and $\frac{A}{I}$ is in \mathfrak{R}, then $A \in \mathfrak{R}$. i.e. \mathfrak{R} is closed under extension.
C^{\prime}) If $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots \ldots \ldots$, is an ascending chain of \mathfrak{R}-ideals of a ring A, then $\bigcup_{\alpha} I_{\alpha}$ is an \mathfrak{R}-ideal.

IV. Right Quasi-Regular Rings

4.1. Definition

Let R be a ring and $x \in R$. Then x is called right quasi-regular if there exists an
element $y \in R$ such that $x+y+x y=0$.
We often write $x+y+x y$ by xо y. When $x о y=0$ then the element y is called right quasi-inverse of x.

4.2. Definition

A ring R is said to be right quasi-regular if every element in R is right quasi-regular.

4.2.1. Lemma

If R is a ring with 1 , then $(1+x)$ has right inverse $(1+y)$ iff x is right quasi-regular.
Proof: Let us consider a ring with unity element 1 . Let $(1+y)$ be the right inverse of $(1+x)$. Then we have,

$$
\begin{aligned}
& (1+x)(1+y)=1 \\
& \Rightarrow 1+y+x+x y=1 \\
& \Rightarrow x+y+x y=0
\end{aligned}
$$

$\Rightarrow x$ is right quasi-regular.
Conversely, let x be right quasi-regular. Then there is a right quasi-inverse y such that $x+y+x y=0$
$\Rightarrow 1+y+x+x y=1$
$\Rightarrow 1(1+y)+x(1+y)=1$
$\Rightarrow(1+x)(1+y)=1$
i.e. $(1+y)$ is right inverse of $(1+x)$.

4.2.2. Lemma

Let R be a ring. Then for any element x in R, x is a right quasi-regular if and only if $\{r+x r\}=R, \forall r \in R$.

Proof: Let R be a ring and $x \in R$. Consider $\{r+x r\}$, the set of all elements $r+x r$, $\forall r \in R$. Then $\{r+x r\}$ is clearly a right ideal of R. Now suppose that $\{r+x r\}=R$. We are to show that x is right quasi-regular. Since $\{r+x r\}=R$, then $x=r+x r$ for some r in R. This implies that $x+(-r)+x(-r)=0$. This implies that x is right quasi-regular for some $r \in R$.

Conversely, suppose that x is right quasi-regular element of R. We have to show that $R=\{r+x r\}$. Since x is right quasi-regular then \exists an element $y \in R$ such that $x+y+$ $x y=0 \Rightarrow x=(-y)+x(-y) \in\{r+x r\}$. Then $x r \in\{r+x r\}$ and therefore $r \in\{r+x r\}$ for every $r \in R$. Hence $\{r+x r\}=R$.

4.3. Definition

Let R be a ring and I be a right ideal of R. Then I is called a right quasi-regular right ideal if every element of I is right quasi-regular.

4.3.1. Lemma [8]

If x is right quasi-regular and if y belongs to a right quasi-regular right ideal I, then $x+y$ is right quasi-regular.

Proof: Since x is right quasi-regular, then there exists an element x^{\prime} such that, $x+$ $x^{\prime}+x x^{\prime}=0$. Now, consider the element $y+y x^{\prime}$. Then $y+y x^{\prime}$ is in I and thus is right quasi-regular. Let z be the right quasi-inverse of $y+y x^{\prime}$ then, $\quad\left(y+y x^{\prime}\right)+z+\left(y+y x^{\prime}\right) z$ $=0$.

Now we will show that $x^{\prime}+z+x^{\prime} z$ is a right quasi-inverse of $x+y$.
Therefore, $(x+y)+\left(x^{\prime}+z+x^{\prime} z\right)+(x+y)\left(x^{\prime}+z+x^{\prime} z\right)$
$=x+y+x^{\prime}+z+x^{\prime} z+x x^{\prime}+x z+x x^{\prime} z+y x^{\prime}+y z+y x^{\prime} z$
$=\left(x+x^{\prime}+x x^{\prime}\right)+\left(y+y x^{\prime}\right)+z+\left(y+y x^{\prime}\right) z+\left(x+x^{\prime}+x x^{\prime}\right) z$
$=0$
Hence $x+y$ is right quasi-regular.

4.3.2. Lemma

The sum of two right quasi-regular right ideals of a ring is also a right quasiregular right ideal.

Proof: Let I_{1} and I_{2} be two right quasi-regular right ideals of a ring R. We have to show that $I_{1}+I_{2}$ is also a right quasi-regular right ideal of R. Let $p \in I_{1}+I_{2}$ then $p=x+$ y for some $x \in I_{1}$ and $y \in I_{2}$. Since x is right quasi-regular and $y \in I_{2}$ then we have $x+y$ is also right quasi-regular (by Lemma 4.3.1). i.e. p is right quasi-regular.
Hence every element of $I_{1}+I_{2}$ is right quasi-regular.
Hence $I_{1}+I_{2}$ is right quasi-regular right ideal of R.

4.3.3. Lemma

The sum of any finite number of right quasi-regular right ideals of a ring is again a right quasi-regular right ideal.

Proof: Let $I_{1}, I_{2} \ldots, I_{\mathrm{n}}$ are right quasi-regular right ideals of a ring R. We have to show that $I_{1}+I_{2}+\ldots \ldots+I_{\mathrm{n}}$ is right quasi-regular right ideal. We shall prove this by the method of induction on n.

If $n=1$ then the proof is obvious. Now suppose $n=2$, then, $I_{1}+I_{2}$ is right quasiregular right ideal (by Lemma 4.3.1).

Now, let $I=I_{1}+I_{2}+\ldots \ldots+I_{n-1}$ a right quasi-regular right ideal of R. We show that $I+I_{\mathrm{n}}$ is right quasi-regular right ideal of R.

Let $p \in I+I_{\mathrm{n}}$ then $p=x^{\prime}+y^{\prime}$ for some $x^{\prime} \in I$ and $y^{\prime} \in I_{\mathrm{n}}$. Then x^{\prime} is right quasiregular and y^{\prime} belongs to a right quasi-regular right ideal I_{n}. Therefore $x^{\prime}+y^{\prime}$ is right quasi-regular (by Lemma 4.3.1). Hence $I+I_{\mathrm{n}}$ is right quasi-regular right ideal. i.e. $I_{1}+I_{2}$ $+\ldots \ldots .+I_{\mathrm{n}-1}+I_{\mathrm{n}}$ is a right quasi-regular right ideal of R.

4.3.4. Lemma

Sum (Union) of all right quasi-regular right ideals of a ring R is a right quasiregular right ideal of R.

4.3.5. Lemma/8]

$J(R)$, the sum of all right quasi-regular right ideals of a ring R is a two sided ideal of R.

Proof: Let x be any element in $J(R)$ and r any element of R. We have to show that $r x$ is in $J(R)$ i.e. $J(R)$ is a left ideal. We know that $J(R)$ is a right quasi-regular right ideal. Hence $x r \in J(R)$ is a right quasi-regular. Then there exists an element w such that

$$
\begin{aligned}
& x r+w+x r w=0 . \text { Then } \\
& r x+(-r x-r w X)+r x(-r x-r w x) \\
& =r x-r x-r w X-r x \cdot r x-r x \cdot r w X \\
& =-r(W+x r+x r w) x \\
& =-r \cdot 0 \cdot x \\
& =0
\end{aligned}
$$

Therefore, $r x$ is right quasi-regular.
Next consider the right ideal generated by $r x$. This is the set of all $r x i+r x S$, where i is an integer and s is in R. The element $x i+x s$ is in $J(R)$ and, as above, $r(x i+x s)$ is right quasi-regular. Therefore, $\{r x i+r x s\}$ is a right quasi-regular right ideal. It is thus in $J(R)$ and then, in particular, $r x$ is in $J(R)$. Therefore $J(R)$ is a two-sided ideal of R.

4.3.6. Lemma

Every homomorphic image of a right quasi-regular ring R is right quasi-regular.
Proof: Let R be a right quasi-regular ring and I be any ideal of R, then we have to show that $\frac{R}{I}$ is right quasi-regular. Let $x \in \frac{R}{I}$ then $x=r+I$ for some $r \in R$.

Since R is right quasi-regular, then r is right quasi-regular. Then there exists an element $r^{\prime} \in R$ such that $r+r^{\prime}+r r^{\prime}=0$.
Now $(r+I)+\left(r^{\prime}+I\right)+(r+I)\left(r^{\prime}+I\right)=r+r^{\prime}+I+r r^{\prime}+I$
$=r+r^{t}+r r^{t}+I$
$=0+I$
$=I$
But I is the zero element of $\frac{R}{I}$. Therefore $r^{t}+I$ is right quasi-inverse of $r+I$. Hence $r+I$ is right quasi-regular i.e. x is right quasi-regular. Therefore $\frac{R}{I}$ is right quasiregular.

4.3.7. Lemma

Let R be a ring and I be an ideal of R. If I and $\frac{R}{I}$ are right quasi-regular then R is right quasi-regular.

Proof: Since $\frac{R}{I}$ is right quasi-regular, then for every $x \in \frac{R}{I}$, there exists $y \in \frac{R}{I}$ such that
$(x+I)+(y+I)+(x+I)(y+I)=I$
$\Rightarrow x+I+y+I+x y+I=I$
$\Rightarrow x+y+x y+I=I$
$\Rightarrow x+y+x y \in I$
Since I is right quasi-regular then there exists $w \in I$ such that
$x+y+x y+w+(x+y+x y) w=0$
$\Rightarrow x+y+x y+w+x w+y w+x y w=0$
$\Rightarrow x+(y+w+y w)+x(y+w+y w)=0$
This implies that $y+w+y w$ is a right quasi-inverse of x and thus x is a right quasi-regular. Hence R is right quasi-regular.

V. Conclusions

From the above discussions, we can prove the following theorem.

5.1. Theorem

The class of all right quasi-regular rings is a radical class.
Proof: Let J be the class of all right quasi-regular rings. We shall prove this using Amitsur theorem.
By Lemma 4.3.6, A') holds. i.e. J is homomorphically closed.

By Lemma 4.3.7, B^{\prime}) holds. i.e. J is closed under extension.
To prove C^{\prime}), let $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots \ldots$ be an ascending chain of right quasi-regular right ideals of a ring R. We have to show that $\bigcup_{\alpha} I_{\alpha}$ is right quasi-regular. Let $x \in \bigcup_{\alpha} I_{\alpha}$ then $x \in I_{\alpha}$ for some α. Since each I_{α} is right quasi-regular right ideal then \exists an element x^{\prime} such that $x+x^{\prime}+x x^{\prime}=0$. i.e. x is right quasi-regular. Hence every element of $\bigcup_{\alpha} I_{\alpha}$ is right quasi-regular. i.e. $\bigcup_{\alpha} I_{\alpha}$ is right quasi-regular. Hence J is a radical class.

References Références Referencias

1. S. Amitsur, "A general theory of radicals l", Amer. J. Math. 74,774, 1952.
2. S. Amitsur, "A general theory of radicals ll", Amer. J .Math., 76,100, 1954.
3. S. Tumurbat \& R. Wisbauer, "Radicals With The α-Amitsur Property", W. Sc. P. C., Vol. 7, No. 3,347-361, 2008.
4. Andrunakievic, "Radicals of associative rings 1", Mat, Sbor, 44, (86) 179, 1958.
5. Kishor Pawar \&Rajendra Deore, "A Note on Kurosh Amitsur Radical and Hoehnke Radical", Thai J. Math, V. 9 No. 3, 571-576, 2011.
6. A. Kurosh, "Radicals of rings and algebras", Mat. Sb. (N.S), 33, 13-26 (Russian), 1953.
7. J. Levitzki, "On the radical of a general ring", Bull. Am. Math. Soc.,49,462 - 466, 1943.
8. N. Divinsky, "Rings and Radicals (University of Toronto press)", 1965.
9. N. Jacobson, "The radical and semi-simplicity for arbitrary rings", Am. J. Math., 67, $300-20,1945$.
10. J. H. M. Wedderburn, "On hypercomplex numbers", Proc. London Math. Soc., 6, 77117, 1908.
11. R. Bear, "Radical ideals", Am. J. Math., 65, 537 - 68, 1943.
12. B. Brown and N. H. McCoy, "The radical of a ring", Duke Math. J., 15, 495 - 9, 1947.
13. N. Jacobson, "The radical and semi-simplicity for arbitrary rings", Am. J. Math., 67, $300-20,1945$.
14. E. Artin, C. J. Nesbitt and R. M. Thrall, "Rings with minimum condition", University of Michigan Publications in Mathematics, no. 1, 1944.
15. Sulinski, "Certain questions in the general theory of radicals", Mat.Sb., 44,273-86, 1958.
16. S. Perlis, "A characterization of the radical of algebra", Bull.Am. Math. Soc.,48, 128 132, 1942.

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 12 Issue 12 Version 1.0 Year 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Positive Solutions for Systems of Three-Point Nonlinear Boundary Value Problems on Time Scales

By A Kameswara Rao \& S. Nageswara Rao

Gayatri Vidya Parishad College of Engineering for Women Madhurawada, India
Abstract - Values of are determined for which there exist positive solutions of the system of dynamic equations, $u^{\Delta \Delta}(t)+\lambda p(t) f(v(\sigma(t)))=0, v^{\Delta \Delta}(t)+\lambda q(t) g(u(\sigma(t)))=0$, for $t \in[a, b]_{\mathbb{T}}$ Satisfying the three - point boundary conditions, $\alpha u(a)-\beta u^{\Delta}(a)=0, u\left(\sigma^{2}(b)\right)-\delta u(\eta)=0, \alpha v(a)-$ $\beta v^{\Delta}(a)=0, v\left(\sigma^{2}(b)\right)-\delta v(\eta)=0$, where \mathbb{T} is a time scales. A Guo-Krasnosel'skii fixed point theorem is applied.

Keywords : Time scales, three-point boundary value problems, dynamic equations, system of equations, positive solution, eigenvalue problem.

GJSFR-F Classification : MSC 2010: 34B15, 39B10, 34B18

Strictly as per the compliance and regulations of :

© 2012. A Kameswara Rao \& S. Nageswara Rao. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
epaper

Positive Solutions for Systems of Three-Point Nonlinear Boundary Value Problems on Time Scales

A Kameswara Rao ${ }^{\alpha}$ \& S. Nageswara Rao ${ }^{\circ}$

Abstract - Values of λ are determined for which there exist positive solutions of the system of dynamic equations, $u^{\Delta \Delta}(t)+\lambda p(t) f(v(\sigma(t)))=0, v^{\Delta \Delta}(t)+\lambda q(t) g(u(\sigma(t)))=0$, for $t \in[a, b]_{\mathbb{T}}$ Satisfying the three point boundary conditions, $\alpha u(a)-\beta u^{\Delta}(a)=0, u\left(\sigma^{2}(b)\right)-\delta u(\eta)=0, \alpha v(a)-\beta v^{\Delta}(a)=0, v\left(\sigma^{2}(b)\right)-$ $\delta v(\eta)=0$, where \mathbb{T} is a time scales. A Guo-Krasnosel'skii fixed point theorem is applied.
Keywords : Time scales, three-point boundary value problems, dynamic equations, system of equations, positive solution, eigenvalue problem.

I. Introduction

Let \mathbb{T} be a time scale with $a, \sigma^{2}(b) \in \mathbb{T}$. Given an interval J of \mathbb{R}, we will use the interval notation

$$
J_{\mathbb{T}}=J \cap \mathbb{T}
$$

We are concerned with determining intervals of the parameter λ (eigenvalues) for which there exist positive solutions for the system of dynamic equations,

$$
\begin{array}{ll}
u^{\Delta \Delta}(t)+\lambda p(t) f(v(\sigma(t)))=0, & t \in[a, b]_{\mathbb{T}} \tag{1.1}\\
v^{\Delta \Delta}(t)+\lambda q(t) g(u(\sigma(t)))=0, & t \in[a, b]_{\mathbb{T}}
\end{array}
$$

satisfying the boundary conditions

$$
\begin{align*}
\alpha u(a)-\beta u^{\Delta}(a)=0, & u\left(\sigma^{2}(b)\right)-\delta u(\eta)=0 \\
\alpha v(a)-\beta v^{\Delta}(a)=0, & v\left(\sigma^{2}(b)\right)-\delta v(\eta)=0 \tag{1.2}
\end{align*}
$$

[^3]where $\alpha, \beta \geq 0, \alpha+\beta>0, \lambda>0,0<\delta<1, \eta \in\left[a, \sigma^{2}(b)\right]$, and
(A1) $f, g \in C([0, \infty),[0, \infty))$,
(A2) $p, q \in C\left([a, \sigma(b)]_{\mathbb{T}},[0, \infty)\right)$, and each does not vanish identically on any closed subinterval of $[a, \sigma(b)]_{\mathbb{T}}$,
(A3) All of
\[

$$
\begin{aligned}
f_{0}:=\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}, \quad g_{0}:=\lim _{x \rightarrow 0^{+}} \frac{g(x)}{x}, \\
f_{\infty}:=\lim _{x \rightarrow \infty} \frac{f(x)}{x}, \quad g_{\infty}:=\lim _{x \rightarrow \infty} \frac{g(x)}{x}
\end{aligned}
$$
\]

exist as positive real numbers.
On a larger scale, there has been a great deal of activity in studying positive solutions of boundary value problems for ordinary differential equations. Interest in such solutions is high from a theoretical sense $[9,10,12,15]$ and as applications for which only positive solutions are meaningful. These considerations are caste primarily for scalar problems, but good attention has been given to boundary value problems for systems of differential equations [13, 14, 19, 21, 22].

The main tool in this paper is an application of the Guo-Krasnoselskii fixed point theorem for operators leaving a Banach space cone invariant [10]. A Green's function plays a fundamental role in defining an appropriate operator on a suitable cone.

iI. Some Preliminaries

In this section, we state some preliminary lemmas and the well-known GuoKrasnosel'skii fixed point theorem.

Let $G(t, s)$ be the Green's function for the boundary value problem

$$
\begin{gather*}
-y^{\Delta \Delta}(t)=0 \tag{2.1}\\
\alpha y(a)-\beta y^{\Delta}(a)=0, \quad y\left(\sigma^{2}(b)\right)-\delta y(\eta)=0, \tag{2.2}
\end{gather*}
$$

which is given by

$$
G(t, s)=\frac{1}{d} \begin{cases}G_{1}(t, s): & a \leq s \leq \eta \\ G_{2}(t, s): & \eta \leq \sigma(s) \leq \sigma^{2}(b)\end{cases}
$$

$G_{2}(t, s)= \begin{cases}{[\beta+\alpha(\sigma(s)-a)]\left(\sigma^{2}(b)-t\right)+(t-\sigma(s))(\eta+\beta-\alpha a) \delta,} & \sigma(s) \leq t \\ {[\beta+\alpha(t-a)]\left(\sigma^{2}(b)-\sigma(s)\right),} & t \leq s\end{cases}$
and

$$
d:=\beta(1-\delta)+\alpha\left(\sigma^{2}(b)-a-\delta(\eta-a)\right) .
$$

Lemma 2．1 For $h(t) \in C\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}$ ，the $B V P$

$$
\begin{align*}
-y^{\Delta \Delta}(t) & =h(t), \quad t \in[a, b]_{\mathbb{T}} \tag{2.3}\\
\alpha y(a)-\beta y^{\Delta}(a) & =0, \quad y\left(\sigma^{2}(b)\right)-\delta y(\eta)=0, \tag{2.4}
\end{align*}
$$

has a unique solution

$$
\begin{align*}
& y(t)=\frac{\beta+\alpha(t-a)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) h(s) \Delta s \\
& -\frac{\delta(\beta+\alpha(t-a))}{d} \int_{a}^{\eta}(\eta-\sigma(s)) h(s) \Delta s-\int_{a}^{t}(t-\sigma(s)) h(s) \Delta s \tag{2.5}
\end{align*}
$$

From（2．5）obviously we have that

$$
\begin{equation*}
y(t) \leq \frac{\beta+\alpha(t-a)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) h(s) \Delta s \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
y(\eta) \geq \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) h(s) \Delta s \tag{2.7}
\end{equation*}
$$

Lemma 2．2 Let $0<\delta<1$ ．If $h(t) \in C\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}$ ，and $h \geq 0$ ，then the unique solution y of the problem（2．3），（2．4）satisfies

$$
y(t) \geq 0, \quad t \in\left(a, \sigma^{2}(b)\right)_{\mathbb{T}}
$$

Proof：From the fact that $y^{\Delta \Delta}(t)=-h(t) \leq 0$ ，we know that the graph of $y(t)$ is concave down on $\left[a, \sigma^{2}(b)\right] \mathbb{T}$ and $y^{\Delta}(t)$ is monotone decreasing．Thus $y^{\Delta}(t) \leq y^{\Delta}(a)=\frac{\alpha}{\beta} y(a)$ ，where $\beta \neq 0$ ．

Case 1．If $y(a)<0$ ，then $y^{\Delta}(t)<0$ for $\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}$ ．Thus y is a monotone decreasing function，that is $y(t) \geq y\left(\sigma^{2}(b)\right)$ ．
1．If $y\left(\sigma^{2}(b)\right) \geq 0$ ，then $y(t)>0$ ．So this contradicts the assertion $y(t)$ is a monotone decreasing function．
2．If $y\left(\sigma^{2}(b)\right)<0$ ，then we have that

$$
\begin{gathered}
y(\eta)=\frac{1}{\delta} y\left(\sigma^{2}(b)\right)<0 \\
y\left(\sigma^{2}(b)\right)=\delta y(\eta) \geq y(\eta)
\end{gathered}
$$

which contradicts the assertion that $y(t)$ is monotone decreasing.
Case 2. If $y(a) \geq 0$, then $y^{\Delta}(a) \geq 0$. So $y(t)$ is a monotone increasing on $[a, a+\epsilon]$.

1. If $y\left(\sigma^{2}(b)\right) \geq 0$, then $y(t) \geq 0$ on $\left[a, \sigma^{2}(b)\right] \mathbb{T}$.
2. If $y\left(\sigma^{2}(b)\right)<0$, then we have that

$$
\begin{gathered}
y(\eta)=\frac{1}{\delta} y\left(\sigma^{2}(b)\right)<0 \\
y\left(\sigma^{2}(b)\right)=\delta y(\eta) \geq y(\eta)
\end{gathered}
$$

which contradicts the assertion that the graph of $y(t)$ is concave down on $\left(a, \sigma^{2}(b)\right)_{\mathbb{T}}$.

If $\beta=0$, from the boundary conditions we obtain $y(a)=0$.

1. If $y\left(\sigma^{2}(b)\right) \geq 0$, then the concavity of y implies that $y(t) \geq 0$ for $t \in$ $\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}$.
2. If $y\left(\sigma^{2}(b)\right)<0$, then

$$
\begin{gathered}
y(\eta)=\frac{1}{\delta} y\left(\sigma^{2}(b)\right)<0 \\
y\left(\sigma^{2}(b)\right)=\delta y(\eta) \geq y(\eta)
\end{gathered}
$$

This contradicts with the concavity of y.
Lemma 2.3 If $y^{\Delta \Delta}(t) \leq 0$, then $\frac{y\left(\sigma^{2}(b)\right)}{\sigma^{2}(b)} \leq \frac{y(t)}{t} \leq \frac{y(\eta)}{\eta}$ for all $t \in\left[\eta, \sigma^{2}(b)\right] \mathbb{T}$.
Proof: Let $h(t):=y(t)-\frac{t}{\sigma^{2}(b)-a} y\left(\sigma^{2}(b)\right)$. Thus, we have $h(\eta)>0$ and $h\left(\sigma^{2}(b)\right)=0$. Since $h^{\Delta \Delta}(t) \leq 0$ then $h(t) \geq 0$ on $\left[\eta, \sigma^{2}(b)\right]_{\mathbb{T}}$. So $\frac{y\left(\sigma^{2}(b)\right)}{\sigma^{2}(b)} \leq \frac{y(t)}{t}$. For the function $h(t)$, since $h(\eta)>0, h\left(\sigma^{2}(b)\right)=0$ and $h^{\Delta \Delta}(t) \leq 0$ then the function $h(t)$ is decreasing on $\left[\eta, \sigma^{2}(b)\right]_{\mathbb{T}}$. So $\frac{y(t)}{t} \leq \frac{y(\eta)}{\eta}$ for all $t \in\left[\eta, \sigma^{2}(b)\right]_{\mathbb{T}}$.

Lemma 2.4 Let $0<\delta<1$. If $h(t) \in C\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}$, and $h \geq 0$, then the unique solution y of the problem (2.3), (2.4) satisfies

$$
\inf _{t \in\left[\eta, \sigma^{2}(b)\right]} y(t) \geq \gamma\|y\|,
$$

where

$$
\gamma:=\min \left\{\frac{\delta\left(\sigma^{2}(b)-\eta\right)}{\sigma^{2}(b)-\delta \eta-a(1-\delta)}, \frac{\delta \eta}{\sigma^{2}(b)}\right\} .
$$

Proof: By the second boundary condition we know that $y(\eta) \geq y\left(\sigma^{2}(b)\right)$. Pick $t_{0} \in\left(a, \sigma^{2}(b)\right)_{\mathbb{T}}$ such that $y\left(t_{0}\right)=\|y\|$. If $t_{0}<\eta<\sigma^{2}(b)$, then

$$
\min _{t \in\left[\eta, \sigma^{2}(b)\right]} y(t)=y\left(\sigma^{2}(b)\right),
$$

and

$$
\frac{y\left(\sigma^{2}(b)\right)-y(\eta)}{\sigma^{2}(b)-\eta} \leq \frac{y(\eta)-y\left(t_{0}\right)}{\eta-t_{0}}
$$

Therefore

$$
\min _{t \in\left[\eta, \sigma^{2}(b)\right]} y(t) \geq \frac{\delta\left(\sigma^{2}(b)-\eta\right)}{\sigma^{2}(b)-\delta \eta-a(1-\delta)}\|y\| .
$$

If $\eta \leq t_{0}<\sigma^{2}(b)$, again we have $y\left(\sigma^{2}(b)\right)=\min _{t \in\left[\eta, \sigma^{2}(b)\right]} y(t)$. From Lemma 2.3, we have $\frac{y(\eta)}{\eta} \geq \frac{y\left(t_{0}\right)}{t_{0}}$. Combining with the boundary condition $\delta y(\eta)=y\left(\sigma^{2}(b)\right)$, we conclude that

$$
\frac{y\left(\sigma^{2}(b)\right)}{\delta \eta} \geq \frac{y\left(t_{0}\right)}{t_{0}} \geq \frac{y\left(t_{0}\right)}{\sigma^{2}(b)}=\frac{\|y\|}{\sigma^{2}(b)} .
$$

This is

$$
\min _{t \in\left[\eta, \sigma^{2}(b)\right]} y(t) \geq \frac{\delta \eta}{\sigma^{2}(b)}\|y\| .
$$

We note that a pair $(u(t), v(t))$ is a solution of the eigenvalue problem (1.1), (1.2) if, and only if,
$u(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s, a \leq t \leq \sigma^{2}(b)$,
where

$$
v(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) q(s) g(u(\sigma(s))) \Delta s, \quad a \leq t \leq \sigma^{2}(b)
$$

Values of λ for which there are positive solutions (positive with respect to a cone) of (1.1), (1.2) will be determined via applications of the following fixed point-theorem [17].
Theorem 2.5 (Krasnosel'skii) Let \mathcal{B} be a Banach space, and let $\mathcal{P} \subset \mathcal{B}$ be a cone in \mathcal{B}. Assume Ω_{1} and Ω_{2} are open subsets of \mathcal{B} with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \mathcal{P}
$$

be a completely continuous operator such that, either
(i) $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$, or
(ii) $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$.

Then, T has a fixed point in $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

iii. Positive Solutions in a Cone

In this section, we apply Theorem 2.5 to obtain solutions in a cone (i.e., positive solutions) of (1.1), (1.2).

For our construction, let $\mathcal{B}=\left\{x:\left[a, \sigma^{2}(b)\right]_{\mathbb{T}} \rightarrow \mathbb{R}\right\}$ with supremum norm $\|x\|=\sup \left\{|x(t)|: t \in\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}\right\}$ and define a cone $\mathcal{P} \subset \mathcal{B}$ by

$$
\mathcal{P}=\left\{x \in \mathcal{B} \mid x(t) \geq 0 \text { on }\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}, \text { and } \min _{t \in\left[\eta, \sigma^{2}(b)\right]} x(t) \geq \gamma\|x\|\right\}
$$

For our first result, define positive numbers L_{1} and L_{2} by

$$
\begin{aligned}
L_{1}:=\max \{ & {\left[\gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \Delta s f_{\infty}\right]^{-1}, } \\
& {\left.\left[\gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) q(s) \Delta s g_{\infty}\right]^{-1}\right\}, }
\end{aligned}
$$

and

$$
\begin{aligned}
L_{2}:=\min & \left\{\left[\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \Delta s f_{0}\right]^{-1},\right. \\
& {\left.\left[\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) q(s) \Delta s g_{0}\right]^{-1}\right\} . }
\end{aligned}
$$

Theorem 3.1 Assume that conditions (A1) - (A3) are satisfied. Then, for each λ satisfying

$$
\begin{equation*}
L_{1}<\lambda<L_{2} \tag{3.1}
\end{equation*}
$$

there exists a pair (u, v) satisfying (1.1), (1.2) such that $u(x)>0$ and $v(x)>0$ on $\left(a, \sigma^{2}(b)\right)_{\mathbb{T}}$.

Proof: Let λ be as in (3.1). And let $\epsilon>0$ be chosen such that

$$
\max \left\{\left[\gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \Delta s\left(f_{\infty}-\epsilon\right)\right]^{-1},\right.
$$

$$
\left.\left[\gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) q(s) \Delta s\left(g_{\infty}-\epsilon\right)\right]^{-1}\right\} \leq \lambda,
$$

and

$$
\begin{array}{r}
\lambda \leq \min \left\{\left[\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \Delta s\left(f_{0}+\epsilon\right)\right]^{-1},\right. \\
\\
\left.\left[\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) q(s) \Delta s\left(g_{0}+\epsilon\right)\right]^{-1}\right\},
\end{array}
$$

Define an integral operator $T: \mathcal{P} \rightarrow \mathcal{B}$ by
$T u(t):=\lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s, u \in \mathcal{P}$.

We seek suitable fixed points of T in the cone \mathcal{P}.
By Lemma 2.4, TP $\subset \mathcal{P}$. In addition, standard arguments show that T is completely continuous.

Now, from the definitions of f_{0} and g_{0}, there exists $H_{1}>0$ such that

$$
f(x) \leq\left(f_{0}+\epsilon\right) x \text { and } g(x) \leq\left(g_{0}+\epsilon\right) x, \quad 0<x \leq H_{1} .
$$

Let $u \in \mathcal{P}$ with $\|u\|=H_{1}$. We first have from (2.6) and choice of ϵ,

$$
\begin{aligned}
& \lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \\
& \quad \leq \lambda \frac{\beta+\alpha(t-a)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g(u(\sigma(r))) \Delta r \\
& \quad \leq \lambda \frac{\beta+\alpha(t-a)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r)\left(g_{0}+\epsilon\right) u(r) \Delta r \\
& \quad \leq \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) \Delta r\left(g_{0}+\epsilon\right)\|u\| \\
& \quad \leq\|u\| \\
& \quad=H_{1} .
\end{aligned}
$$

As a consequence, we next have from (2.6) and choice of ϵ,

$$
T u(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s
$$

$$
\begin{aligned}
\leq & \lambda \frac{\beta+\alpha(t-a)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
\leq & \lambda \frac{\beta+\alpha(t-a)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& \left(f_{0}+\epsilon\right) \lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \Delta s \\
\leq & \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s)\left(f_{0}+\epsilon\right) H_{1} \Delta s
\end{aligned}
$$

So, $\|T u\| \leq\|u\|$. If we set

$$
\Omega_{1}=\left\{x \in \mathcal{B}:\|x\|<H_{1}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \quad \text { for } \quad u \in \mathcal{P} \cap \partial \Omega_{1} . \tag{3.3}
\end{equation*}
$$

Next, from the definitions of f_{∞} and g_{∞}, there exists $\bar{H}_{2}>0$ such that

$$
f(x) \geq\left(f_{\infty}-\epsilon\right) x \text { and } g(x) \geq\left(g_{\infty}-\epsilon\right) x, \quad x \geq \bar{H}_{2}
$$

Let

$$
H_{2}=\max \left\{2 H_{1}, \frac{\bar{H}_{2}}{\gamma}\right\} .
$$

Let $u \in \mathcal{P}$ and $\|u\|=H_{2}$. Then,

$$
\min _{t \in\left[\eta, \sigma^{2}(b)\right] \mathbb{T}} u(t) \geq \gamma\|u\| \geq \bar{H}_{2} .
$$

Consequently, from (2.7) and choice of ϵ,

$$
\begin{aligned}
& \lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \\
& \geq \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g(u(\sigma(r))) \Delta r \\
& \geq \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r)\left(g_{\infty}-\epsilon\right) u(r) \Delta r
\end{aligned}
$$

$$
\begin{aligned}
& \geq \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r)\left(g_{\infty}-\epsilon\right) \Delta r \gamma\|u\| \\
& \geq\|u\| \\
& =H_{2}
\end{aligned}
$$

And so, we have from (2.7) and choice of ϵ,

$$
\begin{aligned}
T u(\eta) \geq & \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& f\left(\lambda \int_{\eta}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
\geq & \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& \left(f_{\infty}-\epsilon\right) \lambda \int_{\eta}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \Delta s \\
\geq & \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s)\left(f_{\infty}-\epsilon\right) H_{2} \Delta s \\
\geq & \lambda \gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s)\left(f_{\infty}-\epsilon\right) H_{2} \Delta s \\
\geq & H_{2} \\
= & \|u\| .
\end{aligned}
$$

Hence, $\|T u\| \geq\|u\|$. So, if we set

$$
\Omega_{2}=\left\{x \in \mathcal{B}:\|x\|<H_{2}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \geq\|u\|, \text { for } \quad u \in \mathcal{P} \cap \partial \Omega_{2} \tag{3.4}
\end{equation*}
$$

Applying Theorem 2.5 to (3.3) and (3.4), we obtain that T has a fixed point $u \in \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. As such, and with v being defined by

$$
v(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) q(s) g(u(\sigma(s))) \Delta s
$$

the pair (u, v) is a desired solution of (1.1), (1.2) for the given λ. The proof is complete.
Prior to our next result, we define positive numbers L_{3} and L_{4} by

$$
\begin{aligned}
L_{3}:=\max & \left\{\left[\gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \Delta s f_{0}\right]^{-1}\right. \\
& {\left.\left[\gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) q(s) \Delta s g_{0}\right]^{-1}\right\} }
\end{aligned}
$$

and

$$
\begin{aligned}
L_{4}:=\min & \left\{\left[\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \Delta s f_{\infty}\right]^{-1},\right. \\
& {\left.\left[\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) q(s) \Delta s g_{\infty}\right]^{-1}\right\} . }
\end{aligned}
$$

Theorem 3.2 Assume that conditions (A1) - (A4) are satisfied. Then, for each λ satisfying

$$
\begin{equation*}
L_{3}<\lambda<L_{4} \tag{3.5}
\end{equation*}
$$

there exists a pair (u, v) satisfying (1.1), (1.2) such that $u(x)>0$ and $v(x)>0$ on $\left(a, \sigma^{2}(b)\right)_{\mathbb{T}}$.
Proof: Let λ be as in (3.5). And let $\epsilon>0$ be chosen such that

$$
\begin{aligned}
& \max \left\{\left[\gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \Delta s\left(f_{0}-\epsilon\right)\right]^{-1}\right. \\
& {\left.\left[\gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) q(s) \Delta s\left(g_{0}-\epsilon\right)\right]^{-1}\right\} \leq \lambda }
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda \leq \min \left\{\left[\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \Delta s\left(f_{\infty}+\epsilon\right)\right]^{-1}\right. \\
& {\left.\left[\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) q(s) \Delta s\left(g_{\infty}+\epsilon\right)\right]^{-1}\right\} }
\end{aligned}
$$

Let T be the cone preserving, completely continuous operator that was defined by (3.2).

From the definitions of f_{0} and g_{0}, there exists $H_{3}>0$ such that

$$
f(x) \geq\left(f_{0}-\epsilon\right) x \text { and } g(x) \geq\left(g_{0}-\epsilon\right) x, \quad 0<x \leq H_{3} .
$$

Also, from the definition of g_{0} it follows that $g(0)=0$ and so there exists $0<H_{3}<\bar{H}_{3}$ such that

$$
\lambda g(x) \leq \frac{\bar{H}_{3}}{\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) \Delta r}, \quad 0 \leq x \leq H_{3}
$$

Choose $u \in \mathcal{P}$ with $\|u\|=H_{3}$. Then

$$
\begin{aligned}
& \lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \\
& \quad \leq \lambda \frac{\beta+\alpha(t-a)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g(u(\sigma(r))) \Delta r \\
& \quad \leq \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g(u(\sigma(r))) \Delta r \\
& \quad \leq \frac{\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) \bar{H}_{3} \Delta r}{\frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) q(s) \Delta s} \\
& \quad \leq \bar{H}_{3} .
\end{aligned}
$$

Then, by (2.7)

$$
\begin{aligned}
T u(\eta) \geq & \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& f\left(\lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
\geq & \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& \left(f_{0}-\epsilon\right) \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g(u(\sigma(r))) \Delta r \Delta s \\
\geq & \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& \left.\left(f_{0}-\epsilon\right) \lambda \gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r)\left(g_{0}-\epsilon\right)\right)\|u\| \Delta r \Delta s \\
\geq & \lambda \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s)\left(f_{0}-\epsilon\right)\|u\| \Delta s \\
\geq & \lambda \gamma \frac{\beta+\alpha(\eta-a)}{d} \int_{\eta}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s)\left(f_{0}-\epsilon\right)\|u\| \Delta s \\
\geq & \|u\| .
\end{aligned}
$$

So, $\|T u\| \geq\|u\|$. If we put

$$
\Omega_{3}=\left\{x \in \mathcal{B}:\|x\|<H_{3}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \geq\|u\|, \text { for } \quad u \in \mathcal{P} \cap \partial \Omega_{3} . \tag{3.6}
\end{equation*}
$$

Next, by definitions of f_{∞} and g_{∞}, there exists \bar{H}_{4} such that

$$
f(x) \leq\left(f_{\infty}+\epsilon\right) x \text { and } g(x) \leq\left(g_{\infty}+\epsilon\right) x, \quad x \geq \bar{H}_{4}
$$

Clearly, since g_{∞} is assumed to be a positive real number, it follows that g is unbounded at ∞, and so, there exists $\widetilde{H}_{4}>\max \left\{2 H_{3}, \bar{H}_{4}\right\}$ such that $g(x) \leq g\left(\widetilde{H}_{4}\right)$, for $0<x \leq \widetilde{H}_{4}$.

Set

$$
f^{*}(t)=\sup _{a \leq s \leq t} f(s), \quad g^{*}(t)=\sup _{a \leq s \leq t} g(s), \text { for } t \geq 0
$$

Clearly f^{*} and g^{*} are nondecreasing real valued functions for which it holds

$$
\lim _{x \rightarrow \infty} \frac{f_{i}^{*}(x)}{x}=f_{\infty}, \quad \lim _{x \rightarrow \infty} \frac{g_{i}^{*}(x)}{x}=g_{\infty}
$$

Hence, there exists H_{4} such that $f^{*}(x) \leq f^{*}\left(H_{4}\right), g^{*}(x) \leq g^{*}\left(H_{4}\right)$, for $0<x \leq H_{4}$.

Choosing $u \in \mathcal{P}$ with $\|u\|=H_{4}$, we have

$$
\begin{aligned}
T u(t) \leq & \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& f\left(\lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
\leq & \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& f^{*}\left(\lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
\leq & \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& f^{*}\left(\lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g^{*}(u(\sigma(r))) \Delta r\right) \Delta s \\
\leq & \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& f^{*}\left(\lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r) g^{*}\left(H_{4}\right) \Delta r\right) \Delta s \\
\leq & \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) \\
& f^{*}\left(\lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(r)\right) q(r)\left(g_{\infty}+\epsilon\right) H_{4} \Delta r\right) \Delta s \\
\leq & \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma(b)}\left(\sigma^{2}(b)-\sigma(s)\right) p(s) f^{*}\left(H_{4}\right) \Delta s
\end{aligned}
$$

$$
\begin{aligned}
& \leq \lambda \frac{\beta+\alpha\left(\sigma^{2}(b)-a\right)}{d} \int_{a}^{\sigma}\left(\sigma^{2}(b)-\sigma(s)\right) p(s)\left(f_{\infty}+\epsilon\right) H_{4} \Delta s \\
& \leq H_{4} \\
& =\|u\|,
\end{aligned}
$$

and so $\|T u\| \leq\|u\|$. For this case, if we let

$$
\Omega_{4}=\left\{x \in \mathcal{B}:\|x\|<H_{4}\right\},
$$

then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \text { for } \quad u \in \mathcal{P} \cap \partial \Omega_{4} . \tag{3.7}
\end{equation*}
$$

Application of part (ii) of Theorem 2.5 yields a fixed point u of T belonging to $\mathcal{P} \cap\left(\bar{\Omega}_{4} \backslash \Omega_{3}\right)$, which in turn yields a pair (u, v) satisfying (1.1), (1.2) for the chosen value of λ. The proof is complete.

References Références Referencias

[1] R. P. Agarwal, D. O'Regan, and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic, Dordrecht, The Netherlands, 1999.
[2] D. R. Anderson, Eigenvalue intervals for a second-order mixed-conditions problem on time scale, Int. J. Nonlinear Diff. Eqns., 7(2002), 97-104.
[3] D. R. Anderson, Eigenvalue intervals for a two-point boundary value problem on a measure chain, J. Comp. Appl. Math., 141(2002), No. 1-2, 57-64.
[4] M. Benchohra, J. Henderson and S. K. Ntouyas, Eigenvalue problems for systems of nonlinear boundary value problems on time scales, Adv. Diff. Eqns., Vol 2007, Article ID 31640, 10. pp.
[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, Mass, USA, 2001.
[6] C. J. Chyan, J. M. Davis, J. Henderson, and W. K. C. Yin, Eigenvalue comparisons for differential equations on a measure chain, Elec. J. Diff. Eqns., 1998(1998), No. 35, 1-7 .
[7] C. J. Chyan and J. Henderson, Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl., 245(2000), No. 2, 547-559.
[8] L. H. Erbe and A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, Math. Comp. Modell., 32(2000), No. 5-6, 571-585.
[9] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120(1994), No. 3, 743-748.
[10] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, Mass, USA, 1988.
[11] C. P. Gupta, A sharper condition for the solvability of a three-point second order boundary value problem, J. Math. Anal. Appl., 205(1997), 586-597.
[12] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., 208(1997), No. 1, 252-259.
[13] J. Henderson and H. Wang, Nonlinear eigenvalue problems for quasilinear systems, Comp. Math. Appl., 49(2005), No. 11-12, 1941-1949.
[14] J. Henderson and H. Wang, An eigenvalue problem for quasilinear systems, Rocky. Mont. J. Math., 37(2007), No. 1, 215-228.
[15] L. Hu and L. Wang, Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations, J. Math. Anal. Appl., 335(2007), No. 2, 1052-1060.
[16] A. Kameswararao, Positive solutions for a system of nonlinear boundary value problems on time scales, Elec. J. Diff. Eqns, 2009(2009), No. 127, 1-9.
[17] M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff Ltd, Groningen, The Netherlands (1964).
[18] R. Ma, Positive solutions of a nonlinear three-point boundary value problem, Elec. J. Diff. Eqns, 1999(1999), No. 34, 1-8.
[19] R. Ma, Multiple nonnegative solutions of second-order systems of boundary value problems, Nonlinear. Anal., 42(2000), No. 6, 1003-1010.
[20] Y. Rauffoul, Positive solutions of three-point nonlinear second order boundary value problems, Elec. J. Qual. Theory. Diff. Eqns, (2002), No. 15, 1-11.
[21] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl., 281(2003), No. 1, 287-306.
[22] Y. Zhou and Y. Xu, Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations, J. Math. Anal. Appl., 320(2006), No. 2, 578-590.

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 12 Issue 12 Version 1.0 Year 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Application of Laplace Transform

By Dr. N. A. Patil \& Vijaya N. Patil Shri Sant Gajanan Maharaj College Of Engineering, India

Abstract - The present discounted value equation in finance has a broad range of uses and may be applied to various areas of finance including corporate finance, banking finance and investment finance etc .The basic premise of present discounted value is the time value money .Not many analytic solutions exist for present discounted value problems but by using Laplace transform we can deduce some of the closed form solutions quite easily. In this note we show how present discounted value in finance related to Laplace transforms. Also we discus on the present value rules for the elementary functions and the general properties of the Laplace transform. And we will focus on the application of time derivative property using Laplace transforms to each present value rule.

Keywords : Present discounted value, cash flow, perpetuity, Time derivative, Laplace transform. GJSFR-F Classification : MSC 2010: 44A10

Strictly as per the compliance and regulations of :

© 2012. Dr. N. A. Patil \& Vijaya N. Patil. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Application of Laplace Transform

Dr. N. A. Patil ${ }^{\alpha}$ \& Vijaya N. Patil ${ }^{\sigma}$

Abstract

The present discounted value equation in finance has a broad range of uses and may be applied to various areas of finance including corporate finance, banking finance and investment finance etc .The basic premise of present discounted value is the time value money. Not many analytic solutions exist for present discounted value problems but by using Laplace transform we can deduce some of the closed form solutions quite easily. In this note we show how present discounted value in finance related to Laplace transforms. Also we discus on the present value rules for the elementary functions and the general properties of the Laplace transform. And we will focus on the application of time derivative property using Laplace transforms to each present value rule.

Keywords : Present discounted value, cash flow, perpetuity, Time derivative, Laplace transform.

I. Introduction

During the past few decades, methods based on integral transforms, in particular, the Laplace transforms, are being increasingly employed in mathematics, physics, mechanics and other engineering sciences. Laplace transforms have a wide variety of applications in the solution of differential, integral and difference equations. It is much less used in financial engineering. One reason is technical: not many people know that all that they need to do is to make simple calculations in the Laplace domain.
The outline of this note is as follows -
In section 1 we show the relation between present discounted value and Laplace transforms.

In section 2 we identified the present value rules for each of the cash flow.
In section 3 we discussed the general properties of Laplace transforms with present value rules.
In section 4 we show the application of time derivative property to each of the present value rules.

iI. Relation Between Present Value and Laplace Transform

The Present value of a series of payments given by,

$$
\begin{equation*}
(\mathrm{PV})_{\mathrm{t}}=\sum_{\mathrm{t}=1}^{T} \frac{\mathrm{C}(\mathrm{t})}{(1+\mathrm{r})^{t}} \tag{1}
\end{equation*}
$$

[^4]Where, $(\mathrm{PV})_{\mathrm{t}}=$ Present discounted value at time t

$$
\begin{aligned}
& C(t)=\text { Cash flow } \\
& r=\text { rate of discount } \\
& t=\text { Period }
\end{aligned}
$$

Here we assume the Present value with continuous compounding. It is the current value of a stream of cash flows. In other words, it is the amount that we would be willing to pay today in order to receive a cash flow or a series of them in the future.
Now by using an exponential series we can write equation (1) as,

In the limiting case replacing summation to an integral, equation (2) can be written as

$$
\begin{equation*}
(P V)_{\mathrm{r}}=\int_{0}^{\mathrm{T}} \mathrm{e}^{-r t} \mathrm{C}(\mathrm{t}) \mathrm{dt} \tag{3}
\end{equation*}
$$

Again here T is some finite quantity. So if we consider as $T \rightarrow \infty$, equation (3) will becomes

$$
\begin{equation*}
(\mathrm{PV})_{\mathrm{r}}=\int_{0}^{\infty} \mathrm{e}^{-r t} \mathrm{C}(\mathrm{t}) \mathrm{dt} \tag{4}
\end{equation*}
$$

This equation is the exact replica of Laplace transform in mathematics.

Therefore,

$$
\begin{equation*}
(P V)_{r}=L[C(t)] \tag{5}
\end{equation*}
$$

iii. Laplace Transforms and Present Value Rules for Some Cash Flows

Using Present value equation: Consider the case of constant cash payment K made at the end of each year at interest rate r as shown in the following time line,

Here the cash flow is continuous forever Therefore the Present value is given by an infinite geometric series:

$$
\begin{equation*}
P V=\frac{K}{1+r}+\frac{K}{(1+r)^{2}}+\frac{K}{(1+r)^{3}}+------ \tag{6}
\end{equation*}
$$

Dividing both sides by $(1+r)$ we get,

$$
\begin{equation*}
\frac{P V}{1+r}=\frac{K}{(1+r)^{2}}+\frac{K}{(1+r)^{3}}+\frac{K}{(1+r)^{4}}------ \tag{7}
\end{equation*}
$$

Subtracting equation (7) from (6) we get,

$$
P V-\frac{P V}{1+r}=\frac{K}{1+r}
$$

On solving we get the Present value of perpetuity.
Using Laplace transform equation: If the cash flow is constant say K then the Present discounted value of a stream at interest rate r is given by,

$$
L[K]=K \int_{0}^{\infty} \mathrm{e}^{-r t} \mathrm{dt}=\frac{\mathrm{K}}{r}
$$

This is the same formula as above.
For example: An insurance company has just launched a security that will pay Rs. 200 indefinitely, starting the first payment next year. How much should this security be worth today if the appropriate return is 10% ?
We solve this example by using the time line,

$$
P V=\frac{K}{r}=\frac{200}{0.10}=R s .2000
$$

Using Present value equation: Consider the payments in perpetuity increases at a certain growth rate g as shown on the time line:
The Present value of a growing perpetuity can be written as the following infinite series-

$$
\begin{equation*}
P V=\frac{K}{1+r}+\frac{K(1+g)}{(1+r)^{2}}+\frac{K(1+g)^{2}}{(1+r)^{3}}+------ \tag{8}
\end{equation*}
$$

Multiplying both sides by $\frac{(1+g)}{(1+r)}$. Hence we get,

$$
\begin{equation*}
P V \frac{(1+g)}{(1+r)}=\frac{K(1+g)}{(1+r)^{2}}+\frac{K(1+g)^{2}}{(1+r)^{3}}+\frac{K(1+g)^{3}}{(1+r)^{4}}----- \tag{9}
\end{equation*}
$$

Subtracting equation (9) from (8) we get,

$$
P V-\frac{P V(1+g)}{1+r}=\frac{K}{1+r}
$$

On solving we get the Present value of a growing perpetuity.
Using Laplace transform equation: For an exponential or geometric cash flow the Present discounted value of a stream growing at rate g , is given by:

$$
\begin{equation*}
L[C(t)]=\mathrm{K} L\left[e^{g t}\right]=\frac{K}{r-g} \text { if } r>g \tag{10}
\end{equation*}
$$

This is the geometric growth stream or Present value of growing perpetuity having cash flow after the first period divided by the difference between the discount rate and the growth rate and the growth rate must be less than the interest rate.

For example: A company is expected to pay Rs. 2 of dividend per share that wills increases 5% forever. If investors require 10% return on the company's stocks, how much should investors pay for the stocks? The cash flows are as follows:

$$
\begin{equation*}
P V G=\frac{K}{r-g}=\frac{2}{0.10-0.05}=R s .40 \tag{11}
\end{equation*}
$$

For an arithmetic cash flow the Present discounted value of a stream at rate r , is given by:

$$
\begin{equation*}
L[C(t)]=\mathrm{K} L[t]=\frac{K}{r^{2}} \tag{12}
\end{equation*}
$$

This shows that an arithmetic growth stream is equivalent to receiving one consol per period in perpetuity. This rule is widely used in finance for solving Preset value.

The above rules are commonly used transforms but more useful are the general properties of the Laplace transforms in an algebraic fashion .Let us look at some of the main properties.

Property 1: Linearity: The Laplace Transform is a linear operator. Hence if the Laplace Transforms of the cash flows $f(t)$ and $g(t)$ both exists then we have for any arbitrary constants (a,b) that:

$$
\begin{equation*}
L\{a f(t)+b g(t)\}=a L\{f(t)\}+b L\{g(t)\} \tag{13}
\end{equation*}
$$

This property allows us to deduce more complex transforms to simple transforms.
Property 2: Geometric scaling:

$$
\begin{equation*}
L\left\{e^{\alpha t} c(t)\right\}=V(r-\alpha) \text { for } \alpha<r \tag{14}
\end{equation*}
$$

This property shows that the scaling a cash flow by geometric term is equivalent to corresponding reduction in the rate of discount.
Property 3: Multiplication by t:

$$
\begin{equation*}
\mathrm{L}\{\mathrm{t} \mathrm{C}(\mathrm{t})\}=-\mathrm{V}^{\prime}(\mathrm{r}) \tag{15}
\end{equation*}
$$

We can confirm this property by using the derivative of exponential function.
Property 4: Time shifting:

$$
\left.\begin{array}{cc}
\mathrm{L}\{\mathrm{C}(\mathrm{a}+\mathrm{bt})\} & \text { for } \mathrm{t} \geq a / b \tag{16}\\
0 & \text { for } \mathrm{t}<a / b
\end{array}\right\}=\mathrm{e}^{r a / b}\left(\frac{1}{b}\right) \mathrm{P}(\mathrm{r} / \mathrm{b})
$$

This property applies the change of variable theorem of integral calculus and helpful for finding cash flows with altered time schedules.

Property 5: Time derivative:

$$
\begin{equation*}
\mathrm{L}\left\{\mathrm{C}^{\prime}(\mathrm{t})\right\}=\mathrm{r} \mathrm{~L}\{\mathrm{C}(\mathrm{t})\}-\mathrm{C}(0) \tag{17}
\end{equation*}
$$

This property identifies a fundamental linear relationship between Laplace transform for cash flows and their time derivatives. For the confirmation we use integration by parts:

$$
\int u d v=u v-\int v d u
$$

When we evaluate the integral over relevant range 0 to ∞ for the Laplace transform and impose a standard assumption in present value problems that the marginal present value of the cash flow vanishes as t gets large.

All present value rules of section second can be derived from this time derivative property of Laplace transform and hence having particular significance in finance.
For the confirmation we rewrite the time-derivative property by using notation

$$
\begin{align*}
& (P V)_{r}=L[C(t)]_{, ~ a s: ~} \\
& \mathrm{~L}[\mathrm{C}(\mathrm{t})]=\frac{\mathrm{C}(0)}{r}+\frac{\mathrm{L}\left[\mathrm{C}^{\prime}(\mathrm{t})\right]}{r} \tag{18}
\end{align*}
$$

Apply the property, for some cash flows.
Ex: For $S(\mathrm{t})=\mathrm{K} \Rightarrow \mathrm{S}(0)=\mathrm{K} \& S^{\prime}(t)=0$, we get the consol rule by using property 5 .
Alternatively, each asset is valued as if its cash flow were projected at a constant level equal to the current rate plus the present value of the time derivative of the cash flow.
For geometric cash flow (2.I)

$$
\begin{align*}
& \mathrm{S}(\mathrm{t})=\mathrm{e}^{\alpha t} \Rightarrow \mathrm{~S}(0)=1 \& \mathrm{~S}^{\prime}(\mathrm{t})=\alpha \mathrm{e}^{\alpha t}, \text { we get } \\
& \mathrm{L}\left[\mathrm{e}^{\alpha \mathrm{t}}\right]=\frac{1}{\theta}+\frac{\alpha L\left[e^{\alpha t}\right]}{\theta} \tag{19}
\end{align*}
$$

Alternatively, we could combine the consol rule with property 2 to establish the rule for geometric growth.

Similarly we can derive the rule for arithmetic growth by using equation (19) or combining the consol rule and property 3.

IV. Conclusion

In this article we have presented the close relationship between present discounted value in finance and Laplace transform. We can solve the present discounted value examples within a few minutes by using Laplace equation method. The result seems to be new \& to have a potential to increase the practical utility of Laplace transform especially in finance. However it is important to notice that frequency domain is possible appreciate also in the real world \& applied in the areas like economics or finance. But the Laplace transform is the big source for present discounted value function to illustrate the enhanced problems.

References Références Referencias

1. Roy S Freedman, "Introduction to financial Technology." Academic Press, 24-Apr2006 - Business \& Economics, 130-135.
2. Duncan K. Foley, "A note for Laplace Transforms".
3. Eugene F. Brigham, Joel F.Houston, "Fundamentals of Financial Management" ,130140.
4. D.V. WIDDER, "What is the Laplace Transform?", Harvard University (Princeton University Press,1946).
5. STEPHEN A BUSER.,(March 1986) , "Laplace Transforms as present Value Rules," Journal of finance,Vol. XLI, No. 1.
6. Risk Latte, "Laplace Transforms \& the time value of Money-I", Dec 25, 2010.
7. KREYSZIG E., Advanced Engineering Mathematics, 8th edition, 251-279.
8. M.T. Tham, Dept. of Chemical \& Process Engineering, "Process Dynamics: Laplace Transforms", University of Newcastle upon Tyne. (Oct. 1999).
9. Robert W. Grubbstrom, "On the application of the Laplace Transform to Certain Economic Problems" Management Science Vol-13, No. 7, Series A, Sciences (March1967)
10. William McC. Siebert, "Circuits, Signals \& systems", Vol. -2, 43-48.
11. Ben J Heijdra(1999), "Fiscal policy multipliers and finite lives" Mimeo ,University of Groningen.
12. Ben J Heijdra, "Using the Laplace Transform for dynamic policy analysis", Nov. 1999. http://www.eco.rug.nl/medewerk/heijdra/download.htm
13. Dean G. Duffy, "Advanced Engineering Mathematics, 161-169.
14. D.T. Deshmukh : "Advanced Modern Engineering Mathematics" 921-960.
15. Joel L. Schiff, " The Laplace Transform: Theory \& applications", Auckland University, springier, 1-30.
16. Hans-Joachim Girlich, a Journal of finance "Between Paris and Linkoping: Applications of Integral Transforms to Planning and Finance" University of Leipzig, Germany.

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 12 Issue 12 Version 1.0 Year 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Formation of a Summation Formula Enmeshed with Hypergeometric Function

By Salahuddin

P.D.M College of Engineering, Bahadurgarh, Haryana, India

Abstract - The main aim of the present paper is to form a summation formula attached with contiguous relation and recurrence relation.

Keywords : Gaussian Hypergeometric function, Contiguous function, Recurrence relation, Bailey summation theorem and Legendre duplication formula.

GJSFR-F Classification : MSC 2010: 65B10, 33D60

Strictly as per the compliance and regulations of :

© 2012. Salahuddin. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Formation of a Summation Formula Enmeshed with Hypergeometric Function

Salahuddin

Abstract - The main aim of the present paper is to form a summation formula attached with contiguous relation and recurrence relation.
Keywords: Gaussian Hypergeometric function, Contiguous function, Recurrence relation, Bailey summation theorem and Legendre duplication formula.

I. Introduction

Generalized Gaussian hypergeometric function of one variable is defined by

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
a_{1}, a_{2}, \cdots, a_{A} & ; & \\
b_{1}, b_{2}, \cdots, b_{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{A}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{B}\right)_{k} k!}
$$

or

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{A}\right) & ; & \tag{1}\\
\left(b_{B}\right) & ; & z
\end{array}\right] \equiv{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{j}\right)_{j=1}^{A} & ; & \\
\left(b_{j}\right)_{j=1}^{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(\left(a_{A}\right)\right)_{k} z^{k}}{\left(\left(b_{B}\right)\right)_{k} k!}
$$

where the parameters $b_{1}, b_{2}, \cdots, b_{B}$ are neither zero nor negative integers and A, B are non-negative integers.

Contiguous Relation[E. D. p.51(10), Andrews p.363(9.16)] is defined as follows

$$
(a-b){ }_{2} F_{1}\left[\begin{array}{cc}
a, b ; & z \tag{2}\\
c & ;
\end{array}\right]=a{ }_{2} F_{1}\left[\begin{array}{ccc}
a+1, & b ; & z \\
c & ; &
\end{array}\right]-b{ }_{2} F_{1}\left[\begin{array}{cc}
a, b+1 ; & z \\
c & ;
\end{array}\right]
$$

Recurrence relation of gamma function is defined as follows

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{3}
\end{equation*}
$$

Legendre duplication formula[Bells \& Wong p.26(2.3.1)] is defined as follows

$$
\begin{equation*}
\sqrt{\pi} \Gamma(2 z)=2^{(2 z-1)} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{4}
\end{equation*}
$$

[^5]\[

$$
\begin{align*}
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi}=\frac{2^{(b-1)} \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{b+1}{2}\right)}{\Gamma(b)} \tag{5}\\
& =\frac{2^{(a-1)} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{a+1}{2}\right)}{\Gamma(a)} \tag{6}
\end{align*}
$$
\]

$$
\begin{align*}
& \text { Bailey summation theorem [Prud, p.491(7.3.7.8)]is defined as follows } \\
& \qquad{ }_{2} F_{1}\left[\begin{array}{ccc}
a, 1-a & ; & \frac{1}{2} \\
c & ;
\end{array}\right]=\frac{\Gamma\left(\frac{c}{2}\right) \Gamma\left(\frac{c+1}{2}\right)}{\Gamma\left(\frac{c+a}{2}\right) \Gamma\left(\frac{c+1-a}{2}\right)}=\frac{\sqrt{\pi} \Gamma(c)}{2^{c-1} \Gamma\left(\frac{c+a}{2}\right) \Gamma\left(\frac{c+1-a}{2}\right)} \tag{7}
\end{align*}
$$

$$
\begin{aligned}
& { }_{2} F_{1}\left[\begin{array}{lll}
a & , \quad-a-48 & ; \frac{1}{2} \\
& c & ;
\end{array}\right] \\
& =\frac{\sqrt{\pi} \Gamma(c)}{2^{c+48}}\left[\frac{-3638347904750543085030062414561280000 a}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+\right. \\
& +\frac{4230534459144635193233439012777984000 a^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-1773530111269024379361184888978329600 a^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-26072127788223783027931526767525632 a^{5}-140082855115327355120120725082688 a^{6}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{113210267032593419892743400611520 a^{7}-1591308493265001080090252839184 a^{8}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-249488180140450905945277350672 a^{9}+1896611354738752958221477012 a^{10}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{340576268631980322449458500 a^{11}+2232393636721350709468081 a^{12}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-221961189928545392626392 a^{13}-4488938418788950118258 a^{14}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{26237742565110055980 a^{15}+1726308193141046911 a^{16}+16724033867495328 a^{17}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-67838656895768 a^{18}-2424088437540 a^{19}-16239228929 a^{20}-12952632 a^{21}+295702 a^{22}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{1140 a^{23}+a^{24}+3638347904750568937046801299537920000 c}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{-11023860306689859165632917200175104000 a c}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{8296047725075578715435877350611353600 a^{2} c}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-2589060527415141315999913883524792320 a^{3} c}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
\end{aligned}
$$

$$
+\frac{-8088520 a^{21} c-1416 a^{22} c+24 a^{23} c+6793325847545320511366130680463360000 c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-12135827068916077894200206118617088000 a c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{6753675210879510270039714594306785280 a^{2} c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-1624869911805656070962191215597797376 a^{3} c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{171251591774737199593026229784064000 a^{4} c^{2}-4093063242641347774786447363015680 a^{5} c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-511149924510502042072739692658944 a^{6} c^{2}+22504067285994043924692302863232 a^{7} c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{913186425471360033494807245312 a^{8} c^{2}-33804718262755533682100484480 a^{9} c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-1295637035432751803115296208 a^{10} c^{2}+15890879633892055504532184 a^{11} c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{1022450363916086376744200 a^{12} c^{2}+5608077520737975363080 a^{13} c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-278653737771626178104 a^{14} c^{2}-4752455855653094160 a^{15} c^{2}-5301794887227696 a^{16} c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{495348526392720 a^{17} c^{2}+4527490455488 a^{18} c^{2}+8270782520 a^{19} c^{2}-69085016 a^{20} c^{2}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
\begin{array}{r}
+\frac{-326040 a^{21} c^{2}-312 a^{22} c^{2}+5613309455109683097975789723844}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)} \\
+\frac{-7268957877902293679747953623910318080 a c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
\end{array}
$$

$$
+\frac{3148476881911767042344731733158526976 a^{2} c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-591776472395510749153521515998937088 a^{3} c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{45128923170400422228420079851380736 a^{4} c^{3}+5555930291075194182761162530816 a^{5} c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-150716557255326505370710216430080 a^{6} c^{3}+2217081280693047664145316025088 a^{7} c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{254900430630476339868277406976 a^{8} c^{3}-1908319886666337016042402944 a^{9} c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-255978165939209274666102816 a^{10} c^{3}-1370080885460819936032720 a^{11} c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{113902943230614008414944 a^{12} c^{3}+1870509542899797944144 a^{13} c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-7980655855696546880 a^{14} c^{3}-425296980132412960 a^{15} c^{3}-3111050730435648 a^{16} c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{7889860890912 a^{17} c^{3}+200089649760 a^{18} c^{3}+804243440 a^{19} c^{3}+352352 a^{20} c^{3}-2288 a^{21} c^{3}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{2768586081553372140200792041508044800 c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-2788045206948865839414630121447882752 a c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{962315653870080299754170370182283264 a^{2} c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$$
+\frac{-141439234805306232175165147182489600 a^{3} c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
$$

$+\frac{7350569555757964653087742802558976 a^{4} c^{4}+199068791705835251665671359802880 a^{5} c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-25294347834251193603125177586944 a^{6} c^{4}-147437993181774554303313826560 a^{7} c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{36251936778359362132532742528 a^{8} c^{4}+346029886905457750751639520 a^{9} c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-24523514138602855095025488 a^{10} c^{4}-447590500623950105662240 a^{11} c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{4712185069329296679120 a^{12} c^{4}+177404400410212015040 a^{13} c^{4}+932298241605633760 a^{14} c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-14323139972581440 a^{15} c^{4}-193197305325024 a^{16} c^{4}-553302990240 a^{17} c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{2501298800 a^{18} c^{4}+15215200 a^{19} c^{4}+16016 a^{20} c^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{923636481234908158042872857449463808 c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-747023445605858669273498410297589760 a c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{207668786206542828581701432891146240 a^{2} c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-23663020067855212035887457634222080 a^{3} c^{5}+732904567621987230351419111325696 a^{4} c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{49903353805450335424368547782656 a^{5} c^{5}-2578893746999530831934304224256 a^{6} c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-66577688249629584056310230016 a^{7} c^{5}+2874347583304554423474949632 a^{8} c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{74463995548879100021824512 a^{9} c^{5}-1062528271193599593294912 a^{10} c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-42807675912180201294272 a^{11} c^{5}-124023155193475329792 a^{12} c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{7667675875623731968 a^{13} c^{5}+86927587193935488 a^{14} c^{5}+5208901746048 a^{15} c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-4594408955136 a^{16} c^{5}-22868541696 a^{17} c^{5}-15951936 a^{18} c^{5}+64064 a^{19} c^{5}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{223330745897982709518529548993429504 c^{6}-147472358833668973831737490003722240 a c^{6}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{33122202957018388352610598824574976 a^{2} c^{6}-2871630447882289896332967060062208 a^{3} c^{6}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{34441427528122369258470645260288 a^{4} c^{6}+6831394798548698327794234414080 a^{5} c^{6}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-150155381817771045217714537472 a^{6} c^{6}-8692060148779265084777793024 a^{7} c^{6}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{108392221996820991579377664 a^{8} c^{6}+6575336744109767454300480 a^{9} c^{6}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{8164199124092113502400 a^{10} c^{6}-2080877086126562051328 a^{11} c^{6}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-21558516560807978752 a^{12} c^{6}+121341101729527680 a^{13} c^{6}+2983367975812224 a^{14} c^{6}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{12147729834240 a^{15} c^{6}-32015343360 a^{16} c^{6}-273873600 a^{17} c^{6}-320320 a^{18} c^{6}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{40877151497014378839771354551549952 c^{7}-22219502427899702338520014030635008 a c^{7}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{4022878448009248326347020243828736 a^{2} c^{7}-256858653782602724496822439018496 a^{3} c^{7}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-1641647966593763191402106634240 a^{4} c^{7}+613388087046982794870551930880 a^{5} c^{7}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-2367132688592308795171872768 a^{6} c^{7}-654998067407893710964829184 a^{7} c^{7}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-1523650746127540570315776 a^{8} c^{7}+329539524916344426313344 a^{9} c^{7}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{3425646083934616768512 a^{10} c^{7}-50038536300856097280 a^{11} c^{7}-974138332318255104 a^{12} c^{7}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-2184451291486464 a^{13} c^{7}+45506452992000 a^{14} c^{7}+291087413760 a^{15} c^{7}+283345920 a^{16} c^{7}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-823680 a^{17} c^{7}+5832594412243055928973325422821376 c^{8}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$+\frac{-2618050661653803280443469114376192 a c^{8}+379493114458898267502470696665088 a^{2} c^{8}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+$
$\begin{aligned}+ & \frac{16864207890780906911526743900160 a^{3} c^{8}-447720321025657093838032576512 a^{4}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)} \\ + & \frac{37986129070713604063172198400 a^{5} c^{8}+389769280200184576457945088 a^{6} c^{8}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+\end{aligned}$

$$
\begin{aligned}
& +\frac{-31372314252822465838755840 a^{7} c^{8}-411109178500644611480064 a^{8} c^{8}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{9363608406942489722880 a^{9} c^{8}+187215352358190114816 a^{10} c^{8}-146424613495480320 a^{11} c^{8}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-21752854863387648 a^{12} c^{8}-123540894597120 a^{13} c^{8}+173781104640 a^{14} c^{8}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{2503987200 a^{15} c^{8}+3294720 a^{16} c^{8}+662317910051181926669156716904448 c^{9}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-245400115796071532958765453148160 a c^{9}+28153238255209821490041472417792 a^{2} c^{9}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-781005645276012502462741086208 a^{3} c^{9}-42641895620379018617550274560 a^{4} c^{9}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{1612351973725244164720885760 a^{5} c^{9}+39662648103197518265810944 a^{6} c^{9}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-926453550912364548243456 a^{7} c^{9}-23555359060666652876800 a^{8} c^{9}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{100903225406804254720 a^{9} c^{9}+5299360980595089408 a^{10} c^{9}+24692042573406208 a^{11} c^{9}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-227873864458240 a^{12} c^{9}-1996213739520 a^{13} c^{9}-2571345920 a^{14} c^{9}+5857280 a^{15} c^{9}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{60743744451907338804193681997824 c^{10}-18518348550706651821965710458880 a c^{10}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{1653100889178452682493737828352 a^{2} c^{10}-21740721608271376099456843776 a^{3} c^{10}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-2600813329461903794303729664 a^{4} c^{10}+42802618860435796873871360 a^{5} c^{10}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{2038210720517206870835200 a^{6} c^{10}-12463849823864973467648 a^{7} c^{10}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-758892596094305001472 a^{8} c^{10}-2575932665689743360 a^{9} c^{10}+83354346743635968 a^{10} c^{10}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{679546442358784 a^{11} c^{10}-290098192384 a^{12} c^{10}-13243310080 a^{13} c^{10}-19914752 a^{14} c^{10}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{4546715789559603603424633946112 c^{11}-1133943987191935145013892087808 a c^{11}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{76868622553074562239414927360 a^{2} c^{11}-6333853945783824633298944 a^{3} c^{11}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2812155919136601281891139584 a^{2} c^{12}+34239457060775837590487040 a^{3} c^{12}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-3555265567506078642012160 a^{4} c^{12}-21202879517144336793600 a^{5} c^{12}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{1500614958719249924096 a^{6} c^{12}+13623195491897671680 a^{7} c^{12}-170239161849888768 a^{8} c^{12}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-2179202261483520 a^{9} c^{12}-1109168406528 a^{10} c^{12}+43341742080 a^{11} c^{12}+76038144 a^{12} c^{12}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{14202828556049274882760900608 c^{13}-2306244763812047662339850240 a c^{13}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{79549699725335858543329280 a^{2} c^{13}+1970351955192820966359040 a^{3} c^{13}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-81197049931788972195840 a^{4} c^{13}-1121385597257318400000 a^{5} c^{13}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{21460893335812374528 a^{6} c^{13}+318310898510266368 a^{7} c^{13}-703360552796160 a^{8} c^{13}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-20253520035840 a^{9} c^{13}-44148916224 a^{10} c^{13}+70189056 a^{11} c^{13}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{596172495237225865390587904 c^{14}-76594063955412337515560960 a c^{14}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{1673197695444638048976896 a^{2} c^{14}+67447668828029406412800 a^{3} c^{14}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-1280086116620532449280 a^{4} c^{14}-28565196119329013760 a^{5} c^{14}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{163144044077973504 a^{6} c^{14}+4184336248995840 a^{7} c^{14}+6613981593600 a^{8} c^{14}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{-90493747200 a^{9} c^{14}-190513152 a^{10} c^{14}+20667778097297440376881152 c^{15}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-2063368899940734098997248 a c^{15}+23616227634398246207488 a^{2} c^{15}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{1609625006757485477888 a^{3} c^{15}-11946606167053565952 a^{4} c^{15}-457413975935680512 a^{5} c^{15}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-102213608275968 a^{6} c^{15}+31611720302592 a^{7} c^{15}+91954348032 a^{8} c^{15}-127008768 a^{9} c^{15}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{589580948824343210622976 c^{16}-44694485078557324214272 a c^{16}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{136597103714150121472 a^{2} c^{16}+27691358161274142720 a^{3} c^{16}-16081668010082304 a^{4} c^{16}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-4728686302986240 a^{5} c^{16}-14549489418240 a^{6} c^{16}+120658329600 a^{7} c^{16}+317521920 a^{8} c^{16}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{13745163084312984158208 c^{17}-767797631994193510400 a c^{17}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-2697012025875234816 a^{2} c^{17}+340925659342700544 a^{3} c^{17}+1206869439283200 a^{4} c^{17}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-29915346370560 a^{5} c^{17}-122376683520 a^{6} c^{17}+149422080 a^{7} c^{17}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{259068608527627976704 c^{18}-10245061664235847680 a c^{18}-86103626336960512 a^{2} c^{18}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{2895000352849920 a^{3} c^{18}+16701453762560 a^{4} c^{18}-99365683200 a^{5} c^{18}-348651520 a^{6} c^{18}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{3884083664023191552 c^{19}-102879574253109248 a c^{19}-1204310832578560 a^{2} c^{19}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{15688841297920 a^{3} c^{19}+100631838720 a^{4} c^{19}-110100480 a^{5} c^{19}+45210938613170176 c^{20}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-739630552973312 a c^{20}-9921293713408 a^{2} c^{20}+46022000640 a^{3} c^{20}+242221056 a^{4} c^{20}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{393630531452928 c^{21}-3495365181440 a c^{21}-46552580096 a^{2} c^{21}+46137344 a^{3} c^{21}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{2410953048064 c^{22}-9164554240 a c^{22}-96468992 a^{2} c^{22}+9261023232 c^{23}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+ \\
& +\frac{-8388608 a c^{23}+16777216 c^{24}}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+48}{2}\right)}+\frac{20007974164906320568399715106816000000}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{aligned}
$$

$$
+\frac{132219440896221918244499646073152 a^{7}+5904047252981777731527533921776 a^{8}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{-18472923622042793122488427319724288 a^{5}-2560574556753342210803824950095424 a^{6}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{-270614639795328768343142065008 a^{9}-11480344457959138778418103724 a^{10}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{191451864133347179813345532 a^{11}+13328712827913082236490801 a^{12}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{73453466060412362003352 a^{13}-5838069209154766013234 a^{14}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{-119007946686312580908 a^{15}-64104578911758209 a^{16}+23731154067653472 a^{17}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{293580605335336 a^{18}+706255392612 a^{19}-12674658689 a^{20}-115467528 a^{21}-326954 a^{22}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{12 a^{23}+a^{24}+51436861851110719507236588764528640000 c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{-70899646160167879803660918205710336000 a c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{33418551215289286318709655103183257600 a^{2} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{-6936716063495713404096607576151162880 a^{3} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{592162566124636481520902123469422592 a^{4} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{-150763178991495629513120805163008 a^{5} c-2543564167189971442636762196069376 a^{6} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{45503143417288234509441538577152 a^{7} c+5720189897921291255677630092928 a^{8} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
\begin{aligned}
& +\frac{-57850481183031873845533379072 a^{9} c-8079408263510288034016072320 a^{10} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-42658602715638740094989712 a^{11} c+5457516920998845643189704 a^{12} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{105080628717885503259304 a^{13} c-718597316917131560744 a^{14} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-42146779055614771736 a^{15} c-394633823765699760 a^{16} c+1815118515463440 a^{17} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{59605259080752 a^{18} c+390797915200 a^{19} c+260642536 a^{20} c-7396664 a^{21} c-27912 a^{22} c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-24 a^{23} c+53879676136106962853910284379095040000 c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-58701850922925277436346363011137536000 a c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{22272862407231657294514826679624007680 a^{2} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-3645281850231197173180825687195828224 a^{3} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{213875375121643552409476002283352064 a^{4} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{6491596305419248116184393185321984 a^{5} c^{2}-964599604570031846728877390420224 a^{6} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-5682533971627991823205758376832 a^{7} c^{2}+1885588931111013766114178951680 a^{8} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{19394898395592969380873022336 a^{9} c^{2}-1851518450114596444564235088 a^{10} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-39083335675241940394365144 a^{11} c^{2}+580438231442930787182984 a^{12} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{25546912919341268358904 a^{13} c^{2}+159272816221878580936 a^{14} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-3904286889491205360 a^{15} c^{2}-70854972633732144 a^{16} c^{2}-286985878971792 a^{17} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{2582951379008 a^{18} c^{2}+30021551560 a^{19} c^{2}+93509416 a^{20} c^{2}-3432 a^{21} c^{2}-312 a^{22} c^{2}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{32211699088981901572499271667679232000 c^{3}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{-28512000389819083595321676326366085120 a c}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{8790460634142328234758745607006846976 a^{2} c^{3}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-1124467001863561580537016353123794944 a^{3} c^{3}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{39708713605091532228302178253774848 a^{4} c^{3}+3072311886315380216747428668760064 a^{5} c^{3}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-186888540899160276337102312129024 a^{6} c^{3}-5460277329981356928340767544064 a^{7} c^{3}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{aligned}
$$

$$
\begin{gathered}
+\frac{-165175187685162073177772832 a^{10} c^{3}-7770572051846792035610672 a^{11} c^{3}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{-22875449892544073945120 a^{12} c^{3}+2404075406651070648496 a^{13} c^{3}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{gathered}
$$

$$
\begin{gathered}
+\frac{35321722511563533760 a^{14} c^{3}-16711413272084960 a^{15} c^{3}-4275303741893184 a^{16} c^{3}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{-34756964834592 a^{17} c^{3}-42598876320 a^{18} c^{3}+641040400 a^{19} c^{3}+2658656 a^{20} c^{3}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{2288 a^{21} c^{3}+12673569486529179630190013064413184000 c^{4}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{-9247136634374056328148193250852732928 a c^{4}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{2322904856073730886919387342994735104 a^{2} c^{4}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{-227997454418110745446600708021592064 a^{3} c^{4}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{gathered}
$$

$$
+\frac{3169731737784104346723877333917696 a^{4} c^{4}+717153243408099923350630112145920 a^{5} c^{4}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{-18894426862062122171165144950016 a^{6} c^{4}-1256503503761835993387006160128 a^{7} c^{4}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
\begin{aligned}
+ & \frac{20005312090114578497340010368 a^{8} c^{4}+1399506341758816898106208800 a^{9} c^{4}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)} \\
& +\frac{1107293475704607644242608 a^{10} c^{4}-714829981963561507018976 a^{11} c^{4}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{3549767559427168161601437434501922816 c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-2151099368274358759726535915983601664 a c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{439330611840452027347549954963931136 a^{2} c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-32045308509021985102462728518369280 a^{3} c^{5}-230117021186821381378230594748416 a^{4} c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{103351131588547583108228728397824 a^{5} c^{5}-526153805312068114419158172672 a^{6} c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-156554337016017490934865859584 a^{7} c^{5}-342370320670336052097249792 a^{8} c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{120430698898953310510476288 a^{9} c^{5}+1514876828200500103475136 a^{10} c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-31496137302336777598528 a^{11} c^{5}-792727673743617900288 a^{12} c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-2214018290093978368 a^{13} c^{5}+83755863780580992 a^{14} c^{5}+874309907382912 a^{15} c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{1577740260096 a^{16} c^{5}-16154121984 a^{17} c^{5}-74378304 a^{18} c^{5}-64064 a^{19} c^{5}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{743559650440452121302608512460783616 c^{6}-375380418098956909389583998592745472 a c^{6}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{61934956167026537832602378208935936 a^{2} c^{6}-3176115614993973085877719175380992 a^{3} c^{6}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-97570846916520135171755792490496 a^{4} c^{6}+9891668493540563867446482152448 a^{5} c^{6}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{116489775146410674839857159168 a^{6} c^{6}-11974895925870999956260747776 a^{7} c^{6}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-187271227517652896016043008 a^{8} c^{6}+5743465474229360858844864 a^{9} c^{6}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{144554417686389868597440 a^{10} c^{6}-230607270695987657472 a^{11} c^{6}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-33251222890838208256 a^{12} c^{6}-277238139202856832 a^{13} c^{6}+778197251255424 a^{14} c^{6}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{20174474960640 a^{15} c^{6}+78548870400 a^{16} c^{6}-2882880 a^{17} c^{6}-320320 a^{18} c^{6}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& \begin{array}{l}
+\frac{120419109249818260699006806855254016 c^{7}-50643920204146384742582467755507712 a c^{7}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{6678206027798100901235978413015040 a^{2} c^{7}-216349934068120128428111178465280 a^{3} c^{7}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{array} \\
& \begin{array}{l}
+\frac{-13849802762834607412635933622272 a^{4} c^{7}+634544063521152036454215260160 a^{5} c^{7}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{18576717170330425255016964096 a^{6} c^{7}-556528190887633754610422784 a^{7} c^{7}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{-17422709590477274298209280 a^{8} c^{7}+107962987229429307820416 a^{9} c^{7}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{7038701856856382828544 a^{10} c^{7}+44211950709134866944 a^{11} c^{7}-681094885538715648 a^{12} c^{7}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{-9700638027015936 a^{13} c^{7}-23794160332800 a^{14} c^{7}+184617438720 a^{15} c^{7}+955468800 a^{16} c^{7}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{array} \\
& +\frac{823680 a^{17} c^{7}+15435801243454637955415444937506816 c^{8}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-5394264531666420310950929291542528 a c^{8}+559524248170904730920655318548480 a^{2} c^{8}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-8736796136721904754238181933056 a^{3} c^{8}-1237734142501349223302162522112 a^{4} c^{8}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{25253673488097375487494881280 a^{5} c^{8}+1455699176221267243359055872 a^{6} c^{8}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-12031819362886782611902464 a^{7} c^{8}-901850710109690716936704 a^{8} c^{8}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-3798874296621284474880 a^{9} c^{8}+194341463383802701824 a^{10} c^{8}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{2337313594001498112 a^{11} c^{8}-2395393722129408 a^{12} c^{8}-161395768934400 a^{13} c^{8}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-718165493760 a^{14} c^{8}+26357760 a^{15} c^{8}+3294720 a^{16} c^{8}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1592821042644515671417734442254336 c^{9}-460335074446405836514058089529344 a c^{9}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{36708731576238908672976168681472 a^{2} c^{9}-9269192159255026038805102592 a^{3} c^{9}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-77931011136370050568382054400 a^{4} c^{9}+355242949210634290070487040 a^{5} c^{9}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{73346374205830358870228992 a^{6} c^{9}+251928402592276494729216 a^{7} c^{9}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-29002037259752505794560 a^{8} c^{9}-323984159153576796160 a^{9} c^{9}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{2604142834119450624 a^{10} c^{9}+56843610573381632 a^{11} c^{9}+183910257090560 a^{12} c^{9}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-1148723896320 a^{13} c^{9}-6788587520 a^{14} c^{9}-5857280 a^{15} c^{9}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{133944629219042741828987058651136 c^{10}-31792962283341780433921881669632 a c^{10}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{1884977432671390301494262628352 a^{2} c^{10}+27453830985840912961790017536 a^{3} c^{10}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-3577899019963626250693312512 a^{4} c^{10}-25831060180904558769373184 a^{5} c^{10}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{2500762955655770765639680 a^{6} c^{10}+29770829896804480360448 a^{7} c^{10}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-554861886520804335616 a^{8} c^{10}-10477914723705741312 a^{9} c^{10}-6504383856402432 a^{10} c^{10}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{731660679766016 a^{11} c^{10}+3798320734208 a^{12} c^{10}-139403264 a^{13} c^{10}-19914752 a^{14} c^{10}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{9259084618069199752092016705536 c^{11}-1788433975536396105112398856192 a c^{11}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{74879477966758136016883679232 a^{2} c^{11}+2270097366668305229482033152 a^{3} c^{11}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-119779384831109120949092352 a^{4} c^{11}-2108720637666398843895808 a^{5} c^{11}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{56211218206919898071040 a^{6} c^{11}+1154277387520437207040 a^{7} c^{11}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
& +\frac{-4271295545929531392 a^{8} c^{11}-191483317319024640 a^{9} c^{11}-815139396943872 a^{10} c^{11}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{aligned}
$$

$+\frac{4260696014848 a^{11} c^{11}+29350723584 a^{12} c^{11}+25346048 a^{13} c^{11}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$

$+\frac{2226310998038921142800482304 a^{2} c^{12}+112335291284151811064856576 a^{3} c^{12}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{-2816859314269848893194240 a^{4} c^{12}-83269328357107000442880 a^{5} c^{12}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{705630734345855811584 a^{6} c^{12}+26456679475060703232 a^{7} c^{12}+65094234212646912 a^{8} c^{12}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{-1995437837352960 a^{9} c^{12}-12430943895552 a^{10} c^{12}+456228864 a^{11} c^{12}+76038144 a^{12} c^{12}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{25084567677926533835412996096 c^{13}-3087201226200895282242125824 a c^{13}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{45090915657763002741948416 a^{2} c^{13}+3939189564189899494522880 a^{3} c^{13}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{-40575227582415871672320 a^{4} c^{13}-2139706573184788070400 a^{5} c^{13}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{-195459046294880256 a^{6} c^{13}+382648988297920512 a^{7} c^{13}+2188013035192320 a^{8} c^{13}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{-9832316928000 a^{9} c^{13}-81208737792 a^{10} c^{13}-70189056 a^{11} c^{13}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{987125304445771508818640896 c^{14}-94450060802172951369613312 a c^{14}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{392250491442329132466176 a^{2} c^{14}+102263791723363946987520 a^{3} c^{14}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{-108880942638335262720 a^{4} c^{14}-37648129311289835520 a^{5} c^{14}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{-187827301329862656 a^{6} c^{14}+3333038389985280 a^{7} c^{14}+25954876784640 a^{8} c^{14}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{-952565760 a^{9} c^{14}-190513152 a^{10} c^{14}+32197592876889535514935296 c^{15}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{-2337876825862944317243392 a c^{15}-10571276177233084940288 a^{2} c^{15}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$
$+\frac{1978662384171409211392 a^{3} c^{15}+10187017606434127872 a^{4} c^{15}-447086626545205248 a^{5} c^{15}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+$

$$
\begin{gathered}
+\frac{-3611715821371392 a^{6} c^{15}+14233364594688 a^{7} c^{15}+146822135808 a^{8} c^{15}+127008768 a^{9} c^{15}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{866877134589278443012096 c^{16}-46282113328159709462528 a c^{16}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{-539135018545206001664 a^{2} c^{16}+28101817396392886272 a^{3} c^{16}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{266925771696439296 a^{4} c^{16}-3333037754941440 a^{5} c^{16}-34606714060800 a^{6} c^{16}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+ \\
+\frac{1270087680 a^{7} c^{16}+317521920 a^{8} c^{16}+19126537123824754753536 c^{17}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
\end{gathered}
$$

$$
+\frac{-719582772331401969664 a c^{17}-12566499273518088192 a^{2} c^{17}+281603400092614656 a^{3} c^{17}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{3578843352268800 a^{4} c^{17}-12558776401920 a^{5} c^{17}-172582502400 a^{6} c^{17}-149422080 a^{7} c^{17}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{341997755091266830336 c^{18}-8538595036697198592 a c^{18}-189974093577060352 a^{2} c^{18}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{1829902732492800 a^{3} c^{18}+28499821199360 a^{4} c^{18}-1045954560 a^{5} c^{18}-348651520 a^{6} c^{18}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{4874760435045236736 c^{19}-73736935746568192 a c^{19}-1950607118172160 a^{2} c^{19}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{6169186795520 a^{3} c^{19}+127055953920 a^{4} c^{19}+110100480 a^{5} c^{19}+54050689474625536 c^{20}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{-423766867836928 a c^{20}-13199997927424 a^{2} c^{20}+484442112 a^{3} c^{20}+242221056 a^{4} c^{20}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{449048494473216 c^{21}-1292583829504 a c^{21}-53196357632 a^{2} c^{21}-46137344 a^{3} c^{21}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
+\frac{2628587094016 c^{22}-96468992 a c^{22}-96468992 a^{2} c^{22}+9663676416 c^{23}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}+
$$

$$
\begin{equation*}
\left.+\frac{8388608 a c^{23}+16777216 c^{24}}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+49}{2}\right)}\right] \tag{8}
\end{equation*}
$$

Derivation of result (8):

Substituting $b=-a-48, z=\frac{1}{2}$ in given result (2), we get

$$
(2 a+48){ }_{2} F_{1}\left[\begin{array}{ccc}
a & , & -a-48 \\
& c & ; \frac{1}{2}
\end{array}\right]
$$

$$
=a_{2} F_{1}\left[\begin{array}{ccc}
a+1 \\
c & ,-a-48 & ;
\end{array} \frac{1}{2}\right]+(a+48){ }_{2} F_{1}\left[\begin{array}{ccc}
a, & -a-47 & ; \frac{1}{2} \\
c & ;
\end{array}\right]
$$

Now applying same parallel method which is used in Ref[6], we can prove the main formula.

References Références Referencias

1. Andrews, L.C.(1992) ; Special Function of mathematics for Engineers, second Edition, McGraw-Hill Co Inc., New York.
2. Arora, Asish, Singh, Rahul, Salahuddin. ; Development of a family of summation formulae of half argument using Gauss and Bailey theorems Journal of Rajasthan Academy of Physical Sciences., 7(2008), 335-342.
3. Bells, Richard, Wong, Roderick ; Special Functions , A Graduate Text. Cambridge Studies in Advanced Mathematics, 2010.
4. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol. 3: More Special Functions. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
5. Rainville, E. D.; The contiguous function relations for ${ }_{p} F_{q}$ with applications to Bateman's $J_{n}^{u, v}$ and Rice's $H_{n}(\zeta, p, \nu)$, Bull. Amer. Math. Soc., 51(1945), 714-723.
6. Salahuddin, Chaudhary, M.P ; A New Summation Formula Allied With Hypergeometric Function, Global Journal of Science Frontier Research, 11(2010),21-37.
7. Salahuddin. ; Evaluation of a Summation Formula Involving Recurrence Relation , Gen. Math. Notes., 2(2010), 42-59.

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 12 Issue 12 Version 1.0 Year 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Orbit - Orbit Resonance of Pluto and Neptune

By M. A. Sharaf \& L. A. Alaqal
King Abdul Aziz University, Jeddah, Saudi Arabia

Abstract - In the present paper, an algorithm for the planar restricted circular threebody problem in rotating symbolic system is developed to determine orbit-orbit resonance of Pluto and Neptune.

Keywords : Celestial Mechanics-Planetary close encounters-Pluto- Neptune- solar system dynamics

GJSFR-F Classification : MSC 2010: 70M20

Strictly as per the compliance and regulations of :

Research | Diversity | Ethics
© 2012. M. A. Sharaf \& L. A. Alaqal. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

3d virtual journal

Orbit - Orbit Resonance of Pluto and Neptune

M. A. Sharaf ${ }^{\alpha}$ \& L. A. Alaqal ${ }^{\sigma}$

Abstract - In the present paper, an algorithm for the planar restricted circular threebody problem in rotating symbolic system is developed to determine orbit-orbit resonance of Pluto and Neptune.

Keywords : Celestial Mechanics-Planetary close encounters-Pluto- Neptune- solar system dynamics

I. Introduction

Because of Pluto is locked into a 3:2 resonance with Neptune, Pluto completes 2 orbits every 3 orbits of the Sun completed by Neptune. Although, the ratio is not exactly 3:2, sometimes Pluto's period is slightly faster than its average value or slower. It is the possibility to indefinitely close approach if the perihelion and nod of Pluto are unrestricted, where, the radius of perihelion of Pluto is less than the radius of Neptune's orbit. This is the most important case of orbit - orbit resonance in the solar system. It is well known that the orbit of Pluto has a large eccentricity of $\mathrm{e}=0.247$, which brings the planet at a certain moment inside the orbit of Neptune. The two planets are trapped in an orbitorbit resonance. The period of Pluto is 3:2 times the period of Neptune.

iI. Equations of Motion

We consider the planar restricted circular three-body problem in rotating synodic system (e.g .Szebehely 1967) in which the two primaries are the Sun and Neptune while the third body is Pluto. The equations of motion to be solved are

$$
\begin{gather*}
\dot{x}=u \tag{1.1}\\
\dot{y}=v \tag{1.2}\\
\dot{u}=-(1-\mu) \frac{x-\mu}{R_{1}^{3}}-\mu \frac{x+1-\mu}{R_{2}^{3}}+x+2 v, \tag{1.3}
\end{gather*}
$$

[^6]\[

$$
\begin{equation*}
\dot{\mathrm{v}}=-(1-\mu) \frac{\mathrm{y}}{\mathrm{R}_{1}^{3}}-\mu \frac{\mathrm{y}}{\mathrm{R}_{2}^{3}}+\mathrm{y}+2 \mathrm{u}, \tag{1.4}
\end{equation*}
$$

\]

with

$$
\begin{equation*}
\mathrm{R}_{1}=\sqrt{(\mathrm{x}-\mu)^{2}+\mathrm{y}^{2}} \tag{2.1}
\end{equation*}
$$

and

$$
\mathrm{R}_{2}=\sqrt{(\mathrm{x}+1-\mu)^{2}+\mathrm{y}^{2}}
$$

where dot denotes differentiation with respect to the time $t,(x, y)$ are the coordinates of the third body,μ denotes the mass of the smaller primary when the total mass of the primaries has been normalized to unity.
In these equations, the unit of length is the distance between the primaries, the unit of mass is the sum of the masses of the primaries. The unit of time is $1 / n$. (n is the mean motion).Normally, n is expressed in a number of radians per second, hence in $1 /$ sec. Its inverse $1 / n$ is therefore expressed in seconds and may be interpreted as a unit of time.

iil. Orbit Determination of Pluto and Neptune

All the numerical values of the following are taken from the reference (Hellings,1994)
a) Orbital elements

Neptune:

$$
\begin{aligned}
& \mathrm{e}=0 \\
& \mathrm{P}=165.62 \\
& \mathrm{a}=30.1584
\end{aligned}
$$

Pluto:

$$
\begin{aligned}
& \mathrm{e}=0.247 \\
& \mathrm{P}=248.43 \\
& \mathrm{a}=39.5187
\end{aligned}
$$

and $\mu: 0.0000525$
Amplitude of the libration is known to be 38°.

b) Initial conditions

The Initial conditions are

$$
\mathrm{x}_{0}=-0.6073955952 ; \mathrm{y}_{0}=-0.7774968265 ; \mathrm{u}_{0}=0.1083342234 ; \mathrm{v}_{0}=-0.0863997159 .
$$

c) The results

It should be noted that ,all the computations are performed using Mathematica 7.
For clear illustrations of our analysis, the results are displayed graphically in the following manner

Fig. 3 : Plot between x and u
for the basic part of the orbit of Pluto relative to the Sun and Neptune

Fig. 4 : Plot between y and v for the basic part of the orbit of Pluto relative to the Sun and Neptune

Fig. 7 : The basic orbit of Fig. 3 oscillates with an amplitude of 38°

Fig. 8 : The basic orbit of Fig. 4 oscillates with an amplitude of 38°

IV. Conclusion

In this paper, general computational algorithm for the planar restricted circular threebody problem in rotating synodic system is developed in Section 2. This algorithm is applied to determinate orbit-orbit resonance of Pluto and Neptune. Finally the results are illustrate graphically in Section 3 which could be summarized as :

1-Figure 1 shows the basic part of the orbit of Pluto relative to the Sun and Neptune. This part represents two revolutions of Pluto around the Sun.

2- Pluto reaches two times a distance closer to the sun than Neptune.
3-The next two revolutions have the same shape, but the figure is rotated a little bit counter clockwise as the two perihelia approach the y - axis. This phenomenon increases until the whole figure is rotated over 76°.
4- A total libration, shown in Fig. 5, illustrates that Pluto will never collide with Neptune since its distance to Neptune is always larger than about 17 A.U.

References Références Referencias

1. Hellings, P.:1994, Astrophysics with A PC Willmann-Bell, Inc., Virgini, USA
2. Szebehely, V.: 1967, Theory of Orbits, Academic Press, New York.

Global Journal of SCience Frontier Research Mathematics and Decision Sciences
Volume 12 Issue 12 Version 1.0 Year 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

New Representations in Terms of q-product Identities for Ramanujan's Results IV

By M.P. Chaudhary, Upendra Kumar Pandit \& Ashish Arora

Vinayak Mission University, Salem, India

Abstract - In this paper author has established seven q-product identities, which are presumably new, and not available in the literature.

Keywords : Theta functions, functions, triple product identities.
GJSFR-F Classification : AMS Subject Classifications: Primary 05A17, 05A15; Secondary 11P83

Strictly as per the compliance and regulations of :

© 2012. M.P. Chaudhary, Upendra Kumar Pandit \& Ashish Arora. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

$R_{\text {ef. }}$

New Representations in Terms of q-product Identities for Ramanujan's Results IV

M.P. Chaudhary ${ }^{\alpha}$, Upendra Kumar Pandit ${ }^{\circ}$ \& Ashish Arora ${ }^{\text { }}$

Abstract - In this paper author has established seven q-product identities, which are presumably new, and not available in the literature.
Keywords : Theta functions, functions, triple product identities.

I. Introduction

For $|q|<1$,

$$
\begin{gather*}
(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right) \tag{1.1}\\
(a ; q)_{\infty}=\prod_{n=1}^{\infty}\left(1-a q^{(n-1)}\right) \tag{1.2}\\
\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k} ; q\right)_{\infty}=\left(a_{1} ; q\right)_{\infty}\left(a_{2} ; q\right)_{\infty}\left(a_{3} ; q\right)_{\infty} \ldots\left(a_{k} ; q\right)_{\infty} \tag{1.3}
\end{gather*}
$$

Ramanujan has defined general theta function, as

$$
\begin{equation*}
f(a, b)=\sum_{-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}} \quad ; \quad|a b|<1 \tag{1.4}
\end{equation*}
$$

Jacobi's triple product identity [9,p.35] is given, as

$$
\begin{equation*}
f(a, b)=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty} \tag{1.5}
\end{equation*}
$$

Special cases of Jacobi's triple products identity are given, as

$$
\begin{equation*}
\Phi(q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\left(-q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty} \tag{1.6}
\end{equation*}
$$

[^7]\[

$$
\begin{align*}
& \Psi(q)=\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{1.7}\\
& f(-q)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{n(3 n-1)}{2}}=(q ; q)_{\infty} \tag{1.8}
\end{align*}
$$
\]

Equation (1.8) is known as Euler's pentagonal number theorem. Euler's another well known identity is as

$$
\begin{equation*}
\left(q ; q^{2}\right)_{\infty}^{-1}=(-q ; q)_{\infty} \tag{1.9}
\end{equation*}
$$

Roger-Ramanujan identities [6, p.578] are given as

$$
\begin{align*}
& G(q)=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}=\frac{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}}{(q ; q)_{\infty}} \tag{1.10}\\
& H(q)=\sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{(q ; q)_{n}}=\frac{1}{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}=\frac{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}}{(q ; q)_{\infty}} \tag{1.11}
\end{align*}
$$

Roger-Ramanujan function is given by

$$
\begin{equation*}
R(q)=q^{\frac{1}{5}} \frac{H(q)}{G(q)}=q^{\frac{1}{5}} \frac{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}} \tag{1.12}
\end{equation*}
$$

Throughout this paper we use the following representations

$$
\begin{align*}
& \left(q^{a} ; q^{n}\right)_{\infty}\left(q^{b} ; q^{n}\right)_{\infty}\left(q^{c} ; q^{n}\right)_{\infty} \cdots\left(q^{t} ; q^{n}\right)_{\infty}=\left(q^{a}, q^{b}, q^{c} \cdots q^{t} ; q^{n}\right)_{\infty} \tag{1.13}\\
& \left(q^{a} ; q^{n}\right)_{\infty}\left(q^{a} ; q^{n}\right)_{\infty}\left(q^{c} ; q^{n}\right)_{\infty} \cdots\left(q^{t} ; q^{n}\right)_{\infty}=\left(q^{a}, q^{a}, q^{c} \cdots q^{t} ; q^{n}\right)_{\infty} \tag{1.14}
\end{align*}
$$

Now we can have following q-products identities, as

$$
\begin{gather*}
\left(q^{2} ; q^{2}\right)_{\infty}=\prod_{n=0}^{\infty}\left(1-q^{2 n+2}\right) \\
=\prod_{n=0}^{\infty}\left(1-q^{2(4 n)+2}\right) \times \prod_{n=0}^{\infty}\left(1-q^{2(4 n+1)+2}\right) \times \prod_{n=0}^{\infty}\left(1-q^{2(4 n+2)+2}\right) \times \prod_{n=0}^{\infty}\left(1-q^{2(4 n+3)+2}\right) \\
=\prod_{n=0}^{\infty}\left(1-q^{8 n+2}\right) \times \prod_{n=0}^{\infty}\left(1-q^{8 n+4}\right) \times \prod_{n=0}^{\infty}\left(1-q^{8 n+6}\right) \times \prod_{n=0}^{\infty}\left(1-q^{8 n+8}\right) \\
=\left(q^{2} ; q^{8}\right)_{\infty}\left(q^{4} ; q^{8}\right)_{\infty}\left(q^{6} ; q^{8}\right)_{\infty}\left(q^{8} ; q^{8}\right)_{\infty}=\left(q^{2}, q^{4}, q^{6}, q^{8} ; q^{8}\right)_{\infty} \tag{1.15}
\end{gather*}
$$

$$
\begin{gather*}
\left(q^{4} ; q^{4}\right)_{\infty}=\prod_{n=0}^{\infty}\left(1-q^{4 n+4}\right) \\
=\prod_{n=0}^{\infty}\left(1-q^{4(3 n)+4}\right) \times \prod_{n=0}^{\infty}\left(1-q^{4(3 n+1)+4}\right) \times \prod_{n=0}^{\infty}\left(1-q^{4(3 n+2)+4}\right) \\
=\prod_{n=0}^{\infty}\left(1-q^{12 n+4}\right) \times \prod_{n=0}^{\infty}\left(1-q^{12 n+8}\right) \times \prod_{n=0}^{\infty}\left(1-q^{12 n+12}\right) \\
=\left(q^{4} ; q^{12}\right)_{\infty}\left(q^{8} ; q^{12}\right)_{\infty}\left(q^{12} ; q^{12}\right)_{\infty}=\left(q^{4}, q^{8}, q^{12} ; q^{12}\right)_{\infty} \tag{1.16}\\
\left(q^{4} ; q^{12}\right)_{\infty}=\prod_{n=0}^{\infty}\left(1-q^{12 n+4}\right)=\prod_{n=0}^{\infty}\left(1-q^{12(5 n)+4}\right) \times \prod_{n=0}^{\infty}\left(1-q^{12(5 n+1)+4}\right) \times \\
\times \prod_{n=0}^{\infty}\left(1-q^{12(5 n+2)+4}\right) \times \prod_{n=0}^{\infty}\left(1-q^{12(5 n+3)+4}\right) \times \prod_{n=0}^{\infty}\left(1-q^{12(5 n+4)+4}\right) \\
=\prod_{n=0}^{\infty}\left(1-q^{60 n+4}\right) \times \prod_{n=0}^{\infty}\left(1-q^{60 n+16}\right) \times \prod_{n=0}^{\infty}\left(1-q^{60 n+28}\right) \times \prod_{n=0}^{\infty}\left(1-q^{60 n+40}\right) \times \prod_{n=0}^{\infty}\left(1-q^{60 n+52}\right) \\
=\left(q^{4} ; q^{60}\right)_{\infty}\left(q^{16} ; q^{60}\right)_{\infty}\left(q^{28} ; q^{60}\right)_{\infty}\left(q^{40} ; q^{60}\right)_{\infty}\left(q^{52} ; q^{60}\right)_{\infty}=\left(q^{4}, q^{16}, q^{28}, q^{40}, q^{52} ; q^{60}\right)_{\infty}
\end{gather*}
$$

$$
\begin{align*}
& \left(q^{16} ; q^{16}\right)_{\infty}=\left(q^{16} ; q^{48}\right)_{\infty}\left(q^{32} ; q^{48}\right)_{\infty}\left(q^{48} ; q^{48}\right)_{\infty}=\left(q^{16}, q^{32}, q^{48} ; q^{48}\right)_{\infty} \tag{1.26}\\
& \left(q^{20} ; q^{20}\right)_{\infty}=\left(q^{20} ; q^{60}\right)_{\infty}\left(q^{40} ; q^{60}\right)_{\infty}\left(q^{60} ; q^{60}\right)_{\infty}=\left(q^{20}, q^{40}, q^{60} ; q^{60}\right)_{\infty} \tag{1.27}
\end{align*}
$$

The outline of this paper is as follows. In sections 2, we have recorded some well known results, those are useful to the rest of the paper. In section 3, we state and prove seven new q-product identities, which are not available in the literature of special functions.

iI. Preliminaries

Let us recall the definition of cubic theta functions $A(q), B(q)$ and $C(q)$ due to Borwein et al.[4], as

$$
\begin{gather*}
A(q)=\sum_{m, n=-\infty}^{\infty} q^{m^{2}+m n+n^{2}} \tag{2.1}\\
B(q)=\sum_{m, n=-\infty}^{\infty} \omega^{m-n} q^{m^{2}+m n+n^{2}} ; \omega=\exp \left(\frac{2 \pi \imath}{3}\right) \tag{2.2}\\
C(q)=\sum_{m, n=-\infty}^{\infty} q^{m^{2}+m n+n^{2}+m+n} \tag{2.3}
\end{gather*}
$$

Borwein et al.[4] established the following relations

$$
\begin{gather*}
A(q)=A\left(q^{3}\right)+2 q C\left(q^{3}\right) \tag{2.4}\\
B(q)=A\left(q^{3}\right)-q C\left(q^{3}\right) \tag{2.5}\\
C(q)=\frac{3\left(q^{3} ; q^{3}\right)_{\infty}^{3}}{(q ; q)_{\infty}} \tag{2.6}\\
A(q) A\left(q^{2}\right)=B(q) B\left(q^{2}\right)+q C(q) C\left(q^{2}\right) \tag{2.7}
\end{gather*}
$$

Entry-2, in Ramanujan's first note book [8, p.230], [10, p.356] is stated as

$$
\begin{equation*}
\Psi(q) \Psi\left(q^{3}\right)-\Psi(-q) \Psi\left(-q^{3}\right)=2 q \Phi\left(q^{2}\right) \Psi\left(q^{12}\right) \tag{2.8}
\end{equation*}
$$

Entry-4(iv), in the chapter 20 of Ramanujan's second note book [8], [9, p.359] is stated as

$$
\begin{equation*}
\Phi(q) \Phi\left(q^{27}\right)-\Phi(-q) \Phi\left(-q^{27}\right)=4 q f\left(-q^{6}\right) f\left(-q^{18}\right)+4 q^{7} \Psi\left(q^{2}\right) \Psi\left(q^{54}\right) \tag{2.9}
\end{equation*}
$$

Entry-9(i), in the chapter 20 of Ramanujan's second note book [8], [9, p.277] is stated as

$$
\begin{equation*}
\Psi\left(q^{3}\right) \Psi\left(q^{5}\right)-\Psi\left(-q^{3}\right) \Psi\left(-q^{5}\right)=2 q^{3} \Psi\left(q^{2}\right) \Psi\left(q^{30}\right) \tag{2.10}
\end{equation*}
$$

Entry-9(iii), in the chapter 20 of Ramanujan's second note book [8], [9, p.377] is stated as

$$
\begin{equation*}
\Phi\left(q^{3}\right) \Phi\left(q^{5}\right)=\Phi\left(-q^{2}\right) \Phi\left(-Q^{2}\right)+2 q^{2} \Psi(q) \Psi(Q) ; \text { where } Q=q^{15} \tag{2.11}
\end{equation*}
$$

Entry-9(iv), in the chapter 20 of Ramanujan's second note book [8], [9, p.377] is stated as

$$
\begin{equation*}
\Psi(q) \Psi\left(q^{15}\right)+\Psi(-q) \Psi\left(-q^{15}\right)=2 \Psi\left(q^{6}\right) \Psi\left(q^{10}\right) \tag{2.12}
\end{equation*}
$$

Entry-25, in Ramanujan's note book [9, p.39] is stated as

$$
\begin{gather*}
\Phi(q)+\Phi(-q)=2 \Phi\left(q^{4}\right) \tag{2.13}\\
\Phi(q)-\Phi(-q)=4 q \Psi\left(q^{8}\right) \tag{2.14}\\
\Phi(q) \Phi(-q)=\Phi\left(-q^{2}\right) \tag{2.15}
\end{gather*}
$$

iII. Main Results

We have establish following

$$
\begin{gather*}
\left(q^{2}, q^{4}, q^{6} ; q^{8}\right)_{\infty}\left[\left(-q ; q^{2}\right)_{\infty}^{2}+\left(q ; q^{2}\right)_{\infty}^{2}\right]=2\left(-q^{4} ; q^{8}\right)_{\infty}^{2} \tag{3.1}\\
\left(q^{2}, q^{4}, q^{6}, q^{8} ; q^{8}\right)_{\infty}\left[\left(-q ; q^{2}\right)_{\infty}^{2}-\left(q ; q^{2}\right)_{\infty}^{2}\right]=4 q \frac{\left(q^{16}, q^{32}, q^{48} ; q^{48}\right)_{\infty}}{\left(q^{8}, q^{24}, q^{40} ; q^{48}\right)_{\infty}} \tag{3.2}\\
\frac{\left(-q ; q^{2}\right)_{\infty}^{2}+\left(q ; q^{2}\right)_{\infty}^{2}}{\left(-q ; q^{2}\right)_{\infty}^{2}-\left(q ; q^{2}\right)_{\infty}^{2}}=\frac{\left(-q^{4} ; q^{8}\right)_{\infty}^{2}\left(q^{8}, q^{8}, q^{24}, q^{24}, q^{40}, q^{40} ; q^{48}\right)_{\infty}}{2 q} \tag{3.3}\\
\frac{\left(-q ; q^{2}\right)_{\infty}^{2}\left(q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{2 q}=\left(q^{2}, q^{2}, q^{4} ; q^{4}\right)_{\infty} \tag{3.4}\\
\frac{\left(-q ; q^{2}\right)_{\infty}\left(-q^{3} ; q^{6}\right)_{\infty}-\left(q ; q^{2}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty} \times\left(-q^{3} ; q^{6}\right)_{\infty} \times\left(q ; q^{2}\right)_{\infty} \times\left(q^{3} ; q^{6}\right)_{\infty}}=\frac{2 q\left(-q^{2} ; q^{4}\right)_{\infty}^{2}\left(q^{4}, q^{8}, q^{16}, q^{20}, q^{24} ; q^{24}\right)_{\infty}}{\left(q^{2}, q^{4}, q^{6}, q^{8} ; q^{8}\right)_{\infty}\left(q^{6}, q^{12}, q^{18} ; q^{24}\right)_{\infty}} \tag{35}\\
\frac{\left(-q^{3} ; q^{6}\right)_{\infty}\left(-q^{5} ; q^{10}\right)_{\infty}-\left(q^{3} ; q^{6}\right)_{\infty}\left(q^{5} ; q^{10}\right)_{\infty}}{\left(-q^{3} ; q^{6}\right)_{\infty} \times\left(-q^{5} ; q^{10}\right)_{\infty} \times\left(q^{3} ; q^{6}\right)_{\infty} \times\left(q^{5} ; q^{10}\right)_{\infty}}=\frac{\left(q^{4}, q^{8}, q^{12} ; q^{12}\right)_{\infty}}{\left(q^{6}, q^{12}, q^{18}, q^{24} ; q^{24}\right)_{\infty}} \times \\
\times \frac{2 q^{3}}{\left(q^{2}, q^{6}, q^{10} ; q^{12}\right)_{\infty}\left(q^{10}, q^{20}, q^{30}, q^{30}, q^{40}, q^{50} ; q^{60}\right)_{\infty}} \tag{3.6}\\
\frac{\left[\left(q ; q^{2}\right)_{\infty}\left(q^{15} ; q^{30}\right)_{\infty}\right]+\left[\left(-q ; q^{2}\right)_{\infty}\left(-q^{15} ; q^{30}\right)_{\infty}\right]}{\left[\left(q ; q^{2}\right)_{\infty}\left(q^{15} ; q^{30}\right)_{\infty}\right]\left[\left(-q ; q^{2}\right)_{\infty}\left(-q^{15} ; q^{30}\right)_{\infty}\right]}=\frac{\left(q^{12}, q^{20}, q^{24}, q^{36}, q^{40}, q^{48}, q^{60}, q^{60} ; q^{60}\right)_{\infty}}{\left(q^{10}, q^{30}, q^{30}, q^{50}, q^{60} ; q^{60}\right)_{\infty}} \times \\
\times \frac{2}{\left(q^{2}, q^{4}, q^{6}, q^{8}, q^{8} ; q^{8}\right)_{\infty}\left(q^{6}, q^{18}, q^{30}, q^{42}, q^{54} ; q^{60}\right)_{\infty}} \tag{3.7}
\end{gather*}
$$

Proof of (3.1):Employing equation (1.6) in equation (2.13), we have

$$
\left(-q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}+\left(q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}=2\left(-q^{4} ; q^{8}\right)_{\infty}^{2}\left(q^{8} ; q^{8}\right)_{\infty}
$$

$$
\begin{gathered}
\left(q^{2} ; q^{2}\right)_{\infty}\left[\left(-q ; q^{2}\right)_{\infty}^{2}+\left(q ; q^{2}\right)_{\infty}^{2}\right]=2\left(-q^{4} ; q^{8}\right)_{\infty}^{2}\left(q^{8} ; q^{8}\right)_{\infty} \\
\left(q^{2} ; q^{8}\right)_{\infty}\left(q^{4} ; q^{8}\right)_{\infty}\left(q^{6} ; q^{8}\right)_{\infty}\left(q^{8} ; q^{8}\right)_{\infty}\left[\left(-q ; q^{2}\right)_{\infty}^{2}+\left(q ; q^{2}\right)_{\infty}^{2}\right]=2\left(-q^{4} ; q^{8}\right)_{\infty}^{2}\left(q^{8} ; q^{8}\right)_{\infty} \\
\left(q^{2} ; q^{8}\right)_{\infty}\left(q^{4} ; q^{8}\right)_{\infty}\left(q^{6} ; q^{8}\right)_{\infty}\left[\left(-q ; q^{2}\right)_{\infty}^{2}+\left(q ; q^{2}\right)_{\infty}^{2}\right]=2\left(-q^{4} ; q^{8}\right)_{\infty}^{2} \\
\left(q^{2}, q^{4}, q^{6} ; q^{8}\right)_{\infty}\left[\left(-q ; q^{2}\right)_{\infty}^{2}+\left(q ; q^{2}\right)_{\infty}^{2}\right]=2\left(-q^{4} ; q^{8}\right)_{\infty}^{2}
\end{gathered}
$$

which establish the result (3.1).
Proof of (3.2):Employing equations (1.6) and (1.7) in equation (2.14), we have

$$
\left(q^{2}, q^{4}, q^{6}, q^{8} ; q^{8}\right)_{\infty}\left[\left(-q ; q^{2}\right)_{\infty}^{2}-\left(q ; q^{2}\right)_{\infty}^{2}\right]=4 q \frac{\left(q^{16}, q^{32}, q^{48} ; q^{48}\right)_{\infty}}{\left(q^{8}, q^{24}, q^{40} ; q^{48}\right)_{\infty}}
$$

which establish the result (3.2).
Proof of (3.3):Dividing equation (3.1) by (3.2), we get equation (3.3).
Proof of (3.4):Employing equation (1.6) in equation (2.15), we have

$$
\begin{gathered}
\left(-q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}=\left(q^{2} ; q^{4}\right)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty} \\
\left(-q ; q^{2}\right)_{\infty}^{2}\left(q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}^{2}=\left(q^{2} ; q^{4}\right)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty} \\
\left(-q ; q^{2}\right)_{\infty}^{2}\left(q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}^{2}=\left(q^{2} ; q^{4}\right)_{\infty}\left(q^{2} ; q^{4}\right)_{\infty}\left(q^{4} ; q^{4}\right)_{\infty} \\
\left(-q ; q^{2}\right)_{\infty}^{2}\left(q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}^{2}=\left(q^{2}, q^{2}, q^{4} ; q^{4}\right)_{\infty}
\end{gathered}
$$

which establish the result (3.4).
Proof of (3.5):Employing equations (1.6) and (1.7) in equation (2.8), we get.

$$
\begin{aligned}
& \frac{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}}-\frac{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}\left(-q^{3} ; q^{6}\right)_{\infty}}=\frac{2 q\left(-q^{2} ; q^{4}\right)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{24} ; q^{24}\right)_{\infty}}{\left(q^{12} ; q^{24}\right)_{\infty}} \\
& \frac{\left(-q ; q^{2}\right)_{\infty}\left(-q^{3} ; q^{6}\right)_{\infty}-\left(q ; q^{2}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}\left(-q^{3} ; q^{6}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}}=\frac{2 q\left(-q^{2} ; q^{4}\right)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{24} ; q^{24}\right)_{\infty}}{\left(q^{12} ; q^{24}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}} \\
& \frac{\left(-q ; q^{2}\right)_{\infty}\left(-q^{3} ; q^{6}\right)_{\infty}-\left(q ; q^{2}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}\left(-q^{3} ; q^{6}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}}=\frac{2 q\left(-q^{2} ; q^{4}\right)_{\infty}^{2}\left(q^{4}, q^{8}, q^{16}, q^{20}, q^{24} ; q^{24}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{6}, q^{12}, q^{18} ; q^{24}\right)_{\infty}} \\
& \frac{\left(-q ; q^{2}\right)_{\infty}\left(-q^{3} ; q^{6}\right)_{\infty}-\left(q ; q^{2}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}\left(-q^{3} ; q^{6}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}}=\frac{2 q\left(-q^{2} ; q^{4}\right)_{\infty}^{2}\left(q^{4}, q^{8}, q^{16}, q^{20}, q^{24} ; q^{24}\right)_{\infty}}{\left(q^{2}, q^{4}, q^{6}, q^{8} ; q^{8}\right)_{\infty}\left(q^{6}, q^{12}, q^{18} ; q^{24}\right)_{\infty}}
\end{aligned}
$$

which establish the result (3.5).
Proof of (3.6):Employing equation (1.7) in equation (2.10), we get.

$$
\frac{\left(q^{6} ; q^{6}\right)_{\infty}\left(q^{10} ; q^{10}\right)_{\infty}}{\left(q^{3} ; q^{6}\right)_{\infty}\left(q^{5} ; q^{10}\right)_{\infty}}-\frac{\left(q^{6} ; q^{6}\right)_{\infty}\left(q^{10} ; q^{10}\right)_{\infty}}{\left(-q^{3} ; q^{6}\right)_{\infty}\left(-q^{5} ; q^{10}\right)_{\infty}}=\frac{2 q^{3}\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{60} ; q^{60}\right)_{\infty}}{\left(q^{2} ; q^{4}\right)_{\infty}\left(q^{30} ; q^{60}\right)_{\infty}}
$$

$$
\begin{gathered}
\frac{\left(-q^{3} ; q^{6}\right)_{\infty}\left(-q^{5} ; q^{10}\right)_{\infty}-\left(q^{3} ; q^{6}\right)_{\infty}\left(q^{5} ; q^{10}\right)_{\infty}}{\left(-q^{3} ; q^{6}\right)_{\infty}\left(-q^{5} ; q^{10}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}\left(q^{5} ; q^{10}\right)_{\infty}}=\frac{2 q^{3}\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{60} ; q^{60}\right)_{\infty}}{\left(q^{2} ; q^{4}\right)_{\infty}\left(q^{6} ; q^{6}\right)_{\infty}\left(q^{10} ; q^{10}\right)_{\infty}\left(q^{30} ; q^{60}\right)_{\infty}} \\
\frac{\left(-q^{3} ; q^{6}\right)_{\infty}\left(-q^{5} ; q^{10}\right)_{\infty}-\left(q^{3} ; q^{6}\right)_{\infty}\left(q^{5} ; q^{10}\right)_{\infty}}{\left(-q^{3} ; q^{6}\right)_{\infty}\left(-q^{5} ; q^{10}\right)_{\infty}\left(q^{3} ; q^{6}\right)_{\infty}\left(q^{5} ; q^{10}\right)_{\infty}}=\frac{\left(q^{4}, q^{8}, q^{12} ; q^{12}\right)_{\infty}}{\left(q^{6}, q^{12}, q^{18}, q^{24} ; q^{24}\right)_{\infty}} \times \\
\times \frac{2 q^{3}}{\left(q^{2}, q^{6}, q^{10} ; q^{12}\right)_{\infty}\left(q^{10}, q^{20}, q^{30}, q^{30}, q^{40}, q^{50} ; q^{60}\right)_{\infty}}
\end{gathered}
$$

which establish the result (3.6).
Proof of (3.7):Employing equation (1.7) in equation (2.12), we get.

$$
\begin{gathered}
\frac{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{30} ; q^{30}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}\left(q^{15} ; q^{30}\right)_{\infty}}+\frac{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{30} ; q^{30}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}\left(-q^{15} ; q^{30}\right)_{\infty}}=\frac{2\left(q^{12} ; q^{12}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}}{\left(q^{6} ; q^{12}\right)_{\infty}\left(q^{10} ; q^{20}\right)_{\infty}} \\
\frac{\left(-q ; q^{2}\right)_{\infty}\left(-q^{15} ; q^{30}\right)_{\infty}+\left(q ; q^{2}\right)_{\infty}\left(q^{15} ; q^{30}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}\left(-q^{15} ; q^{30}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}\left(q^{15} ; q^{30}\right)_{\infty}}=\frac{2\left(q^{12} ; q^{12}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{6} ; q^{12}\right)_{\infty}\left(q^{10} ; q^{20}\right)_{\infty}\left(q^{30} ; q^{30}\right)_{\infty}} \\
\frac{\left(-q ; q^{2}\right)_{\infty}\left(-q^{15} ; q^{30}\right)_{\infty}+\left(q ; q^{2}\right)_{\infty}\left(q^{15} ; q^{30}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}\left(-q^{15} ; q^{30}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}\left(q^{15} ; q^{30}\right)_{\infty}}=\frac{2\left(q^{12}, q^{20}, q^{24}, q^{36}, q^{40}, q^{48}, q^{60}, q^{60} ; q^{60}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{6} ; q^{12}\right)_{\infty}\left(q^{10} ; q^{20}\right)_{\infty}\left(q^{30} ; q^{30}\right)_{\infty}} \\
\frac{\left(-q ; q^{2}\right)_{\infty}\left(-q^{15} ; q^{30}\right)_{\infty}+\left(q ; q^{2}\right)_{\infty}\left(q^{15} ; q^{30}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}\left(-q^{15} ; q^{30}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}\left(q^{15} ; q^{30}\right)_{\infty}}=\frac{\left(q^{12}, q^{20}, q^{24}, q^{36}, q^{40}, q^{48}, q^{60}, q^{60} ; q^{60}\right)_{\infty}}{\left(q^{10}, q^{30}, q^{30}, q^{50}, q^{60} ; q^{60}\right)_{\infty}} \times \\
\times \frac{2}{\left(q^{2}, q^{4}, q^{6}, q^{8}, q^{8} ; q^{8}\right)_{\infty}\left(q^{6}, q^{18}, q^{30}, q^{42}, q^{54} ; q^{60}\right)_{\infty}}
\end{gathered}
$$

which establish the result (3.7).

References Références Referencias

1. N.D. Baruah and B.C. Berndt; Partition identities arising from theta function identities, Acta Math.Sincia, English series, 24(6)(2008),955-970.
2. H. Zhao and Z. Zhong; Ramanujan type congruences for a partition function, The Electronic Journal of Combinatorics, 18(2011), P 58, 01-09.
3. Z.Cao; On some dissection identities, J.Math.Anal.Appl.,365(2010),659-667.
4. J.M. Borwein, P.B. Borwein and F.G.Garvan;Some cubic modular identities of Ramanujan, trans.Amer.Math.Soc.,343(1994),35-47.
5. H.H. Chan and P.C. Toh; New analogues of Ramanujan's partition identities, J. Number Theory, 130(2010),1898-1913.
6. G.E. Andrews, R. Askey and R. Roy;Special Functions, Cambridge University Press, Cambridge, 1999.
7. B.C. Berndt;Number Theory in the spirit of Ramanujan, Amer.Math.Soc., Providence, 2006.
8. S. Ramanujan; Notebooks (two volumes), Tata Institute of Fundamental Research, Bombay, 1957.
9. B.C. Berndt; Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
10. B.C. Berndt; Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998.

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 12 Issue 12 Version 1.0 Year 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Note Oncertain Field of Fractions

By S. Usaini \& S. M. Tudunkaya
Kano University of Science and Technology, Nigeria
Abstract - The set of some real rhotrices of the same dimension D^{*} was defined in [2] to be an integral domain. An example of a finite field $M\left[R_{3}\right]$ was given in [4] based on this definition also and on the construction of finite fields presented in [3]. It was discovered that the finite sub collection of the elements of $M\left[R_{3}\right]$ as contained in D^{*} is not closed under rhotrix addition and hence not an integral domain. More generally, D^{*} is not an integral domain as it is not closed under rhotrix addition. This problem affects the field of fractions constructed in [8]. A solution to this problem is provided in this article and the construction method of such fields is reviewed. This reviewed version gives the generalization of such construction as the n-dimensional rhotrices are used.

Keywords : n-dimensional rhotrix; Quotient rhotrix; Integral domain; Field of fraction.
GJSFR-F Classification : MSC 2010: 83A05

Strictly as per the compliance and regulations of :

© 2012. S. Usaini \& S. M. Tudunkaya. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Note Oncertain Field of Fractions

S. Usaini ${ }^{\alpha}$ \& S. M. Tudunkaya ${ }^{\sigma}$

Abstract -The set of some real rhotrices of the same dimension D^{*} was defined in [2] to be an integral domain. An example of a finite field $M\left[R_{3}\right]$ was given in [4] based on this definition also and on the construction of finite fields presented in [3]. It was discovered that the finite sub collection of the elements of $M\left[R_{3}\right]$ as contained in D^{*} is not closed under rhotrix addition and hence not an integral domain. More generally, D^{*} is not an integral domain as it is not closed under rhotrix addition. This problem affects the field of fractions constructed in [8].A solution to this problem is provided in this article and the construction method of such fields is reviewed. This reviewed version gives the generalization of such construction as the n-dimensional rhotrices are used.
Keywords : n-dimensional rhotrix; Quotient rhotrix; Integral domain; Field of fraction
I. Introduction

The idea of classifying the set of all rhotrices of dimension 3 as abstract structures was presented in [1] and [2].In [2] the set of some 3-dimensional real rhotrices

$$
\begin{equation*}
D^{*}=\langle(R-Z D),+, \circ\rangle \tag{1.1}
\end{equation*}
$$

was defined to be an integral domain under rhotrix addition and multiplication, where R is the set of all real rhotrices of dimension 3 as defined in [6] by

$$
\begin{aligned}
R & =\left\{\left\langle\begin{array}{lll}
b & c & d \\
b & e
\end{array}\right\rangle: a, b, c, d, e \in \mathfrak{R}\right\}, \\
Z D & =\left\{\left\langle\left\langle\begin{array}{ll}
b & 0 \\
b & d
\end{array}\right\rangle: a, b, d, e, 0 \in \mathfrak{R} \text { and at least one of } a, b, d, e \neq 0\right\} .\right.
\end{aligned}
$$

Recall that an integral domain is a commutative ring with out zero divisors. However, D^{*} is not even a ring because the additive closure is not there. This can be seen as follows: Let $R, Q \in D^{*}$ such that $h(R)=c$ and $h(Q)=-c$. If $R+Q=S$ then $h(S)=0$ and at least one of $a, b, d, e \neq 0$ which implies that $S \notin D^{*}$.

[^8]A method of constructing finite fields through the use of rhotrices was presented in [3]. The cardinalities of such fields were also provided. In [4] an example of a particular finite field $M\left[R_{3}\right]$ whose cardinality is $\mid M\left[R_{3}\right]=3^{5}=243$ was given. This field gave the clear picture of the problem in D^{*}.

In [1] a hearty rhotrix of dimension 3 was defined to be a rhotrix S having all its entries(except the heart) as zero. Thus, an integer hearty rhotrix of dimension 3 is of the form $\left\langle\begin{array}{ccc} & 0 \\ 0 & c & 0 \\ & 0\end{array}\right\rangle, c \neq 0 \in \mathbb{Z}$. Therefore we may define the set of all integer hearty rhotrices
of the same dimension as

For any two base rhotrices R, S the quotient $\frac{R}{S}$ is defined in [5] to be the quotient rhotrix as follows:

$$
\begin{equation*}
\frac{R}{S}=R \circ S^{-1}, \text { provided } h(S) \neq 0 \tag{1.3}
\end{equation*}
$$

The concept of n-dimensional heart-oriented rhotrix multiplicationwas introduced in [7]. A rhotrix R_{n} of dimension n have $\left|R_{n}\right|$ entries where $\left|R_{n}\right|=\frac{1}{2}\left(n^{2}+1\right)$ as indicated in [6]. Thus any given rhotrix R_{n} with entries $a_{1}, a_{2}, \ldots, a_{\frac{1}{2}\left(n^{2}+1\right)}$, is generally represented as

The method of constructing field of fractions through the use of base rhotrices based on definitions (1.1) and (1.3) was presented in [8]. To take care of the problem that affects this construction as pointed out earlier; this article aims at reviewing and generalizing the construction method using definitions (1.2) and (1.3).

iI. A Particular Field of Fraction of an Integral Domain

Theorem 2.1

Let H_{n} be the set of all n-dimensional integer hearty rhotrices. If $H_{n}^{*}=H_{n} \cup\left\{O_{n}\right\}$ then H_{n}^{*} is an integral domain, where O_{n} is an n-dimensional zero rhotrix.

Proof

It suffices to show that H_{n}^{*} is isomorphic to an integral domain \mathbb{Z}. That is $H_{n}^{*} \cong \mathbb{Z}$.
Define a mapping $\tau: \mathbb{Z} \rightarrow H_{n}^{*}$ by $\tau(c)=C_{n}$.
For homomorphism, let $c, d \in \mathbb{Z}$, then
(i) $\tau(c+d)=C_{n}+D_{n}=\tau(c)+\tau(d)$ (ii) $\tau(c d)=C_{n} \circ D_{n}=\tau(c) \tau(d)$

Therefore τ is a homomorphism
Since $\forall \tau(c) \in H_{n}^{*}$ there exists $c \in \mathbb{Z}$ such that $\tau(c)=C_{n}$ then τ is onto.
Now let $\tau(c), \tau(d) \in H_{n}^{*}$ such that $\tau(c)=\tau(d)$.
$\tau(c)=\tau(d) \Rightarrow C_{n}=D_{n} \Rightarrow c=d$.
Thus τ is one to one.
Hence $H_{n}^{*} \cong \mathbb{Z}$.

Definition 2.1

Let H_{n}^{*} and H_{n} be as in Theorem 2.1 above. Then a relation \sim on $H_{n}^{*} \mathrm{x} H_{n}$ defined by cross multiplication as $\left(C_{n 1}, D_{n 1}\right) \sim\left(C_{n 2}, D_{n 2}\right)$ if $C_{n 1} \circ D_{n 2}=C_{n 2} \circ D_{n 1}, \ni C_{n 1}, C_{n 2} \in H_{n}^{*}$; $D_{n 1}, D_{n 2} \in H_{n}$.

Proposition 2.1

The relation \sim as defined in Definition (2.1) is an equivalence relation.

Proof

Reflexivity and Symmetry of the relation are obvious.
For transitivity, let $C_{n 1} \circ D_{n 2}=C_{n 2} \circ D_{n 1}$ and $C_{n 2} \circ D_{n 3}=C_{n 3} \circ D_{n 2}$. To show that $C_{n 1} \circ D_{n 3}=C_{n 3} \circ D_{n 1}$ we have
$\left(C_{n 1} \circ D_{n 3}\right) \circ D_{n 2}=\left(C_{n 1} \circ D_{n 2}\right) \circ D_{n 3}$
$=\left(C_{n 2} \circ D_{n 1}\right) \circ D_{n 3}$
$=\left(C_{n 2} \circ D_{n 3}\right) \circ D_{n 1}$
$=\left(C_{n 3} \circ D_{n 2}\right) \circ D_{n 1}$
$=\left(C_{n 3} \circ D_{n 1}\right) \circ D_{n 2}$
$\therefore\left(C_{n 1} \circ D_{n 3}\right)=\left(C_{n 3} \circ D_{n 1}\right)$ by cancellation law.
We denote by $\frac{C_{n}}{D_{n}}$ the equivalence class of $\left(C_{n}, D_{n}\right)$ in $H_{n}^{*} \times H_{n}$ and define $H_{n}^{*}\left[H_{n}{ }^{1}\right]$ to be the set of all the equivalenceclasses $\frac{C_{n}}{D_{n}}$, where $C_{n} \in H_{n}^{*}$ and $D_{n} \in H_{n}$.

For all $\frac{C_{n 1}}{D_{n 1}}, \frac{C_{n 2}}{D_{n 2}} \in H_{n}^{*}\left[H_{n}{ }^{1}\right]$ we define addition and multiplication on $H_{n}^{*}\left[H_{n}{ }^{1}\right]$ as follows: $\frac{C_{n 1}}{D_{n 1}}+\frac{C_{n 2}}{D_{n 2}}=\frac{C_{n 1} \circ D_{n 2}+C_{n 2} \circ D_{n 1}}{D_{n 1} \circ D_{n 2}}$ and $\frac{C_{n 1}}{D_{n 1}} \circ^{\prime} \frac{C_{n 2}}{D_{n 2}}=\frac{C_{n 1} \circ C_{n 2}}{D_{n 1} \circ D_{n 2}}$.

Proposition2.2

The operations ($+^{\prime}$), (\circ^{\prime}) as defined above are well-defined.

Proof

Suppose $\frac{C_{n 1}^{\prime}}{D_{n 1}^{\prime}}=\frac{C_{n 1}}{D_{n 1}}$ and $\frac{C_{n 2}^{\prime}}{D_{n 2}^{\prime}}=\frac{C_{n 2}}{D_{n 2}}$; then $C_{n 1}^{\prime} \circ D_{n 1}=D_{n 1}^{\prime} \circ C_{n 1}$ and $C_{n 2}^{\prime} \circ D_{n 2}=D_{n 2}^{\prime} \circ C_{n 2}$, so that $\left(C_{n 1}^{\prime} \circ D_{n 2}^{\prime}+C_{n 2}^{\prime} \circ D_{n 1}^{\prime}\right) D_{n 1} D_{n 2}=C_{n 1}^{\prime} \circ D_{n 1} \circ D_{n 2}^{\prime} \circ D_{n 2}+C_{n 2}^{\prime} \circ D_{n 2} \circ D_{n 1}^{\prime} \circ D_{n 1}$
$=C_{n 1} \circ D_{n 1}^{\prime} \circ D_{n 2}^{\prime} \circ D_{n 2}+C_{n 2} \circ D_{n 2}^{\prime} \circ D_{n 1}^{\prime} \circ D_{n 1}$
$=\left(C_{n 1} \circ D_{n 2}+C_{n 2} \circ D_{n 1}\right) D_{n 1}^{\prime} \circ D_{n 2}^{\prime}$
implying that $\frac{C_{n 1}^{\prime}}{D_{n 1}^{\prime}}+\frac{C_{n 2}^{\prime}}{D_{n 2}^{\prime}}=\frac{C_{n 1}}{D_{n 1}}+\frac{C_{n 2}}{D_{n 2}}$.
Similarly $\left(C_{n 1}^{\prime} \circ C_{n 2}^{\prime}\right) D_{n 1} \circ D_{n 2}=\left(C_{n 1} \circ C_{n 2}\right) D_{n 1}^{\prime} \circ D_{n 2}^{\prime}$ implies that $\frac{C_{n 1}^{\prime}}{D_{n 1}^{\prime}} \circ^{\prime} \frac{C_{n 2}^{\prime}}{D_{n 2}^{\prime}}=\frac{C_{n 1} \circ C_{n 2}}{D_{n 1} \circ D_{n 2}}$.
By definition (1.3) the equivalence class $\frac{C_{n}}{D_{n}}=C_{n} \circ D_{n}^{-1}$ since $D_{n} \neq 0_{n} \in H_{n}$. Therefore, for all $D_{n} \in H_{n}, 0_{n} \in H_{n}^{*}, \frac{0_{n}}{D_{n}}=0_{n} \circ D_{n}^{-1}=0_{n}=0_{n} \circ I_{n}=\frac{0_{n}}{I_{n}}$. Thus $\frac{0_{n}}{I_{n}}=\frac{0_{n}}{D_{n}}$ is the additive identity and $-\frac{C_{n}}{D_{n}}=\frac{-C_{n}}{D_{n}}$ is the additive inverse. Similarly, $\frac{I_{n}}{I_{n}}=\frac{D_{n}}{D_{n}}$ is the multiplicative identity.

Theorem 2.2

With the above definitions and the definitions of the operations ($+^{\prime}$) and (\circ^{\prime}), the set of the equivalence classes $H_{n}^{*}\left[H_{n}{ }^{1}\right]$ is a commutative ring.

Proof

One should check that the properties of a ring are fulfilled. But the proof follows from the fact that addition and multiplication are the regular addition and multiplication of fractions.

Proposition 2.3

The function $\psi: H_{n}^{*} \rightarrow H_{n}^{*}\left[H_{n}{ }^{1}\right]$ defined by $\psi\left(C_{n}\right)=\frac{C_{n}}{I_{n}}$ is a ring homomorphism whose kernel is $\left\{C_{n} \in H_{n}^{*}: C_{n} \circ^{\prime} D_{n}=0\right.$ for some $\left.D_{n} \in H_{n}^{*}\left[H_{n}{ }^{1}\right]\right\}$.

Proof

Let $C_{n 1}, C_{n 2} \in H_{n}^{*}$, then
$\psi\left(C_{n 1}+C_{n 2}\right)=\frac{C_{n 1}+C_{n 2}}{I_{n}}=\left(C_{n 1}+C_{n 2}\right) \circ I_{n}=C_{n 1} \circ I_{n}+C_{n 2} \circ I_{n}=\frac{C_{n 1}}{I_{n}}+\frac{C_{n 2}}{I_{n}}=\psi\left(C_{n 1}\right)+\psi\left(C_{n 2}\right)$
$\psi\left(C_{n 1} \circ^{\prime} C_{n 2}\right)=\frac{C_{n 1} \circ^{\prime} C_{n 2}}{I_{n}}=\left(C_{n 1} \circ^{\prime} C_{n 2}\right) \circ I_{n}=C_{n 1} \circ I_{n} \circ^{\prime} C_{n 2} \circ I_{n}=\frac{C_{n 1}}{I_{n}} \circ^{\prime} \frac{C_{n 2}}{I_{n}}=\psi\left(C_{n 1}\right) \circ^{\prime} \psi\left(C_{n 2}\right)$ $\psi\left(I_{n}\right)=\frac{I_{n}}{I_{n}}$.

Now $C_{n} \in \operatorname{ker} \psi$ if and only if $\frac{C_{n}}{I_{n}}=\frac{0_{n}}{I_{n}}$, if and only if $C_{n} \circ I_{n}=0_{n} \circ I_{n}=0_{n}$, which imply that ker $\psi=\left\{0_{n}\right\}$.

Recall from [1] that, the set $M=\{n I: n \in \mathbb{Z}\}$ where I is the unity element of the commutative ring of 3 -dimensionalrhotrices R is a subring and submonoid of R under multiplication(०). Thus the $\operatorname{set} M_{n}=\left\{n I_{n}: n \in \mathbb{Z}\right\}$ is a subring and submonoid of the commutative ring R_{n}^{*} of n-dimensional rhotrices. Therefore any submonoid, H_{n} of R_{n}^{*} with property that for all $Q_{n} \neq 0 \in R_{n}^{*}$ and $S_{n} \in H_{n}, \quad Q_{n} \circ S_{n} \neq 0$ can serve in the above construction for the generalization of proposition 2.3 as stated in the following proposition.

Proposition 2.4

$R_{n}^{*}\left[H_{n}{ }^{1}\right]$ as constructed above is a ring, and there is a homomorphism $\psi: R_{n}^{*} \rightarrow$ $R_{n}^{*}\left[H_{n}{ }^{1}\right]$ given by $\psi\left(Q_{n}\right)=\frac{Q_{n}}{I_{n}}$.

Proof

The proof follows from propositions 2.2 and 2.3.
As defined in [1], a diagonal rhotrix of dimension 3 is a rhotrix whose two nondiagonal entries are all zero. Let D be the set of all n-dimensional diagonal rhotrices then it is easy for someone to verify that $W=D \cup\left\{O_{n}, I_{n}\right\}$, where O_{n} is the n-dimensional additive identity; I_{n} is the n-dimensional multiplicative identity is a group and is normal in R_{n}^{*} under multiplication.

Proposition 2.5

Let R_{n}^{*} be a commutative ring of n -dimensional rhotrices, and let H_{n} be a submonoid of R_{n}^{*} such that $Q_{n} \circ S_{n} \neq 0_{n}$ for every $Q_{n} \neq 0_{n} \in R_{n}^{*}$ and $S_{n} \in H_{n}$. Then every ideal of $R_{n}^{*}\left[H_{n}{ }^{1}\right]$ has the form $W\left[H_{n}{ }^{1}\right]$, for suitable W normal in R_{n}^{*}.

Proof

Since all the elements of $W\left[H_{n}{ }^{1}\right]$ are also elements of $R_{n}^{*}\left[H_{n}{ }^{1}\right]$ and $I_{n} \in H_{n}$ then obviously $W\left[H_{n}{ }^{1}\right]$ is an additive subgroup of $R_{n}^{*}\left[H_{n}{ }^{1}\right]$.

For all $\frac{C_{n}}{D_{n}} \in R_{n}^{*}\left[H_{n}{ }^{1}\right] \quad ; \frac{W_{n}}{D_{n}^{\prime}} \in W\left[H_{n}{ }^{1}\right] \quad ; \quad \frac{C_{n}}{D_{n}} \circ^{\prime} \frac{W_{n}}{D_{n}^{\prime}}=\frac{C_{n} \circ W_{n}}{D_{n} \circ D_{n}^{\prime}} \in W\left[H_{n}{ }^{1}\right] \quad$ since $C_{n} \circ W_{n} \in W, D_{n} \circ D_{n}^{\prime} \in H_{n}$.
W is normal in R_{n}^{*} implies that $\frac{W_{n}}{D_{n}^{\prime}} \circ \frac{C_{n}}{D_{n}} \in W\left[H_{n}{ }^{1}\right]$.

Proposition 2.6

$H_{n}^{*}\left[H_{n}{ }^{1}\right]$ is an integral domain.
Proof
Suppose $\frac{C_{n 1}}{D_{n 1}} \circ^{\prime} \frac{C_{n 2}}{D_{n 2}}=0_{n} \in H_{n}^{*}\left[H_{n}{ }^{1}\right]$, that is $\frac{C_{n 1} \circ C_{n 2}}{D_{n 1} \circ D_{n 2}}=\frac{0_{n}}{I_{n}}$
$\Rightarrow\left(C_{n 1} \circ C_{n 2}, D_{n 1} \circ D_{n 2}\right)^{\sim}\left(0_{n}, I_{n}\right)$ and $C_{n 1} \circ C_{n 2} \circ D_{n}=0$ for some $D_{n} \in H_{n}$.
$C_{n 1} \circ C_{n 2} \circ D_{n}=0_{n} \in H_{n}^{*}$, which is an integral domain, and $D_{n} \neq 0_{n}$, thus $C_{n 1} \circ C_{n 2}=0_{n}$.
So either $C_{n 1}$ or $C_{n 2}$ is 0_{n} and consequently either $\frac{C_{n 1}}{D_{n 1}}$ or $\frac{C_{n 2}}{D_{n 2}}$ is 0_{n}.

Theorem 2.3

The set $H_{n}^{*}\left[H_{n}{ }^{1}\right]$ of all equivalence classes $\frac{C_{n}}{D_{n}}$ is a field.

Proof

From Theorem 2.2, $H_{n}^{*}\left[H_{n}{ }^{1}\right]$ is a commutative ring with unity $\frac{I_{n}}{I_{n}}$. So we just need to show that every non zero element of $H_{n}^{*}\left[H_{n}{ }^{1}\right]$ has multiplicative inverse.
Suppose $\frac{C_{n}}{D_{n}} \neq \frac{0_{n}}{I_{n}}$, then $C_{n} \neq 0_{n}$, so $C_{n} \in H_{n}$ which implies that $\frac{C_{n}}{D_{n}} \in H_{n}^{*}\left[H_{n}{ }^{1}\right]$.
Clearly, $\frac{C_{n}}{D_{n}} \circ^{\prime} \frac{D_{n}}{C_{n}}=\frac{C_{n} \circ D_{n}}{D_{n} \circ C_{n}}=\frac{I_{n}}{I_{n}}$. Thus $\frac{D_{n}}{C_{n}}$ is the multiplicative inverse of $\frac{C_{n}}{D_{n}}$.

III. Conclusion

In this short note, amendment concerning some definitions in [2] and [8] with their generalizations were provided. The steps observed in the construction of field of fractions illustrated in [8] were also amended respectively.

References Références Referencias

1. Mohammed (2007a). Enrichment exercises through extension to rhotrices. Int. J. Math. Educ. Sci. Technol.38(2007b), 131-136.
2. A. Mohammed (2009). , A remark on the classification of rhotrices as abstract structures, Int. J. Phy. Sci.4, pp.496-499.
3. S.M. Tudunkaya and S.O. Makanjuola (2010). Rhotrices and the construction of finite fields. Bulletin of Pure and Applied Sciences, Vol. 29 E Issue 2, pp225-229.
4. S. Usaini and S.M. Tudunkaya (2011). Note on rhotrices and the construction of finite fields. Bulletin of Pure and Applied Sciences, Vol. 30 E (Math \& Stat.) Issue (No.1), pp. 53-58.
5. A. Mohammed (2007b). A note on Rhotrix Exponent Rule and its Applications to Special Series and Polynomialequations Defined over Rhotrices. Notes on Theory and Discrete Mathematics. 13:1, 1-15.
6. A.O. Ajibade (2003). The concept of rhotrix in mathematical enrichment, Int. J. Math.Educ. Sci. 170 Technol.34,pp. 175-179.
7. E.E. Absalom, et al(2011). The concept of Heart-Oriented Rhotrix Multiplication. Global J. of Sci. Frontier Research, vol. 11 issue 2,pp. 34-46.
8. S. Usaini and S.M. Tudunkaya (2011). Certain field of fractions. Global J. of Sci. Frontier Research, vol. 11 issue 7, pp. 5-8.

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 12 Issue 12 Version 1.0 Year 2012
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Bianchi Type- VI_{0} Dark Energy Cosmological Models in General Relativity

By Priyanka, S. Chandel, M.K. Singh \& Shri Ram
Banaras Hindu University, India

Abstract - Bianchi type- VI_{0} cosmological models of the universe filled with dark energy with constant and time-dependent equation of state parameters are investigated in general relativity. We obtain exact solutions of Einstein's field equations using the condition that the shear scalar is proportional to the expansion scalar, which represent singular and non-singular cosmological models of the universe. The physical behavior of the models are discussed. We conclude that the universe models do not approach isotropy through the evolution of the universe.

Keywords : Bianchi type-VI. Dark energy. Cosmological models.
GJSFR-F Classification : MSC 2010: 83A05

Strictly as per the compliance and regulations of :

© 2012. Priyanka, S. Chandel, M.K. Singh \& Shri Ram. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bianchi Type-VIo Dark Energy Cosmological Models in General Relativity

Priyanka, S. Chandel, M.K. Singh \& Shri Ram

Abstract

Bianchi type- VI_{0} cosmological models of the universe filled with dark energy with constant and timedependent equation of state parameters are investigated in general relativity. We obtain exact solutions of Einstein's field equations using the condition that the shear scalar is proportional to the expansion scalar, which represent singular and non-singular cosmological models of the universe. The physical behavior of the models are discussed. We conclude that the universe models do not approach isotropy through the evolution of the universe. Keywords : Bianchi type-VI. Dark energy. Cosmological models.

I. Introduction

Recent observations on expansion history of the universe indicate that the universe is currently experiencing a phase of accelerated expansion. This was first observed from high red shift supernova Ia (Reiss et al. [1-2], Perlmutter et al. [3], Astier et al. [4], Spergel et al.[5] etc.) and confirmed later by cross checks from the cosmic microwave background radiation (Bennett et al. [6], Abazajian et al.[7-9], Hawkins et al. [10] etc.). The current accelerating expansion of the universe attributed to the fact that our universe is dominated by an unknown dark energy DE an exotic energy with negative pressure.

The simplest dark energy candidate is the vacuum energy density which is mathematically equivalent to the cosmological constant Λ. As per Copeland et al. [11] "fine tuning "and the cosmic "coincidence "are the two well known difficulties of the cosmological constant problems. There are several alternative theories for the dynamical DE scenario which have been proposed by scientists to interpret the accelerating universe. Wang and Tegmark [12] have shown that the universe is actually undergoing an acceleration with repulsive gravity of some strange energy-form i.e. DE at work. Dark energy is a mysterious substance with negative pressure and accounts for nearly 70% of total matter-energy of universe, but has no clear explanation. Karami et al. [13] introduced a polytropic gas model of DE as an alternative model to explain the accelerated expansion of the universe. Gupta and Pradhan [14] proposed a new candidate known as cosmological nuclear-energy as a possible candidate for the dark energy.

[^9]Bianchi types I-IX cosmological models are important in the sense that these are homogeneous and anisotropic, from which the process of isotropization of the universe is studied through the passage of time. Moreover, from the theoretical point of view anisotropic universe have a greater generality than FRW isotropic models. The simplicity of the field equations made Bianchi space-times useful in constructing models of spatially homogeneous and anisotropic cosmologies. Considerable works have been done in obtaining various Bianchi type cosmological models and their inhomogeneous generalization. Bianchi type- VI_{0} space-time is of special interest in anisotropic cosmology. Barrow [15] pointed out that Bianchi type- VI_{0} models of the universe give a better explanation of some of the cosmological problems like primordial helium abundance and they also isotropize in a special sense. Looking to the importance of Bianchi type- VI_{0} universes, many authors [16-20] have studied it in different context. Shri Ram[21, 22] has presented Bianchi type- VI_{0} cosmological models filled with dust and perfect fluid in modified Brans-Dicke theory respectively.

Adhav et al. [23] studied Bianchi type- VI_{0} cosmological models with anisotropic dark energy. Abdussattar and Prajapati [24] obtained a class of bouncing non-singular FRW models by constraining the deceleration parameter (DP) in the presence of an interacting dark energy represented by a time-varying cosmological constant. They have also discussed the role of deceleration parameter and interacting dark energy in singularity avoidance. Bisabr [25] has shown that an accelerating expansion is possible in a spatially flat universe for large values of the Brans-Dicke parameter consistent with the local gravity experiments. Yadav and Saha [26] studied DE models with variable equation of state (EoS) parameter. Recently, Saha and Yadav [27] presented a general relativistic cosmological model with time-dependent DP in LRS Bianchitype-II space-time which can be described by isotopic and variable EoS parameter. In this paper, We present general relativistic cosmological models with constant and time-dependent DP in Bianchi type- VI_{0} space-time which can be described by isotropic constant and variable EoS parameters. This paper is organized as follows: We present the metric and field equations in Sect.2. In Sect.3, we obtain the solutions of the field equations representing Bianchi type- VI_{0} cosmological models with perfect fluid by imposing the condition that the shear scalar is proportional to expansion scalar. We also discuss the physical behaviors of the cosmological models with dark energy. Concluding remarks are given in Sect.4.

iI. The Metric and Field Equations

We consider the spatially homogeneous and anisotropic Bianchi type- VI_{0} space-time in the form

$$
\begin{equation*}
d s^{2}=-d t^{2}+A^{2}(t) d x^{2}+B^{2}(t) e^{-2 m x} d y^{2}+C^{2}(t) e^{2 m x} d z^{2} \tag{1}
\end{equation*}
$$

where A, B and C are functions of the cosmic time t and m is a constant
The Einstein's field equations, in natural limits ($8 \pi G=c=1$) are

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=-T_{\mu \nu} \tag{2}
\end{equation*}
$$

where $R_{\mu \nu}$ is the Ricci tensor, R is the Ricci scalar curvature and $T_{\mu \nu}$ is the energy-momentum tensor of matter. For a perfect fluid distribution, the tensor $T_{\mu \nu}$ is given by

$$
\begin{equation*}
T_{\mu \nu}=(\rho+p) u_{\mu} u_{\nu}+p g_{\mu \nu} \tag{3}
\end{equation*}
$$

where ρ is the energy density of the cosmic matter p is the isotropic pressure and u^{μ} is the four-velocity vector. In comoving coordinate system $u^{\mu}=$ $(0,0,0,1)$, the Einstein's field equation (2) together with (3), for the metric (1), yield

$$
\begin{gather*}
\frac{\ddot{B}}{B}+\frac{\ddot{C}}{C}+\frac{\dot{B} \dot{C}}{B C}+\frac{m^{2}}{A^{2}}=-\omega \rho, \tag{4}\\
\frac{\ddot{A}}{A}+\frac{\ddot{C}}{C}+\frac{\dot{A} \dot{C}}{A C}-\frac{m^{2}}{A^{2}}=-\omega \rho, \tag{5}\\
\frac{\ddot{A}}{A}+\frac{\ddot{B}}{B}+\frac{\dot{A} \dot{B}}{A B}-\frac{m^{2}}{A^{2}}=-\omega \rho, \tag{6}\\
\frac{\dot{A} \dot{B}}{A B}+\frac{\dot{A} \dot{C}}{A C}+\frac{\dot{B} \dot{C}}{B C}-\frac{m^{2}}{A^{2}}=\rho, \tag{7}\\
\left(\frac{\dot{B}}{B}-\frac{\dot{C}}{C}\right)=0 \tag{8}
\end{gather*}
$$

where ω is the EoS parameter given by

$$
\begin{equation*}
p=\omega \rho \tag{9}
\end{equation*}
$$

and a dot denotes ordinary differentiation with respect to t.
The average scalar factor a and volume scalar V are given by

$$
\begin{equation*}
a^{3}=V=A B C . \tag{10}
\end{equation*}
$$

The generalized mean Hubble parameter H is defined by

$$
\begin{equation*}
H=\frac{\dot{a}}{a}=\frac{1}{3}\left(H_{1}+H_{2}+H_{3}\right) \tag{11}
\end{equation*}
$$

where the directional Hubble parameters H_{1}, H_{2} and H_{3} are given by

$$
\begin{equation*}
H_{1}=\frac{\dot{A}}{A}, H_{2}=\frac{\dot{B}}{B}, H_{3}=\frac{\dot{C}}{C} . \tag{12}
\end{equation*}
$$

The expansion scalar θ and shear scalar σ are given by

$$
\begin{gather*}
\theta=\frac{\dot{A}}{A}+\frac{\dot{B}}{B}+\frac{\dot{C}}{C}, \tag{13}\\
\sigma^{2}=\frac{1}{2}\left[\frac{\dot{A}^{2}}{A^{2}}+\frac{\dot{B}^{2}}{B^{2}}+\frac{\dot{C}^{2}}{C^{2}}\right]-\frac{1}{6} \theta^{2} . \tag{14}
\end{gather*}
$$

The deceleration parameter q is defined by

$$
\begin{equation*}
q=-1+\frac{d}{d t}(H) . \tag{15}
\end{equation*}
$$

The sign of q indicates whether the model inflates or not. A positive sign of q corresponds to the standard decelerating model whereas the negative sign of q indicates inflation. The recent observations of SN Ia (Reiss et al.[1], Perlmutter et al.[3]) reveal that the present universe is accelerating and the value of DP lies somewhere in the range $-1<q<0$.

iii. Solution of Field Equations

Equation (8), on integration, gives

$$
\begin{equation*}
B=C \tag{16}
\end{equation*}
$$

where the constant of integration is absorbed in B or C. Using (16), equations (4) - (7) reduce to

$$
\begin{gather*}
\frac{2 \ddot{B}}{B}+\frac{\dot{B}^{2}}{B^{2}}+\frac{m^{2}}{A^{2}}=-\omega \rho, \tag{17}\\
\frac{\ddot{A}}{A}+\frac{\ddot{B}}{B}+\frac{\dot{A} \dot{B}}{A B}-\frac{m^{2}}{A^{2}}=-\omega \rho, \tag{18}\\
\frac{2 \dot{A} \dot{B}}{A B}+\frac{\dot{B}^{2}}{B^{2}}-\frac{m^{2}}{A^{2}}=\rho . \tag{19}
\end{gather*}
$$

These are three equations connecting four unknown functions A, B, ρ and ω. In order to solve the above equations we use the physical condition that expansions scalar is proportional to shear scalar, which in our case leads to

$$
\begin{equation*}
A=B^{n} \tag{20}
\end{equation*}
$$

where n is a constant. Roy and Banerjee [28], Bali and Singh [29] have proposed this condition to find exact solutions of cosmological models.

Here we use the procedure of Saha and Yadav [27] to find exact solutions of (17) - (19) combining (10) and (20), we obtain

$$
\begin{equation*}
A=V^{\frac{n}{n+1}}, \quad B=V^{\frac{1}{n+1}} . \tag{21}
\end{equation*}
$$

Subtraction of (18) from (17) gives

$$
\begin{equation*}
\frac{\ddot{B}}{B}-\frac{\ddot{A}}{A}+\frac{\dot{B}^{2}}{B^{2}}-\frac{\dot{A} \dot{B}}{A B}+\frac{2 m^{2}}{A^{2}}=0 . \tag{22}
\end{equation*}
$$

Substituting (21) into (22), we obtain

$$
\begin{equation*}
\ddot{V}=\frac{2 m^{2}(n+2)}{n-1} V^{\frac{2-n}{n+2}} . \tag{23}
\end{equation*}
$$

The first integral of (23) is

$$
\begin{equation*}
\int \frac{d V}{V^{\frac{4}{n+2}+C}}=\frac{m(n+2) t}{\sqrt{n-1}} \tag{24}
\end{equation*}
$$

where C is an arbitrary constant. Clearly (24) imposes some restriction on the choice of n namely, $n>1$. It is not possible to solve equation (24) in general. So, in order to solve the problem completely, we have to choose either C or n in such a way that (24) be integrable. Therefore we consider the following cases.

Case 3.1 When $C=0$

In this case the solution of (24) is

$$
\begin{equation*}
V=\left(\frac{m n}{\sqrt{n-1}}\right)^{\frac{n+2}{n}}\left(t+k_{1}\right) \tag{25}
\end{equation*}
$$

where k_{1} is an arbitrary constant. From (21) and (25) we obtain the scale factor as

$$
\begin{gather*}
A=\frac{m n}{\sqrt{n-1}}(t+k), \tag{26}\\
B=\left(\frac{m n}{\sqrt{n-1}}\right)^{\frac{1}{n}}(t+k)^{\frac{1}{n}} . \tag{27}
\end{gather*}
$$

With these scale factors, the metric (1) can be written in form

$$
\begin{equation*}
d s^{2}=-d T^{2}+\left(\frac{m n}{\sqrt{n-1}}\right)^{2} d x^{2}+\left(\frac{m n}{\sqrt{n-1}}\right)^{\frac{2}{n}} T^{\frac{2}{n}}\left(e^{-2 m x} d y^{2}+e^{2 m x} d z^{2}\right) \tag{28}
\end{equation*}
$$

where $\mathrm{T}=\mathrm{t}+\mathrm{k}$.
The expressions for the energy density ρ and the EOS ω for the model (28) are obtained as

$$
\begin{align*}
& \rho=\frac{1+n}{n^{2} T^{2}}, \tag{29}\\
& \omega=\frac{n-2}{n+1} . \tag{30}
\end{align*}
$$

The other physical and kinematical parameters are given by

$$
\begin{gather*}
n H_{1}=H_{2}=H_{3}=\frac{1}{T}, \tag{31}\\
\theta=3 H=\frac{n+2}{n T}, \tag{32}\\
\sigma=\frac{1}{\sqrt{3}} \frac{n-1}{n T}, \tag{33}\\
q=-\frac{2}{n+2} . \tag{34}
\end{gather*}
$$

The deceleration parameter q is always negative. The EoS parameter is positive when $n>2$ and is negative if $1<n<2$. Thus, the metric (28) represents as ever power-law accelerated expansion universe filled with a perfect fluid. If $1<n<2, \omega<0$, we obtain DE cosmological model of Bianchi type- VI_{0}.

The spatial volume V is zero and all physical parameters diverge at $T=0$. Therefore, the model has a point-type singularity at $T=0$. For $0<T<\infty$, the spatial volume is an increasing function of time. The physical parameters are monotonically decreasing function of time and ultimately tend to zero for large T. The anisotropy in the model is maintained throughout the passage of time. For the physical reality of the model we will have to choose n, greater than 1 , in such a way that $\left|\frac{n-2}{n+2}\right| \leq 1$. It deserves mention that we are unable to find n for which $\omega= \pm 1$

Case 3.2 When $\mathrm{C} \neq 0$

When $C \neq o$ equation (24) is not integrable for general values of n. However, for $n=2$, it becomes

$$
\begin{equation*}
\int \frac{d V}{\sqrt{V+C}}=4 m t \tag{35}
\end{equation*}
$$

which, after integration, yields

$$
\begin{equation*}
V=4 m^{2} t^{2}+2 \beta t+\gamma \tag{36}
\end{equation*}
$$

where β and γ are arbitrary constants. The constant C is absorbed in γ. From (21) and (36), we obtain the scale factors as

$$
\begin{align*}
& A=\left(4 m^{2} t^{2}+2 \beta t+\gamma\right)^{\frac{1}{2}}, \tag{37}\\
& B=\left(4 m^{2} t^{2}+2 \beta t+\gamma\right)^{\frac{1}{4}} . \tag{38}
\end{align*}
$$

Therefore, the metric (1) of our solutions can be written in the form

$$
\begin{equation*}
d s^{2}=-d t^{2}+\left(4 m^{2} t^{2}+2 \beta t+\gamma\right) d x^{2}+\left(4 m^{2} t^{2}+2 \beta t+\gamma\right)^{\frac{1}{2}}\left(e^{-2 m x} d y^{2}+e^{2 m x} d z^{2}\right) \tag{39}
\end{equation*}
$$

The expressions for $\left(H_{1}, H_{2}, H_{3}\right), H, \rho, \theta$ and σ are obtained as

$$
\begin{gather*}
H_{1}=\frac{4 m^{2} t+\beta}{4 m^{2} t^{2}+2 \beta t+\gamma}, \tag{40}\\
H_{2}=H_{3}=\frac{1}{2}\left(\frac{4 m^{2} t+\beta}{4 m^{2} t^{2}+2 \beta t+\gamma}\right), \tag{41}\\
H=\frac{2}{3}\left(\frac{4 m^{2} t+\beta}{4 m^{2} t^{2}+2 \beta t+\gamma}\right), \tag{42}\\
\theta=2\left(\frac{4 m^{2} t+\beta}{4 m^{2} t^{2}+2 \beta t+\gamma}\right), \tag{43}
\end{gather*}
$$

$$
\begin{equation*}
\sigma=\frac{1}{\sqrt{3}}\left(\frac{4 m^{2} t+\beta}{4 m^{2} t^{2}+2 \beta t+\gamma}\right) \tag{44}
\end{equation*}
$$

The energy density, DP and ω are obtained as

$$
\begin{gather*}
\rho=\frac{\left(8 m^{2} t+2 \beta\right)^{2}-\left(4 m^{2} \gamma-\beta^{2}\right)}{4\left(4 m^{2} t^{2}+2 \beta t+\gamma\right)^{2}} \tag{45}\\
\omega=-\frac{5\left(4 m^{2} \gamma-\beta^{2}\right)}{\left(8 m^{2} t+2 \beta\right)^{2}-\left(4 m^{2} \gamma-\beta^{2}\right)} \tag{46}\\
q=-\frac{2 m^{2}\left(4 m^{2} t^{2}+2 \beta t+\gamma\right)}{\left(4 m^{2} t+\beta\right)^{2}} \tag{47}
\end{gather*}
$$

The value of DP is always negative since V is never negative. The EoS parameter ω is negative if $\gamma>\frac{\beta^{2}}{4 m^{2}}$. If this condition holds, the model (39) corresponds to a Bianchi type- VI_{0} energy cosmological model with variable q and ω.

If $\gamma>\frac{\beta^{2}}{4 m^{2}}$, the model (39) has no finite singularity. The physical and kinematical parameters are all decreasing function of time and ultimately tend to zero for large time. The model essentially gives an empty space-time for large time. The anisotropy in the model never dies out.

IV. Conclusion

In this paper, we have presented exact solutions of Einstein's field equations for a Bianchi-type VI_{0} space-time filled with perfect fluid satisfying the barotropic equation of state under the assumption that the expansion scalar is proportional to shear scalar. Under some specific choice of problem parameters, the present consideration yields singular and non-singular models of the accelerated expansion universe filled with perfect fluid and dark energy. Models with negative EoS parameter ω may be attributed to the current accelerated expansion of universe. The physical and kinematical parameters are all decreasing function of time and ultimately tend to zero for large time. The universe models do not approach to isotropy. The models presented in this paper can be potential tools to describe the present universe as well as the early universe.

References Références Referencias

1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)
2. Riess, A.G., et al.: Astrophys . J 607, 665 (2004)
3. Perlmutter, S., et al.: Astrophys. J. 483, 565 (1997)
4. Astier, P., et al.: Astron. Astrophys. 447, 31 (2006)
5. Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)
6. Bennet, C.L., et al : Astrophys. J. Suppl. 148, 1 (2003)
7. Abazajian, K., et al.: Astron. J.126, 2081 (2003)
8. Abazajian, K., et al.: arXiv: astro.ph/0410239 (2004)
9. Abazajian, K., et al.: Astron.J.128, 502 (2004)
10. Hawkins, E., et al.: Man. Not. R. Astron. Soc. 346, 78 (2003)
11. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys.D 15, 1753 (2006)
12. Wang, Y., Tegmark, M.: Phys. Rev. Lett. 92, 241301 (2004)
13. Karami, et al.: Eur. Phys. J.C 64, 85 (2009) 14. Gupta, R.C., Pradhan,
A.: Int. J. Theor. Phys. doi:10, 1007/10773-010-0261-1
14. Barrow, J.D.: Mon. Not. Astron. Soc. 211, 221(1984)
15. Roy, S.R., Singh, J.P.: Acta Physiac Austriaca 55, 57 (1983)
16. Tikekar, R., Patel, L.K.: Pramana-J. Phys. 42, 483 (1994)
17. Bali, R., Banerjee, R., Banerjee, S.K.: Astorphys. Space Sci.317, 21 (2008)
18. Bali, R., Pradhan, A., Hassan, A.: Int. J. Theor. Phys. 47, 2594 (2008)
19. Pradhan, A., Bali, R.: EJTP 19, 91 (2008)
20. Shri Ram: J. Math. Phys. 26, 2916 (1985)
21. Shri Ram: J. Math. Phys. 27, 660 (1986)
22. Adhav, K.S., et al.: Astrophys. Space Sci. 332, 497 (2011)
23. Abdussattar, Prajapati, S.R.: Astrophys. Space Sci. 331, 657 (2011)
24. Bisabr, Y.: Gen. Relative. Gravit. DOI 10. 1007/s 10714-011-1281-8
25. Yadav, A.K., Saha, B.: Astrophys. Space Sci.337, 759 (2012)
26. Saha, B., Yadav, A.K.: Astrophys. Space Sci. DOI 10.1007/s/10509-012-1070-1

Global Journals Inc. (US) Guidelines Handbook 2012 WWW.GLOBALJOURNALS.ORG

FELLOWS

FELLOW OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (FARSS)

- 'FARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'FARSS" can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., FARSS or William Walldroff Ph. D., M.S., FARSS
- Being FARSS is a respectful honor. It authenticates your research activities. After becoming FARSS, you can use 'FARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
- 60% Discount will be provided to FARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60%
- FARSS will be given a renowned, secure, free professional email address with 100 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
- FARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 15% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
- Eg. If we had taken 420 USD from author, we can send 63 USD to your account.
- FARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
- After you are FARSS. You can send us scanned copy of all of your documents. We will verify, grade and certify them within a month. It will be based on your academic records, quality of research papers published by you, and 50 more criteria. This is beneficial for your job interviews as recruiting organization need not just rely on you for authenticity and your unknown qualities, you would have authentic ranks of all of your documents. Our scale is unique worldwide.
- FARSS member can proceed to get benefits of free research podcasting in Global Research Radio with their research documents, slides and online movies.
- After your publication anywhere in the world, you can upload you research paper with your recorded voice or you can use our professional RJs to record your paper their voice. We can also stream your conference videos and display your slides online.
- FARSS will be eligible for free application of Standardization of their Researches by Open Scientific Standards. Standardization is next step and level after publishing in a journal. A team of research and professional will work with you to take your research to its next level, which is worldwide open standardization.
- FARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), FARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 80% of its earning by Global Journals Inc. (US) will be transferred to FARSS member's bank account after certain threshold balance. There is no time limit for collection. FARSS member can decide its price and we can help in decision.

MEMBER OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (MARSS)

- 'MARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'MARSS' can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., MARSS or William Walldroff Ph. D., M.S., MARSS
- Being MARSS is a respectful honor. It authenticates your research activities. After becoming MARSS, you can use 'MARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
- 40% Discount will be provided to MARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60\%
- MARSS will be given a renowned, secure, free professional email address with 30 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
- MARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 10% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
- MARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
- MARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), MARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 40% of its earning by Global Journals Inc. (US) will be transferred to MARSS member's bank account after certain threshold balance. There is no time limit for collection. MARSS member can decide its price and we can help in decision.

AUXILIARY MEMbERSHIPS

ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJSFR for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.

Process of submission of Research Paper

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC,*.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:
(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.
(II) Choose corresponding Journal.
(III) Click 'Submit Manuscript'. Fill required information and Upload the paper.
(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.
(C) If these two are not conveninet, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.

Preferred Author Guidelines

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: $8.27^{\prime \prime} \times 11^{\prime \prime}$

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis 721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of . 2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt .
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global
© Copyright by Global Journals Inc.(US) | Guidelines Handbook

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R\&D authorship, criteria must be based on:

1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
2) Drafting the paper and revising it critically regarding important academic content.
3) Final approval of the version of the paper to be published.

All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.
If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:
Original research paper: Such papers are reports of high-level significant original research work.
Review papers: These are concise, significant but helpful and decisive topics for young researchers.
Research articles: These are handled with small investigation and applications
Research letters: The letters are small and concise comments on previously published matters.

5.STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:
(a)Title should be relevant and commensurate with the theme of the paper.
(b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
(c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
(d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
(e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
(f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
(g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
(h) Brief Acknowledgements.
(i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve briefness.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min , except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 I rather than $1.4 \times 10-3 \mathrm{~m} 3$, or 4 mm somewhat than $4 \times 10-3 \mathrm{~m}$. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the email address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art.A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: Please make these as concise as possible.

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends
Tables: Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.

Figures: Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.

Preparation of Electronic Figures for Publication
Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: >650 dpi.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded
(Free of charge) from the following website:
www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.
As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services

Online production tracking is available for your article through Author Services. Author Services enables authors to track their article once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy \& electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .
the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.
2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.
3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.
4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.
5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.
6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.
7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.
8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.
9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.
10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.
11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.
12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.
13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.
14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.
15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.
© Copyright by Global Journals Inc.(US) | Guidelines Handbook
16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.
17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.
18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.
19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.
20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.
21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.
22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.
23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.
24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.
25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.
26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.
27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.
28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.
29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.
30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.
31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be
sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Amplification is a billion times of inferior quality than sarcasm.
32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.
33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.
34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

Informal Guidelines of Research Paper Writing

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

- Adhere to recommended page limits

Mistakes to evade

Insertion a title at the foot of a page with the subsequent text on the next page

- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:

Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript-must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to

© Copyright by Global Journals Inc.(US)| Guidelines Handbook

shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic

© Copyright by Global Journals Inc.(US) | Guidelines Handbook

principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently.You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

Content

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form. What to stay away from
- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.

© Copyright by Global Journals Inc.(US)| Guidelines Handbook
- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

Discussion:

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.

Administration Rules Listed Before
 Submitting Your Research Paper to Global Journals Inc. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The major constraint is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

Criterion for Grading a Research Paper (Compilation) by Global Journals Inc. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
Abstract	A-B	C-D	E-F
	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form	No specific data with ambiguous information
		Above 200 words	Above 250 words
Introduction	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
Methods and Procedures	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
Result	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
Discussion	Well organized, meaningfulspecification,sound conclusion, logical and concise explanation, highly structured reference cited paragraph	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
References	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring

INDEX

A

anisotropic - 130
arbitrary $26,58,134,135$
axioms 20

C

Celestial • 97
Chlorine - 15
Cosmological models • 129

D

derivative • 54, 58, 59

E

eccentricity • 97
eigenvalue • 27, 32, 52

homomorphism • 19, 21, 119, 122, 123
Hypergeometric • $1,62,64,66,68,70,72,74,76,78,80,82$, 84, 86, 88, 90, 92, 94, 96

I

isomorphic • 119

K

kinematical • 134, 136

N

nilpotence • 19
nilpotent 21

P
perihelion• 97
perpetuity • 54, 56, 58
\bar{Q}
Quotient • 116

\boldsymbol{R}

ratio-cum-dual • 2, 3, 17
rhotrix $\cdot 116,118,119,123,127$

S

submonoid • 123

\bar{U}

unbiased • 3, 5, 14

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org or email us at helpdesk@globaljournals.org

[^0]: Author a: Guest Lecturer, Department of Mathematics, North Eastern Regional Institute of Science and Technology, Niriuli-791109, Itanagar, India. E-mail : sanjibchy07@gmail.com
 Author o : Assistant Professor, Department of Mathematics, North Eastern Regional Institute of Science and Technology, Nirjuli-791109, Itanagar, India. E-mail : bksinghnerist@gmail.com

[^1]: © 2012. Raju Chowdhury, Dewan Ferdous Wahid \& Md. Anowar Hossain. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by$\mathrm{nc} / 3.0 /$), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^2]: Author a : Lecturer (Mathematics), Department of Natural Science, Stamford University Bangladesh, Dhaka-1217. E-mail : rajumath@stamforduniversity.edu.bd
 Author σ : Lecturer (Mathematics), Department of Natural Science, Stamford University Bangladesh, Dhaka-1217. E-mail : dfwahid@stamforduniversity.edu.bd
 Authorp : Lecturer (Mathematics), Department of Natural Science, Stamford University Bangladesh, Dhaka-1217. E-mail : hossain_anowar45@yahoo.com

[^3]: Author a: Department of Mathematics, Gayatri Vidya Parishad College of Engineering for Women Madhurawada, Visakhapatnam, 530 048, India. E-mail : kamesh 1724@yahoo.com
 Author o : Department of Mathematics, Aditya Institute of Technology and Management, Tekkali, 532 201, India.
 E-mail : sabbavarapu_nag@yahoo.co.in

[^4]: Author α : Department of Applied Sciences and Humanities (Mathematics), Shri Sant Gajanan Maharaj College Of Engineering, Shegaon, Dist:- Buldhana-444203. Maharashtra India. E-mail : napshegaon@rediffmail.com
 Author σ : Department Of Applied Sciences Mathematics, Padmashri Dr. V.B.Kolte College Of Engineering, Malkapur, Dist:- Buldhana443101. Maharashtra India. E-mail : vijayaphirke@gmail.com

[^5]: Author : P.D.M College of Engineering, Bahadurgarh, Haryana, India. E-mail : sludn@yahoo.com

[^6]: Author a : Department of Astronomy, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia. E-mail : sharaf_adel@hotmail.com
 Author σ : Department of Mathematics, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia. E-mail : laq700@hotmail.com

[^7]: Author α : International Scientific Research and Welfare Organization, New Delhi, India. E-mail : mpchaudhary_2000@yahoo.com Author σ : Vinayak Mission University, Salem, Tamil Nadu, India.
 Author ρ : Noida Institute of Engineering and Technology, Greater Noida-201306, U.P. India.

[^8]: Author $\alpha \sigma$: Department of Mathematics, Kano University of Science and Technology, Wudil, P.M.B. 3244 Kano, Nigeria.
 E-mails : kunyasco@yahoo.com, tudunkayaunique@yahoo.com

[^9]: Authors : Department of Applied Mathematics, Indian Institute of Technology, Banaras Hindu University, Varanasi 221 005, India. E-mail : srmathitbhu@rediffmail.com

